lpc_machdep.c revision 240802
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *      This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 *    endorse or promote products derived from this software without specific
21 *    prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
36 */
37
38#include "opt_ddb.h"
39#include "opt_platform.h"
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/arm/lpc/lpc_machdep.c 240802 2012-09-22 06:41:56Z andrew $");
43
44#define _ARM32_BUS_DMA_PRIVATE
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/signalvar.h>
49#include <sys/imgact.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/linker.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/pcpu.h>
57#include <sys/proc.h>
58#include <sys/ptrace.h>
59#include <sys/cons.h>
60#include <sys/bio.h>
61#include <sys/bus.h>
62#include <sys/buf.h>
63#include <sys/exec.h>
64#include <sys/kdb.h>
65#include <sys/msgbuf.h>
66#include <machine/reg.h>
67#include <machine/cpu.h>
68#include <machine/fdt.h>
69
70#include <dev/fdt/fdt_common.h>
71#include <dev/ofw/openfirm.h>
72
73#include <arm/lpc/lpcreg.h>
74#include <arm/lpc/lpcvar.h>
75
76#include <dev/ic/ns16550.h>
77
78#include <vm/vm.h>
79#include <vm/pmap.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pager.h>
83#include <vm/vm_map.h>
84#include <machine/bus.h>
85#include <machine/pte.h>
86#include <machine/pmap.h>
87#include <machine/vmparam.h>
88#include <machine/pcb.h>
89#include <machine/undefined.h>
90#include <machine/machdep.h>
91#include <machine/metadata.h>
92#include <machine/armreg.h>
93#include <machine/bus.h>
94#include <sys/reboot.h>
95
96#define DEBUG
97#undef DEBUG
98
99#ifdef  DEBUG
100#define debugf(fmt, args...) printf(fmt, ##args)
101#else
102#define debugf(fmt, args...)
103#endif
104
105/*
106 * This is the number of L2 page tables required for covering max
107 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
108 * stacks etc.), uprounded to be divisible by 4.
109 */
110#define KERNEL_PT_MAX	78
111
112extern unsigned char kernbase[];
113extern unsigned char _etext[];
114extern unsigned char _edata[];
115extern unsigned char __bss_start[];
116extern unsigned char _end[];
117
118#ifdef DDB
119extern vm_offset_t ksym_start, ksym_end;
120#endif
121
122extern u_int data_abort_handler_address;
123extern u_int prefetch_abort_handler_address;
124extern u_int undefined_handler_address;
125
126extern vm_offset_t pmap_bootstrap_lastaddr;
127extern int *end;
128
129struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
130
131/* Physical and virtual addresses for some global pages */
132
133vm_paddr_t phys_avail[10];
134vm_paddr_t dump_avail[4];
135vm_offset_t physical_pages;
136vm_offset_t pmap_bootstrap_lastaddr;
137
138const struct pmap_devmap *pmap_devmap_bootstrap_table;
139struct pv_addr systempage;
140struct pv_addr msgbufpv;
141struct pv_addr irqstack;
142struct pv_addr undstack;
143struct pv_addr abtstack;
144struct pv_addr kernelstack;
145
146static struct mem_region availmem_regions[FDT_MEM_REGIONS];
147static int availmem_regions_sz;
148
149static void print_kenv(void);
150static void print_kernel_section_addr(void);
151
152static void physmap_init(void);
153static int platform_devmap_init(void);
154
155static char *
156kenv_next(char *cp)
157{
158
159	if (cp != NULL) {
160		while (*cp != 0)
161			cp++;
162		cp++;
163		if (*cp == 0)
164			cp = NULL;
165	}
166	return (cp);
167}
168
169static void
170print_kenv(void)
171{
172	int len;
173	char *cp;
174
175	debugf("loader passed (static) kenv:\n");
176	if (kern_envp == NULL) {
177		debugf(" no env, null ptr\n");
178		return;
179	}
180	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
181
182	len = 0;
183	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
184		debugf(" %x %s\n", (uint32_t)cp, cp);
185}
186
187static void
188print_kernel_section_addr(void)
189{
190
191	debugf("kernel image addresses:\n");
192	debugf(" kernbase       = 0x%08x\n", (uint32_t)kernbase);
193	debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
194	debugf(" _edata         = 0x%08x\n", (uint32_t)_edata);
195	debugf(" __bss_start    = 0x%08x\n", (uint32_t)__bss_start);
196	debugf(" _end           = 0x%08x\n", (uint32_t)_end);
197}
198
199static void
200physmap_init(void)
201{
202	int i, j, cnt;
203	vm_offset_t phys_kernelend, kernload;
204	uint32_t s, e, sz;
205	struct mem_region *mp, *mp1;
206
207	phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
208	kernload = KERNPHYSADDR;
209
210	/*
211	 * Remove kernel physical address range from avail
212	 * regions list. Page align all regions.
213	 * Non-page aligned memory isn't very interesting to us.
214	 * Also, sort the entries for ascending addresses.
215	 */
216	sz = 0;
217	cnt = availmem_regions_sz;
218	debugf("processing avail regions:\n");
219	for (mp = availmem_regions; mp->mr_size; mp++) {
220		s = mp->mr_start;
221		e = mp->mr_start + mp->mr_size;
222		debugf(" %08x-%08x -> ", s, e);
223		/* Check whether this region holds all of the kernel. */
224		if (s < kernload && e > phys_kernelend) {
225			availmem_regions[cnt].mr_start = phys_kernelend;
226			availmem_regions[cnt++].mr_size = e - phys_kernelend;
227			e = kernload;
228		}
229		/* Look whether this regions starts within the kernel. */
230		if (s >= kernload && s < phys_kernelend) {
231			if (e <= phys_kernelend)
232				goto empty;
233			s = phys_kernelend;
234		}
235		/* Now look whether this region ends within the kernel. */
236		if (e > kernload && e <= phys_kernelend) {
237			if (s >= kernload) {
238				goto empty;
239			}
240			e = kernload;
241		}
242		/* Now page align the start and size of the region. */
243		s = round_page(s);
244		e = trunc_page(e);
245		if (e < s)
246			e = s;
247		sz = e - s;
248		debugf("%08x-%08x = %x\n", s, e, sz);
249
250		/* Check whether some memory is left here. */
251		if (sz == 0) {
252		empty:
253			printf("skipping\n");
254			bcopy(mp + 1, mp,
255			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
256			cnt--;
257			mp--;
258			continue;
259		}
260
261		/* Do an insertion sort. */
262		for (mp1 = availmem_regions; mp1 < mp; mp1++)
263			if (s < mp1->mr_start)
264				break;
265		if (mp1 < mp) {
266			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
267			mp1->mr_start = s;
268			mp1->mr_size = sz;
269		} else {
270			mp->mr_start = s;
271			mp->mr_size = sz;
272		}
273	}
274	availmem_regions_sz = cnt;
275
276	/* Fill in phys_avail table, based on availmem_regions */
277	debugf("fill in phys_avail:\n");
278	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
279
280		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
281		    availmem_regions[i].mr_start,
282		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
283		    availmem_regions[i].mr_size);
284
285		phys_avail[j] = availmem_regions[i].mr_start;
286		phys_avail[j + 1] = availmem_regions[i].mr_start +
287		    availmem_regions[i].mr_size;
288	}
289	phys_avail[j] = 0;
290	phys_avail[j + 1] = 0;
291}
292
293void *
294initarm(struct arm_boot_params *abp)
295{
296	struct pv_addr kernel_l1pt;
297	struct pv_addr dpcpu;
298	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
299	uint32_t memsize, l2size;
300	void *kmdp;
301	u_int l1pagetable;
302	int i = 0, j = 0;
303
304	lastaddr = parse_boot_param(abp);
305	memsize = 0;
306	set_cpufuncs();
307
308	kmdp = preload_search_by_type("elf kernel");
309	if (kmdp != NULL)
310		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
311	else
312		dtbp = (vm_offset_t)NULL;
313
314#if defined(FDT_DTB_STATIC)
315	/*
316	 * In case the device tree blob was not retrieved (from metadata) try
317	 * to use the statically embedded one.
318	 */
319	if (dtbp == (vm_offset_t)NULL)
320		dtbp = (vm_offset_t)&fdt_static_dtb;
321
322#endif
323
324	if (OF_install(OFW_FDT, 0) == FALSE)
325		while (1);
326
327	if (OF_init((void *)dtbp) != 0)
328		while (1);
329
330	/* Grab physical memory regions information from device tree. */
331	if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz,
332	    &memsize) != 0)
333		while(1);
334
335	if (fdt_immr_addr(LPC_DEV_BASE) != 0)
336		while (1);
337
338	/* Platform-specific initialisation */
339	pmap_bootstrap_lastaddr = fdt_immr_va - ARM_NOCACHE_KVA_SIZE;
340
341	pcpu_init(pcpup, 0, sizeof(struct pcpu));
342	PCPU_SET(curthread, &thread0);
343
344	/* Calculate number of L2 tables needed for mapping vm_page_array */
345	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
346	l2size = (l2size >> L1_S_SHIFT) + 1;
347
348	/*
349	 * Add one table for end of kernel map, one for stacks, msgbuf and
350	 * L1 and L2 tables map and one for vectors map.
351	 */
352	l2size += 3;
353
354	/* Make it divisible by 4 */
355	l2size = (l2size + 3) & ~3;
356
357#define KERNEL_TEXT_BASE (KERNBASE)
358	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
359
360	/* Define a macro to simplify memory allocation */
361#define valloc_pages(var, np)                   \
362	alloc_pages((var).pv_va, (np));         \
363	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
364
365#define alloc_pages(var, np)			\
366	(var) = freemempos;		\
367	freemempos += (np * PAGE_SIZE);		\
368	memset((char *)(var), 0, ((np) * PAGE_SIZE));
369
370	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
371		freemempos += PAGE_SIZE;
372	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
373
374	for (i = 0; i < l2size; ++i) {
375		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
376			valloc_pages(kernel_pt_table[i],
377			    L2_TABLE_SIZE / PAGE_SIZE);
378			j = i;
379		} else {
380			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
381			    L2_TABLE_SIZE_REAL * (i - j);
382			kernel_pt_table[i].pv_pa =
383			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
384			    KERNPHYSADDR;
385
386		}
387	}
388	/*
389	 * Allocate a page for the system page mapped to 0x00000000
390	 * or 0xffff0000. This page will just contain the system vectors
391	 * and can be shared by all processes.
392	 */
393	valloc_pages(systempage, 1);
394
395	/* Allocate dynamic per-cpu area. */
396	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
397	dpcpu_init((void *)dpcpu.pv_va, 0);
398
399	/* Allocate stacks for all modes */
400	valloc_pages(irqstack, IRQ_STACK_SIZE);
401	valloc_pages(abtstack, ABT_STACK_SIZE);
402	valloc_pages(undstack, UND_STACK_SIZE);
403	valloc_pages(kernelstack, KSTACK_PAGES);
404
405	init_param1();
406
407	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
408
409	/*
410	 * Now we start construction of the L1 page table
411	 * We start by mapping the L2 page tables into the L1.
412	 * This means that we can replace L1 mappings later on if necessary
413	 */
414	l1pagetable = kernel_l1pt.pv_va;
415
416	/*
417	 * Try to map as much as possible of kernel text and data using
418	 * 1MB section mapping and for the rest of initial kernel address
419	 * space use L2 coarse tables.
420	 *
421	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
422	 * and kernel structures
423	 */
424	l2_start = lastaddr & ~(L1_S_OFFSET);
425	for (i = 0 ; i < l2size - 1; i++)
426		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
427		    &kernel_pt_table[i]);
428
429	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
430
431	/* Map kernel code and data */
432	pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
433	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
434	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
435
436
437	/* Map L1 directory and allocated L2 page tables */
438	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
439	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
440
441	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
442	    kernel_pt_table[0].pv_pa,
443	    L2_TABLE_SIZE_REAL * l2size,
444	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
445
446	/* Map allocated DPCPU, stacks and msgbuf */
447	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
448	    freemempos - dpcpu.pv_va,
449	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
450
451	/* Link and map the vector page */
452	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
453	    &kernel_pt_table[l2size - 1]);
454	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
455	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
456
457	/* Map pmap_devmap[] entries */
458	if (platform_devmap_init() != 0)
459		while (1);
460	pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
461
462	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
463	    DOMAIN_CLIENT);
464	setttb(kernel_l1pt.pv_pa);
465	cpu_tlb_flushID();
466	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
467
468	/*
469	 * Only after the SOC registers block is mapped we can perform device
470	 * tree fixups, as they may attempt to read parameters from hardware.
471	 */
472	OF_interpret("perform-fixup", 0);
473
474#if 0
475	/*
476	 * Initialize GPIO as early as possible.
477	 */
478	if (platform_gpio_init() != 0)
479		while (1);
480#endif
481
482	cninit();
483
484	physmem = memsize / PAGE_SIZE;
485
486	debugf("initarm: console initialized\n");
487	debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp);
488	debugf(" boothowto = 0x%08x\n", boothowto);
489	printf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
490	print_kernel_section_addr();
491	print_kenv();
492
493	/*
494	 * Pages were allocated during the secondary bootstrap for the
495	 * stacks for different CPU modes.
496	 * We must now set the r13 registers in the different CPU modes to
497	 * point to these stacks.
498	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
499	 * of the stack memory.
500	 */
501	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
502
503	set_stackptrs(0);
504
505	/*
506	 * We must now clean the cache again....
507	 * Cleaning may be done by reading new data to displace any
508	 * dirty data in the cache. This will have happened in setttb()
509	 * but since we are boot strapping the addresses used for the read
510	 * may have just been remapped and thus the cache could be out
511	 * of sync. A re-clean after the switch will cure this.
512	 * After booting there are no gross relocations of the kernel thus
513	 * this problem will not occur after initarm().
514	 */
515	cpu_idcache_wbinv_all();
516
517	/* Set stack for exception handlers */
518	data_abort_handler_address = (u_int)data_abort_handler;
519	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
520	undefined_handler_address = (u_int)undefinedinstruction_bounce;
521	undefined_init();
522
523	init_proc0(kernelstack.pv_va);
524
525	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
526
527	dump_avail[0] = 0;
528	dump_avail[1] = memsize;
529	dump_avail[2] = 0;
530	dump_avail[3] = 0;
531
532	pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
533	msgbufp = (void *)msgbufpv.pv_va;
534	msgbufinit(msgbufp, msgbufsize);
535	mutex_init();
536
537	/*
538	 * Prepare map of physical memory regions available to vm subsystem.
539	 */
540	physmap_init();
541
542	/*
543	 * Set initial values of GPIO output ports
544	 */
545	platform_gpio_init();
546
547	/* Do basic tuning, hz etc */
548	init_param2(physmem);
549	kdb_init();
550	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
551	    sizeof(struct pcb)));
552}
553
554#define FDT_DEVMAP_MAX	(1 + 2 + 1 + 1)
555static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = {
556	{ 0, 0, 0, 0, 0, }
557};
558
559/*
560 * Construct pmap_devmap[] with DT-derived config data.
561 */
562static int
563platform_devmap_init(void)
564{
565
566	/*
567	 * IMMR range.
568	 */
569	fdt_devmap[0].pd_va = fdt_immr_va;
570	fdt_devmap[0].pd_pa = fdt_immr_pa;
571	fdt_devmap[0].pd_size = fdt_immr_size;
572	fdt_devmap[0].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
573	fdt_devmap[0].pd_cache = PTE_NOCACHE;
574
575	pmap_devmap_bootstrap_table = &fdt_devmap[0];
576	return (0);
577}
578
579struct arm32_dma_range *
580bus_dma_get_range(void)
581{
582
583	return (NULL);
584}
585
586int
587bus_dma_get_range_nb(void)
588{
589
590	return (0);
591}
592
593void
594cpu_reset(void)
595{
596	/* Enable WDT */
597	bus_space_write_4(fdtbus_bs_tag,
598	    LPC_CLKPWR_BASE, LPC_CLKPWR_TIMCLK_CTRL,
599	    LPC_CLKPWR_TIMCLK_CTRL_WATCHDOG);
600
601	/* Instant assert of RESETOUT_N with pulse length 1ms */
602	bus_space_write_4(fdtbus_bs_tag, LPC_WDTIM_BASE, LPC_WDTIM_PULSE, 13000);
603	bus_space_write_4(fdtbus_bs_tag, LPC_WDTIM_BASE, LPC_WDTIM_MCTRL, 0x70);
604
605	for (;;);
606}
607