vm_machdep.c revision 195779
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary :forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/arm/arm/vm_machdep.c 195779 2009-07-20 07:53:07Z raj $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/proc.h>
52#include <sys/socketvar.h>
53#include <sys/sf_buf.h>
54#include <sys/unistd.h>
55#include <machine/cpu.h>
56#include <machine/pcb.h>
57#include <machine/sysarch.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63#include <vm/vm_extern.h>
64#include <vm/vm_kern.h>
65#include <vm/vm_page.h>
66#include <vm/vm_map.h>
67#include <vm/vm_param.h>
68#include <vm/vm_pageout.h>
69#include <vm/uma.h>
70#include <vm/uma_int.h>
71
72#include <machine/md_var.h>
73
74#ifndef NSFBUFS
75#define NSFBUFS		(512 + maxusers * 16)
76#endif
77
78#ifndef ARM_USE_SMALL_ALLOC
79static void     sf_buf_init(void *arg);
80SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
81
82LIST_HEAD(sf_head, sf_buf);
83
84
85/*
86 * A hash table of active sendfile(2) buffers
87 */
88static struct sf_head *sf_buf_active;
89static u_long sf_buf_hashmask;
90
91#define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
92
93static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
94static u_int    sf_buf_alloc_want;
95
96/*
97 * A lock used to synchronize access to the hash table and free list
98 */
99static struct mtx sf_buf_lock;
100#endif
101
102/*
103 * Finish a fork operation, with process p2 nearly set up.
104 * Copy and update the pcb, set up the stack so that the child
105 * ready to run and return to user mode.
106 */
107void
108cpu_fork(register struct thread *td1, register struct proc *p2,
109    struct thread *td2, int flags)
110{
111	struct pcb *pcb2;
112	struct trapframe *tf;
113	struct switchframe *sf;
114	struct mdproc *mdp2;
115
116	if ((flags & RFPROC) == 0)
117		return;
118	pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
119#ifdef __XSCALE__
120#ifndef CPU_XSCALE_CORE3
121	pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
122	if (td2->td_altkstack)
123		pmap_use_minicache(td2->td_altkstack, td2->td_altkstack_pages *
124		    PAGE_SIZE);
125#endif
126#endif
127	td2->td_pcb = pcb2;
128	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
129	mdp2 = &p2->p_md;
130	bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
131	pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
132	pcb2->un_32.pcb32_sp = td2->td_kstack +
133	    USPACE_SVC_STACK_TOP - sizeof(*pcb2);
134	pmap_activate(td2);
135	td2->td_frame = tf =
136	    (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
137	*tf = *td1->td_frame;
138	sf = (struct switchframe *)tf - 1;
139	sf->sf_r4 = (u_int)fork_return;
140	sf->sf_r5 = (u_int)td2;
141	sf->sf_pc = (u_int)fork_trampoline;
142	tf->tf_spsr &= ~PSR_C_bit;
143	tf->tf_r0 = 0;
144	tf->tf_r1 = 0;
145	pcb2->un_32.pcb32_sp = (u_int)sf;
146
147	/* Setup to release spin count in fork_exit(). */
148	td2->td_md.md_spinlock_count = 1;
149	td2->td_md.md_saved_cspr = 0;
150	td2->td_md.md_tp = *(uint32_t **)ARM_TP_ADDRESS;
151}
152
153void
154cpu_thread_swapin(struct thread *td)
155{
156}
157
158void
159cpu_thread_swapout(struct thread *td)
160{
161}
162
163/*
164 * Detatch mapped page and release resources back to the system.
165 */
166void
167sf_buf_free(struct sf_buf *sf)
168{
169#ifndef ARM_USE_SMALL_ALLOC
170	 mtx_lock(&sf_buf_lock);
171	 sf->ref_count--;
172	 if (sf->ref_count == 0) {
173		 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
174		 nsfbufsused--;
175		 if (sf_buf_alloc_want > 0)
176			 wakeup_one(&sf_buf_freelist);
177	 }
178	 mtx_unlock(&sf_buf_lock);
179#endif
180}
181
182#ifndef ARM_USE_SMALL_ALLOC
183/*
184 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
185 */
186static void
187sf_buf_init(void *arg)
188{
189	struct sf_buf *sf_bufs;
190	vm_offset_t sf_base;
191	int i;
192
193	nsfbufs = NSFBUFS;
194	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
195
196	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
197	TAILQ_INIT(&sf_buf_freelist);
198	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
199	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
200	    M_NOWAIT | M_ZERO);
201	for (i = 0; i < nsfbufs; i++) {
202		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
203		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
204	}
205	sf_buf_alloc_want = 0;
206	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
207}
208#endif
209
210/*
211 * Get an sf_buf from the freelist. Will block if none are available.
212 */
213struct sf_buf *
214sf_buf_alloc(struct vm_page *m, int flags)
215{
216#ifdef ARM_USE_SMALL_ALLOC
217	return ((struct sf_buf *)m);
218#else
219	struct sf_head *hash_list;
220	struct sf_buf *sf;
221	int error;
222
223	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
224	mtx_lock(&sf_buf_lock);
225	LIST_FOREACH(sf, hash_list, list_entry) {
226		if (sf->m == m) {
227			sf->ref_count++;
228			if (sf->ref_count == 1) {
229				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
230				nsfbufsused++;
231				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
232			}
233			goto done;
234		}
235	}
236	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
237		if (flags & SFB_NOWAIT)
238			goto done;
239		sf_buf_alloc_want++;
240		mbstat.sf_allocwait++;
241		error = msleep(&sf_buf_freelist, &sf_buf_lock,
242		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
243		sf_buf_alloc_want--;
244
245
246		/*
247		 * If we got a signal, don't risk going back to sleep.
248		 */
249		if (error)
250			goto done;
251	}
252	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
253	if (sf->m != NULL)
254		LIST_REMOVE(sf, list_entry);
255	LIST_INSERT_HEAD(hash_list, sf, list_entry);
256	sf->ref_count = 1;
257	sf->m = m;
258	nsfbufsused++;
259	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
260	pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
261done:
262	mtx_unlock(&sf_buf_lock);
263	return (sf);
264#endif
265}
266
267/*
268 * Initialize machine state (pcb and trap frame) for a new thread about to
269 * upcall. Put enough state in the new thread's PCB to get it to go back
270 * userret(), where we can intercept it again to set the return (upcall)
271 * Address and stack, along with those from upcals that are from other sources
272 * such as those generated in thread_userret() itself.
273 */
274void
275cpu_set_upcall(struct thread *td, struct thread *td0)
276{
277	struct trapframe *tf;
278	struct switchframe *sf;
279
280	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
281	bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
282	tf = td->td_frame;
283	sf = (struct switchframe *)tf - 1;
284	sf->sf_r4 = (u_int)fork_return;
285	sf->sf_r5 = (u_int)td;
286	sf->sf_pc = (u_int)fork_trampoline;
287	tf->tf_spsr &= ~PSR_C_bit;
288	tf->tf_r0 = 0;
289	td->td_pcb->un_32.pcb32_sp = (u_int)sf;
290	td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
291
292	/* Setup to release spin count in fork_exit(). */
293	td->td_md.md_spinlock_count = 1;
294	td->td_md.md_saved_cspr = 0;
295}
296
297/*
298 * Set that machine state for performing an upcall that has to
299 * be done in thread_userret() so that those upcalls generated
300 * in thread_userret() itself can be done as well.
301 */
302void
303cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
304	stack_t *stack)
305{
306	struct trapframe *tf = td->td_frame;
307
308	tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
309	    - sizeof(struct trapframe)) & ~7;
310	tf->tf_pc = (int)entry;
311	tf->tf_r0 = (int)arg;
312	tf->tf_spsr = PSR_USR32_MODE;
313}
314
315int
316cpu_set_user_tls(struct thread *td, void *tls_base)
317{
318
319	if (td != curthread)
320		td->td_md.md_tp = tls_base;
321	else {
322		critical_enter();
323		*(void **)ARM_TP_ADDRESS = tls_base;
324		critical_exit();
325	}
326	return (0);
327}
328
329void
330cpu_thread_exit(struct thread *td)
331{
332}
333
334void
335cpu_thread_alloc(struct thread *td)
336{
337	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages *
338	    PAGE_SIZE) - 1;
339	td->td_frame = (struct trapframe *)
340	    ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
341#ifdef __XSCALE__
342#ifndef CPU_XSCALE_CORE3
343	pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
344#endif
345#endif
346}
347
348void
349cpu_thread_free(struct thread *td)
350{
351}
352
353void
354cpu_thread_clean(struct thread *td)
355{
356}
357
358/*
359 * Intercept the return address from a freshly forked process that has NOT
360 * been scheduled yet.
361 *
362 * This is needed to make kernel threads stay in kernel mode.
363 */
364void
365cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
366{
367	struct switchframe *sf;
368	struct trapframe *tf;
369
370	tf = td->td_frame;
371	sf = (struct switchframe *)tf - 1;
372	sf->sf_r4 = (u_int)func;
373	sf->sf_r5 = (u_int)arg;
374	td->td_pcb->un_32.pcb32_sp = (u_int)sf;
375}
376
377/*
378 * Software interrupt handler for queued VM system processing.
379 */
380void
381swi_vm(void *dummy)
382{
383
384	if (busdma_swi_pending)
385		busdma_swi();
386}
387
388void
389cpu_exit(struct thread *td)
390{
391}
392
393#define BITS_PER_INT	(8 * sizeof(int))
394vm_offset_t arm_nocache_startaddr;
395static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE *
396    BITS_PER_INT)];
397
398/*
399 * Functions to map and unmap memory non-cached into KVA the kernel won't try
400 * to allocate. The goal is to provide uncached memory to busdma, to honor
401 * BUS_DMA_COHERENT.
402 * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes.
403 * The allocator is rather dummy, each page is represented by a bit in
404 * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
405 * As soon as it finds enough contiguous pages to satisfy the request,
406 * it returns the address.
407 */
408void *
409arm_remap_nocache(void *addr, vm_size_t size)
410{
411	int i, j;
412
413	size = round_page(size);
414	for (i = 0; i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE; i++) {
415		if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i %
416		    BITS_PER_INT)))) {
417			for (j = i; j < i + (size / (PAGE_SIZE)); j++)
418				if (arm_nocache_allocated[j / BITS_PER_INT] &
419				    (1 << (j % BITS_PER_INT)))
420					break;
421			if (j == i + (size / (PAGE_SIZE)))
422				break;
423		}
424	}
425	if (i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE) {
426		vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
427		void *ret = (void *)tomap;
428		vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
429		vm_offset_t vaddr = (vm_offset_t) addr;
430
431		vaddr = vaddr & ~PAGE_MASK;
432		for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
433		    vaddr += PAGE_SIZE, physaddr += PAGE_SIZE, i++) {
434			cpu_idcache_wbinv_range(vaddr, PAGE_SIZE);
435			cpu_l2cache_wbinv_range(vaddr, PAGE_SIZE);
436			pmap_kenter_nocache(tomap, physaddr);
437			cpu_tlb_flushID_SE(vaddr);
438			arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i %
439			    BITS_PER_INT);
440		}
441		return (ret);
442	}
443
444	return (NULL);
445}
446
447void
448arm_unmap_nocache(void *addr, vm_size_t size)
449{
450	vm_offset_t raddr = (vm_offset_t)addr;
451	int i;
452
453	size = round_page(size);
454	i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
455	for (; size > 0; size -= PAGE_SIZE, i++)
456		arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i %
457		    BITS_PER_INT));
458}
459
460#ifdef ARM_USE_SMALL_ALLOC
461
462static TAILQ_HEAD(,arm_small_page) pages_normal =
463	TAILQ_HEAD_INITIALIZER(pages_normal);
464static TAILQ_HEAD(,arm_small_page) pages_wt =
465	TAILQ_HEAD_INITIALIZER(pages_wt);
466static TAILQ_HEAD(,arm_small_page) free_pgdesc =
467	TAILQ_HEAD_INITIALIZER(free_pgdesc);
468
469extern uma_zone_t l2zone;
470
471struct mtx smallalloc_mtx;
472
473MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data");
474
475vm_offset_t alloc_firstaddr;
476
477#ifdef ARM_HAVE_SUPERSECTIONS
478#define S_FRAME	L1_SUP_FRAME
479#define S_SIZE	L1_SUP_SIZE
480#else
481#define S_FRAME	L1_S_FRAME
482#define S_SIZE	L1_S_SIZE
483#endif
484
485vm_offset_t
486arm_ptovirt(vm_paddr_t pa)
487{
488	int i;
489	vm_offset_t addr = alloc_firstaddr;
490
491	KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called too early ?"));
492	for (i = 0; dump_avail[i + 1]; i += 2) {
493		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
494			break;
495		addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
496		    (dump_avail[i] & S_FRAME);
497	}
498	KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address"));
499	return (addr + (pa - (dump_avail[i] & S_FRAME)));
500}
501
502void
503arm_init_smallalloc(void)
504{
505	vm_offset_t to_map = 0, mapaddr;
506	int i;
507
508	/*
509	 * We need to use dump_avail and not phys_avail, since we want to
510	 * map the whole memory and not just the memory available to the VM
511	 * to be able to do a pa => va association for any address.
512	 */
513
514	for (i = 0; dump_avail[i + 1]; i+= 2) {
515		to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
516		    (dump_avail[i] & S_FRAME);
517	}
518	alloc_firstaddr = mapaddr = KERNBASE - to_map;
519	for (i = 0; dump_avail[i + 1]; i+= 2) {
520		vm_offset_t size = (dump_avail[i + 1] & S_FRAME) +
521		    S_SIZE - (dump_avail[i] & S_FRAME);
522		vm_offset_t did = 0;
523		while (size > 0) {
524#ifdef ARM_HAVE_SUPERSECTIONS
525			pmap_kenter_supersection(mapaddr,
526			    (dump_avail[i] & L1_SUP_FRAME) + did,
527			    SECTION_CACHE);
528#else
529			pmap_kenter_section(mapaddr,
530			    (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE);
531#endif
532			mapaddr += S_SIZE;
533			did += S_SIZE;
534			size -= S_SIZE;
535		}
536	}
537}
538
539void
540arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
541{
542	struct arm_small_page *pg;
543
544	bytes &= ~PAGE_MASK;
545	while (bytes > 0) {
546		pg = (struct arm_small_page *)list;
547		pg->addr = mem;
548		if (pagetable)
549			TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
550		else
551			TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
552		list = (char *)list + sizeof(*pg);
553		mem = (char *)mem + PAGE_SIZE;
554		bytes -= PAGE_SIZE;
555	}
556}
557
558void *
559uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
560{
561	void *ret;
562	struct arm_small_page *sp;
563	TAILQ_HEAD(,arm_small_page) *head;
564	static vm_pindex_t color;
565	vm_page_t m;
566
567	*flags = UMA_SLAB_PRIV;
568	/*
569	 * For CPUs where we setup page tables as write back, there's no
570	 * need to maintain two separate pools.
571	 */
572	if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
573		head = (void *)&pages_wt;
574	else
575		head = (void *)&pages_normal;
576
577	mtx_lock(&smallalloc_mtx);
578	sp = TAILQ_FIRST(head);
579
580	if (!sp) {
581		int pflags;
582
583		mtx_unlock(&smallalloc_mtx);
584		if (zone == l2zone &&
585		    pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) {
586			*flags = UMA_SLAB_KMEM;
587			ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT));
588			return (ret);
589		}
590		if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
591			pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
592		else
593			pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
594		if (wait & M_ZERO)
595			pflags |= VM_ALLOC_ZERO;
596		for (;;) {
597			m = vm_page_alloc(NULL, color++,
598			    pflags | VM_ALLOC_NOOBJ);
599			if (m == NULL) {
600				if (wait & M_NOWAIT)
601					return (NULL);
602				VM_WAIT;
603			} else
604				break;
605		}
606		ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m));
607		if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
608			bzero(ret, PAGE_SIZE);
609		return (ret);
610	}
611	TAILQ_REMOVE(head, sp, pg_list);
612	TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
613	ret = sp->addr;
614	mtx_unlock(&smallalloc_mtx);
615	if ((wait & M_ZERO))
616		bzero(ret, bytes);
617	return (ret);
618}
619
620void
621uma_small_free(void *mem, int size, u_int8_t flags)
622{
623	pd_entry_t *pd;
624	pt_entry_t *pt;
625
626	if (flags & UMA_SLAB_KMEM)
627		kmem_free(kmem_map, (vm_offset_t)mem, size);
628	else {
629		struct arm_small_page *sp;
630
631		if ((vm_offset_t)mem >= KERNBASE) {
632			mtx_lock(&smallalloc_mtx);
633			sp = TAILQ_FIRST(&free_pgdesc);
634			KASSERT(sp != NULL, ("No more free page descriptor ?"));
635			TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
636			sp->addr = mem;
637			pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd,
638			    &pt);
639			if ((*pd & pte_l1_s_cache_mask) ==
640			    pte_l1_s_cache_mode_pt &&
641			    pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
642				TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
643			else
644				TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
645			mtx_unlock(&smallalloc_mtx);
646		} else {
647			vm_page_t m;
648			vm_paddr_t pa = vtophys((vm_offset_t)mem);
649
650			m = PHYS_TO_VM_PAGE(pa);
651			m->wire_count--;
652			vm_page_free(m);
653			atomic_subtract_int(&cnt.v_wire_count, 1);
654		}
655	}
656}
657
658#endif
659