pte-v4.h revision 280712
1/*	$NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1994 Mark Brinicombe.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the RiscBSD team.
18 * 4. The name "RiscBSD" nor the name of the author may be used to
19 *    endorse or promote products derived from this software without specific
20 *    prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
26 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/arm/include/pte.h 280712 2015-03-26 21:13:53Z ian $
35 */
36#ifdef ARM_NEW_PMAP
37#include <machine/pte-v6.h>
38#else /* ARM_NEW_PMAP */
39
40#ifndef _MACHINE_PTE_H_
41#define _MACHINE_PTE_H_
42
43#ifndef LOCORE
44typedef	uint32_t	pd_entry_t;		/* page directory entry */
45typedef	uint32_t	pt_entry_t;		/* page table entry */
46#endif
47
48#define PG_FRAME	0xfffff000
49
50/* The PT_SIZE definition is misleading... A page table is only 0x400
51 * bytes long. But since VM mapping can only be done to 0x1000 a single
52 * 1KB blocks cannot be steered to a va by itself. Therefore the
53 * pages tables are allocated in blocks of 4. i.e. if a 1 KB block
54 * was allocated for a PT then the other 3KB would also get mapped
55 * whenever the 1KB was mapped.
56 */
57
58#define PT_RSIZE	0x0400		/* Real page table size */
59#define PT_SIZE		0x1000
60#define PD_SIZE		0x4000
61
62/* Page table types and masks */
63#define L1_PAGE		0x01	/* L1 page table mapping */
64#define L1_SECTION	0x02	/* L1 section mapping */
65#define L1_FPAGE	0x03	/* L1 fine page mapping */
66#define L1_MASK		0x03	/* Mask for L1 entry type */
67#define L2_LPAGE	0x01	/* L2 large page (64KB) */
68#define L2_SPAGE	0x02	/* L2 small page (4KB) */
69#define L2_MASK		0x03	/* Mask for L2 entry type */
70#define L2_INVAL	0x00	/* L2 invalid type */
71
72/* L1 and L2 address masks */
73#define L1_ADDR_MASK		0xfffffc00
74#define L2_ADDR_MASK		0xfffff000
75
76/*
77 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
78 * architecture versions used an optional off-CPU memory controller
79 * to perform address translation).
80 *
81 * The ARM MMU consists of a TLB and translation table walking logic.
82 * There is typically one TLB per memory interface (or, put another
83 * way, one TLB per software-visible cache).
84 *
85 * The ARM MMU is capable of mapping memory in the following chunks:
86 *
87 *	1M	Sections (L1 table)
88 *
89 *	64K	Large Pages (L2 table)
90 *
91 *	4K	Small Pages (L2 table)
92 *
93 *	1K	Tiny Pages (L2 table)
94 *
95 * There are two types of L2 tables: Coarse Tables and Fine Tables.
96 * Coarse Tables can map Large and Small Pages.  Fine Tables can
97 * map Tiny Pages.
98 *
99 * Coarse Tables can define 4 Subpages within Large and Small pages.
100 * Subpages define different permissions for each Subpage within
101 * a Page.
102 *
103 * Coarse Tables are 1K in length.  Fine tables are 4K in length.
104 *
105 * The Translation Table Base register holds the pointer to the
106 * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
107 * aligned to a 16K boundary.  Each entry in the L1 Table maps
108 * 1M of virtual address space, either via a Section mapping or
109 * via an L2 Table.
110 *
111 * In addition, the Fast Context Switching Extension (FCSE) is available
112 * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
113 * TLB/cache flushes on context switch by use of a smaller address space
114 * and a "process ID" that modifies the virtual address before being
115 * presented to the translation logic.
116 */
117
118/* ARMv6 super-sections. */
119#define L1_SUP_SIZE	0x01000000	/* 16M */
120#define L1_SUP_OFFSET	(L1_SUP_SIZE - 1)
121#define L1_SUP_FRAME	(~L1_SUP_OFFSET)
122#define L1_SUP_SHIFT	24
123
124#define	L1_S_SIZE	0x00100000	/* 1M */
125#define	L1_S_OFFSET	(L1_S_SIZE - 1)
126#define	L1_S_FRAME	(~L1_S_OFFSET)
127#define	L1_S_SHIFT	20
128
129#define	L2_L_SIZE	0x00010000	/* 64K */
130#define	L2_L_OFFSET	(L2_L_SIZE - 1)
131#define	L2_L_FRAME	(~L2_L_OFFSET)
132#define	L2_L_SHIFT	16
133
134#define	L2_S_SIZE	0x00001000	/* 4K */
135#define	L2_S_OFFSET	(L2_S_SIZE - 1)
136#define	L2_S_FRAME	(~L2_S_OFFSET)
137#define	L2_S_SHIFT	12
138
139#define	L2_T_SIZE	0x00000400	/* 1K */
140#define	L2_T_OFFSET	(L2_T_SIZE - 1)
141#define	L2_T_FRAME	(~L2_T_OFFSET)
142#define	L2_T_SHIFT	10
143
144/*
145 * The NetBSD VM implementation only works on whole pages (4K),
146 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
147 * (16K L1 table, 1K L2 table).
148 *
149 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
150 * table.
151 */
152#define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
153#define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
154
155#define	L1_TABLE_SIZE	0x4000		/* 16K */
156#define	L2_TABLE_SIZE	0x1000		/* 4K */
157/*
158 * The new pmap deals with the 1KB coarse L2 tables by
159 * allocating them from a pool. Until every port has been converted,
160 * keep the old L2_TABLE_SIZE define lying around. Converted ports
161 * should use L2_TABLE_SIZE_REAL until then.
162 */
163#define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
164
165/* Total number of page table entries in L2 table */
166#define	L2_PTE_NUM_TOTAL	(L2_TABLE_SIZE_REAL / sizeof(pt_entry_t))
167
168/*
169 * ARM L1 Descriptors
170 */
171
172#define	L1_TYPE_INV	0x00		/* Invalid (fault) */
173#define	L1_TYPE_C	0x01		/* Coarse L2 */
174#define	L1_TYPE_S	0x02		/* Section */
175#define	L1_TYPE_F	0x03		/* Fine L2 */
176#define	L1_TYPE_MASK	0x03		/* mask of type bits */
177
178/* L1 Section Descriptor */
179#define	L1_S_B		0x00000004	/* bufferable Section */
180#define	L1_S_C		0x00000008	/* cacheable Section */
181#define	L1_S_IMP	0x00000010	/* implementation defined */
182#define	L1_S_XN		(1 << 4)	/* execute not */
183#define	L1_S_DOM(x)	((x) << 5)	/* domain */
184#define	L1_S_DOM_MASK	L1_S_DOM(0xf)
185#define	L1_S_AP(x)	((x) << 10)	/* access permissions */
186#define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
187#define	L1_S_TEX(x)	(((x) & 0x7) << 12)	/* Type Extension */
188#define	L1_S_TEX_MASK	(0x7 << 12)	/* Type Extension */
189#define	L1_S_APX	(1 << 15)
190#define	L1_SHARED	(1 << 16)
191
192#define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
193#define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
194
195#define L1_S_SUPERSEC	((1) << 18)	/* Section is a super-section. */
196
197/* L1 Coarse Descriptor */
198#define	L1_C_IMP0	0x00000004	/* implementation defined */
199#define	L1_C_IMP1	0x00000008	/* implementation defined */
200#define	L1_C_IMP2	0x00000010	/* implementation defined */
201#define	L1_C_DOM(x)	((x) << 5)	/* domain */
202#define	L1_C_DOM_MASK	L1_C_DOM(0xf)
203#define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
204
205#define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
206
207/* L1 Fine Descriptor */
208#define	L1_F_IMP0	0x00000004	/* implementation defined */
209#define	L1_F_IMP1	0x00000008	/* implementation defined */
210#define	L1_F_IMP2	0x00000010	/* implementation defined */
211#define	L1_F_DOM(x)	((x) << 5)	/* domain */
212#define	L1_F_DOM_MASK	L1_F_DOM(0xf)
213#define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
214
215#define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
216
217/*
218 * ARM L2 Descriptors
219 */
220
221#define	L2_TYPE_INV	0x00		/* Invalid (fault) */
222#define	L2_TYPE_L	0x01		/* Large Page */
223#define	L2_TYPE_S	0x02		/* Small Page */
224#define	L2_TYPE_T	0x03		/* Tiny Page */
225#define	L2_TYPE_MASK	0x03		/* mask of type bits */
226
227	/*
228	 * This L2 Descriptor type is available on XScale processors
229	 * when using a Coarse L1 Descriptor.  The Extended Small
230	 * Descriptor has the same format as the XScale Tiny Descriptor,
231	 * but describes a 4K page, rather than a 1K page.
232	 */
233#define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
234
235#define	L2_B		0x00000004	/* Bufferable page */
236#define	L2_C		0x00000008	/* Cacheable page */
237#define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
238#define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
239#define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
240#define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
241
242#define	L2_SHARED	(1 << 10)
243#define	L2_APX		(1 << 9)
244#define	L2_XN		(1 << 0)
245#define	L2_L_TEX_MASK	(0x7 << 12)	/* Type Extension */
246#define	L2_L_TEX(x)	(((x) & 0x7) << 12)
247#define	L2_S_TEX_MASK	(0x7 << 6)	/* Type Extension */
248#define	L2_S_TEX(x)	(((x) & 0x7) << 6)
249
250#define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
251#define L2_XSCALE_L_S(x)   (1 << 15)	/* Shared */
252#define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
253
254/*
255 * Access Permissions for L1 and L2 Descriptors.
256 */
257#define	AP_W		0x01		/* writable */
258#define	AP_REF		0x01		/* referenced flag */
259#define	AP_U		0x02		/* user */
260
261/*
262 * Short-hand for common AP_* constants.
263 *
264 * Note: These values assume the S (System) bit is set and
265 * the R (ROM) bit is clear in CP15 register 1.
266 */
267#define	AP_KR		0x00		/* kernel read */
268#define	AP_KRW		0x01		/* kernel read/write */
269#define	AP_KRWUR	0x02		/* kernel read/write usr read */
270#define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
271
272/*
273 * Domain Types for the Domain Access Control Register.
274 */
275#define	DOMAIN_FAULT	0x00		/* no access */
276#define	DOMAIN_CLIENT	0x01		/* client */
277#define	DOMAIN_RESERVED	0x02		/* reserved */
278#define	DOMAIN_MANAGER	0x03		/* manager */
279
280/*
281 * Type Extension bits for XScale processors.
282 *
283 * Behavior of C and B when X == 0:
284 *
285 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
286 * 0 0      N          N            -                 -
287 * 0 1      N          Y            -                 -
288 * 1 0      Y          Y       Write-through    Read Allocate
289 * 1 1      Y          Y        Write-back      Read Allocate
290 *
291 * Behavior of C and B when X == 1:
292 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
293 * 0 0      -          -            -                 -           DO NOT USE
294 * 0 1      N          Y            -                 -
295 * 1 0  Mini-Data      -            -                 -
296 * 1 1      Y          Y        Write-back       R/W Allocate
297 */
298#define	TEX_XSCALE_X	0x01		/* X modifies C and B */
299#define TEX_XSCALE_E	0x02
300#define TEX_XSCALE_T	0x04
301
302/* Xscale core 3 */
303
304/*
305 *
306 * Cache attributes with L2 present, S = 0
307 * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
308 * 0 0 0 0 0 	N	  N 		- 	N		N
309 * 0 0 0 0 1	N	  N		-	N		Y
310 * 0 0 0 1 0	Y	  Y		WT	N		Y
311 * 0 0 0 1 1	Y	  Y		WB	Y		Y
312 * 0 0 1 0 0	N	  N		-	Y		Y
313 * 0 0 1 0 1	N	  N		-	N		N
314 * 0 0 1 1 0	Y	  Y		-	-		N
315 * 0 0 1 1 1	Y	  Y		WT	Y		Y
316 * 0 1 0 0 0	N	  N		-	N		N
317 * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
318 * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
319 * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
320 * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
321 * 1 X 0 0 0	N	  N		-	N		Y
322 * 1 X 0 0 1	Y	  N		WB	N		Y
323 * 1 X 0 1 0	Y	  N		WT	N		Y
324 * 1 X 0 1 1	Y	  N		WB	Y		Y
325 * 1 X 1 0 0	N	  N		-	Y		Y
326 * 1 X 1 0 1	Y	  Y		WB	Y		Y
327 * 1 X 1 1 0	Y	  Y		WT	Y		Y
328 * 1 X 1 1 1	Y	  Y		WB	Y		Y
329 *
330 *
331 *
332 *
333  * Cache attributes with L2 present, S = 1
334 * T E X C B   L1 i-cache L1 d-cache L1 DC WP  L2 cacheable write coalesce
335 * 0 0 0 0 0 	N	  N 		- 	N		N
336 * 0 0 0 0 1	N	  N		-	N		Y
337 * 0 0 0 1 0	Y	  Y		-	N		Y
338 * 0 0 0 1 1	Y	  Y		WT	Y		Y
339 * 0 0 1 0 0	N	  N		-	Y		Y
340 * 0 0 1 0 1	N	  N		-	N		N
341 * 0 0 1 1 0	Y	  Y		-	-		N
342 * 0 0 1 1 1	Y	  Y		WT	Y		Y
343 * 0 1 0 0 0	N	  N		-	N		N
344 * 0 1 0 0 1	N/A	N/A		N/A	N/A		N/A
345 * 0 1 0 1 0	N/A	N/A		N/A	N/A		N/A
346 * 0 1 0 1 1	N/A	N/A		N/A	N/A		N/A
347 * 0 1 1 X X	N/A	N/A		N/A	N/A		N/A
348 * 1 X 0 0 0	N	  N		-	N		Y
349 * 1 X 0 0 1	Y	  N		-	N		Y
350 * 1 X 0 1 0	Y	  N		-	N		Y
351 * 1 X 0 1 1	Y	  N		-	Y		Y
352 * 1 X 1 0 0	N	  N		-	Y		Y
353 * 1 X 1 0 1	Y	  Y		WT	Y		Y
354 * 1 X 1 1 0	Y	  Y		WT	Y		Y
355 * 1 X 1 1 1	Y	  Y		WT	Y		Y
356 */
357#endif /* !_MACHINE_PTE_H_ */
358#endif /* !ARM_NEW_PMAP */
359
360/* End of pte.h */
361