vm_machdep.c revision 181296
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary :forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/arm/arm/vm_machdep.c 181296 2008-08-04 14:47:49Z raj $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/proc.h>
52#include <sys/socketvar.h>
53#include <sys/sf_buf.h>
54#include <sys/unistd.h>
55#include <machine/cpu.h>
56#include <machine/pcb.h>
57#include <machine/sysarch.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63#include <vm/vm_extern.h>
64#include <vm/vm_kern.h>
65#include <vm/vm_page.h>
66#include <vm/vm_map.h>
67#include <vm/vm_param.h>
68#include <vm/vm_pageout.h>
69#include <vm/uma.h>
70#include <vm/uma_int.h>
71
72#include <machine/md_var.h>
73
74#ifndef NSFBUFS
75#define NSFBUFS		(512 + maxusers * 16)
76#endif
77
78#ifndef ARM_USE_SMALL_ALLOC
79static void     sf_buf_init(void *arg);
80SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
81
82LIST_HEAD(sf_head, sf_buf);
83
84
85/*
86 * A hash table of active sendfile(2) buffers
87 */
88static struct sf_head *sf_buf_active;
89static u_long sf_buf_hashmask;
90
91#define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
92
93static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
94static u_int    sf_buf_alloc_want;
95
96/*
97 * A lock used to synchronize access to the hash table and free list
98 */
99static struct mtx sf_buf_lock;
100#endif
101
102/*
103 * Finish a fork operation, with process p2 nearly set up.
104 * Copy and update the pcb, set up the stack so that the child
105 * ready to run and return to user mode.
106 */
107void
108cpu_fork(register struct thread *td1, register struct proc *p2,
109    struct thread *td2, int flags)
110{
111	struct pcb *pcb1, *pcb2;
112	struct trapframe *tf;
113	struct switchframe *sf;
114	struct mdproc *mdp2;
115
116	if ((flags & RFPROC) == 0)
117		return;
118	pcb1 = td1->td_pcb;
119	pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
120#ifdef __XSCALE__
121#ifndef CPU_XSCALE_CORE3
122	pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
123	if (td2->td_altkstack)
124		pmap_use_minicache(td2->td_altkstack, td2->td_altkstack_pages *
125		    PAGE_SIZE);
126#endif
127#endif
128	td2->td_pcb = pcb2;
129	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
130	mdp2 = &p2->p_md;
131	bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
132	pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
133	pcb2->un_32.pcb32_sp = td2->td_kstack +
134	    USPACE_SVC_STACK_TOP - sizeof(*pcb2);
135	pmap_activate(td2);
136	td2->td_frame = tf =
137	    (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
138	*tf = *td1->td_frame;
139	sf = (struct switchframe *)tf - 1;
140	sf->sf_r4 = (u_int)fork_return;
141	sf->sf_r5 = (u_int)td2;
142	sf->sf_pc = (u_int)fork_trampoline;
143	tf->tf_spsr &= ~PSR_C_bit;
144	tf->tf_r0 = 0;
145	tf->tf_r1 = 0;
146	pcb2->un_32.pcb32_sp = (u_int)sf;
147
148	/* Setup to release spin count in fork_exit(). */
149	td2->td_md.md_spinlock_count = 1;
150	td2->td_md.md_saved_cspr = 0;
151	td2->td_md.md_tp = *(uint32_t **)ARM_TP_ADDRESS;
152}
153
154void
155cpu_thread_swapin(struct thread *td)
156{
157}
158
159void
160cpu_thread_swapout(struct thread *td)
161{
162}
163
164/*
165 * Detatch mapped page and release resources back to the system.
166 */
167void
168sf_buf_free(struct sf_buf *sf)
169{
170#ifndef ARM_USE_SMALL_ALLOC
171	 mtx_lock(&sf_buf_lock);
172	 sf->ref_count--;
173	 if (sf->ref_count == 0) {
174		 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
175		 nsfbufsused--;
176		 if (sf_buf_alloc_want > 0)
177			 wakeup_one(&sf_buf_freelist);
178	 }
179	 mtx_unlock(&sf_buf_lock);
180#endif
181}
182
183#ifndef ARM_USE_SMALL_ALLOC
184/*
185 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
186 */
187static void
188sf_buf_init(void *arg)
189{
190	struct sf_buf *sf_bufs;
191	vm_offset_t sf_base;
192	int i;
193
194	nsfbufs = NSFBUFS;
195	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
196
197	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
198	TAILQ_INIT(&sf_buf_freelist);
199	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
200	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
201	    M_NOWAIT | M_ZERO);
202	for (i = 0; i < nsfbufs; i++) {
203		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
204		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
205	}
206	sf_buf_alloc_want = 0;
207	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
208}
209#endif
210
211/*
212 * Get an sf_buf from the freelist. Will block if none are available.
213 */
214struct sf_buf *
215sf_buf_alloc(struct vm_page *m, int flags)
216{
217#ifdef ARM_USE_SMALL_ALLOC
218	return ((struct sf_buf *)m);
219#else
220	struct sf_head *hash_list;
221	struct sf_buf *sf;
222	int error;
223
224	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
225	mtx_lock(&sf_buf_lock);
226	LIST_FOREACH(sf, hash_list, list_entry) {
227		if (sf->m == m) {
228			sf->ref_count++;
229			if (sf->ref_count == 1) {
230				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
231				nsfbufsused++;
232				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
233			}
234			goto done;
235		}
236	}
237	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
238		if (flags & SFB_NOWAIT)
239			goto done;
240		sf_buf_alloc_want++;
241		mbstat.sf_allocwait++;
242		error = msleep(&sf_buf_freelist, &sf_buf_lock,
243		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
244		sf_buf_alloc_want--;
245
246
247		/*
248		 * If we got a signal, don't risk going back to sleep.
249		 */
250		if (error)
251			goto done;
252	}
253	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
254	if (sf->m != NULL)
255		LIST_REMOVE(sf, list_entry);
256	LIST_INSERT_HEAD(hash_list, sf, list_entry);
257	sf->ref_count = 1;
258	sf->m = m;
259	nsfbufsused++;
260	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
261	pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
262done:
263	mtx_unlock(&sf_buf_lock);
264	return (sf);
265#endif
266}
267
268/*
269 * Initialize machine state (pcb and trap frame) for a new thread about to
270 * upcall. Put enough state in the new thread's PCB to get it to go back
271 * userret(), where we can intercept it again to set the return (upcall)
272 * Address and stack, along with those from upcals that are from other sources
273 * such as those generated in thread_userret() itself.
274 */
275void
276cpu_set_upcall(struct thread *td, struct thread *td0)
277{
278	struct trapframe *tf;
279	struct switchframe *sf;
280
281	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
282	bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
283	tf = td->td_frame;
284	sf = (struct switchframe *)tf - 1;
285	sf->sf_r4 = (u_int)fork_return;
286	sf->sf_r5 = (u_int)td;
287	sf->sf_pc = (u_int)fork_trampoline;
288	tf->tf_spsr &= ~PSR_C_bit;
289	tf->tf_r0 = 0;
290	td->td_pcb->un_32.pcb32_sp = (u_int)sf;
291	td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
292
293	/* Setup to release spin count in fork_exit(). */
294	td->td_md.md_spinlock_count = 1;
295	td->td_md.md_saved_cspr = 0;
296}
297
298/*
299 * Set that machine state for performing an upcall that has to
300 * be done in thread_userret() so that those upcalls generated
301 * in thread_userret() itself can be done as well.
302 */
303void
304cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
305	stack_t *stack)
306{
307	struct trapframe *tf = td->td_frame;
308
309	tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
310	    - sizeof(struct trapframe)) & ~7;
311	tf->tf_pc = (int)entry;
312	tf->tf_r0 = (int)arg;
313	tf->tf_spsr = PSR_USR32_MODE;
314}
315
316int
317cpu_set_user_tls(struct thread *td, void *tls_base)
318{
319
320	if (td != curthread)
321		td->td_md.md_tp = tls_base;
322	else {
323		critical_enter();
324		*(void **)ARM_TP_ADDRESS = tls_base;
325		critical_exit();
326	}
327	return (0);
328}
329
330void
331cpu_thread_exit(struct thread *td)
332{
333}
334
335void
336cpu_thread_alloc(struct thread *td)
337{
338	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages *
339	    PAGE_SIZE) - 1;
340	td->td_frame = (struct trapframe *)
341	    ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
342#ifdef __XSCALE__
343#ifndef CPU_XSCALE_CORE3
344	pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
345#endif
346#endif
347}
348
349void
350cpu_thread_free(struct thread *td)
351{
352}
353
354void
355cpu_thread_clean(struct thread *td)
356{
357}
358
359/*
360 * Intercept the return address from a freshly forked process that has NOT
361 * been scheduled yet.
362 *
363 * This is needed to make kernel threads stay in kernel mode.
364 */
365void
366cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
367{
368	struct switchframe *sf;
369	struct trapframe *tf;
370
371	tf = td->td_frame;
372	sf = (struct switchframe *)tf - 1;
373	sf->sf_r4 = (u_int)func;
374	sf->sf_r5 = (u_int)arg;
375	td->td_pcb->un_32.pcb32_sp = (u_int)sf;
376}
377
378/*
379 * Software interrupt handler for queued VM system processing.
380 */
381void
382swi_vm(void *dummy)
383{
384
385	if (busdma_swi_pending)
386		busdma_swi();
387}
388
389void
390cpu_exit(struct thread *td)
391{
392}
393
394#define BITS_PER_INT	(8 * sizeof(int))
395vm_offset_t arm_nocache_startaddr;
396static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE *
397    BITS_PER_INT)];
398
399/*
400 * Functions to map and unmap memory non-cached into KVA the kernel won't try
401 * to allocate. The goal is to provide uncached memory to busdma, to honor
402 * BUS_DMA_COHERENT.
403 * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes.
404 * The allocator is rather dummy, each page is represented by a bit in
405 * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
406 * As soon as it finds enough contiguous pages to satisfy the request,
407 * it returns the address.
408 */
409void *
410arm_remap_nocache(void *addr, vm_size_t size)
411{
412	int i, j;
413
414	size = round_page(size);
415	for (i = 0; i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE; i++) {
416		if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i %
417		    BITS_PER_INT)))) {
418			for (j = i; j < i + (size / (PAGE_SIZE)); j++)
419				if (arm_nocache_allocated[j / BITS_PER_INT] &
420				    (1 << (j % BITS_PER_INT)))
421					break;
422			if (j == i + (size / (PAGE_SIZE)))
423				break;
424		}
425	}
426	if (i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE) {
427		vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
428		void *ret = (void *)tomap;
429		vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
430
431		for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
432		    physaddr += PAGE_SIZE, i++) {
433			pmap_kenter_nocache(tomap, physaddr);
434			arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i %
435			    BITS_PER_INT);
436		}
437		return (ret);
438	}
439
440	return (NULL);
441}
442
443void
444arm_unmap_nocache(void *addr, vm_size_t size)
445{
446	vm_offset_t raddr = (vm_offset_t)addr;
447	int i;
448
449	size = round_page(size);
450	i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
451	for (; size > 0; size -= PAGE_SIZE, i++)
452		arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i %
453		    BITS_PER_INT));
454}
455
456#ifdef ARM_USE_SMALL_ALLOC
457
458static TAILQ_HEAD(,arm_small_page) pages_normal =
459	TAILQ_HEAD_INITIALIZER(pages_normal);
460static TAILQ_HEAD(,arm_small_page) pages_wt =
461	TAILQ_HEAD_INITIALIZER(pages_wt);
462static TAILQ_HEAD(,arm_small_page) free_pgdesc =
463	TAILQ_HEAD_INITIALIZER(free_pgdesc);
464
465extern uma_zone_t l2zone;
466
467struct mtx smallalloc_mtx;
468
469MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data");
470
471vm_offset_t alloc_firstaddr;
472
473#ifdef ARM_HAVE_SUPERSECTIONS
474#define S_FRAME	L1_SUP_FRAME
475#define S_SIZE	L1_SUP_SIZE
476#else
477#define S_FRAME	L1_S_FRAME
478#define S_SIZE	L1_S_SIZE
479#endif
480
481vm_offset_t
482arm_ptovirt(vm_paddr_t pa)
483{
484	int i;
485	vm_offset_t addr = alloc_firstaddr;
486
487	KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called to early ?"));
488	for (i = 0; dump_avail[i + 1]; i += 2) {
489		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
490			break;
491		addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
492		    (dump_avail[i] & S_FRAME);
493	}
494	KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address"));
495	return (addr + (pa - (dump_avail[i] & S_FRAME)));
496}
497
498void
499arm_init_smallalloc(void)
500{
501	vm_offset_t to_map = 0, mapaddr;
502	int i;
503
504	/*
505	 * We need to use dump_avail and not phys_avail, since we want to
506	 * map the whole memory and not just the memory available to the VM
507	 * to be able to do a pa => va association for any address.
508	 */
509
510	for (i = 0; dump_avail[i + 1]; i+= 2) {
511		to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
512		    (dump_avail[i] & S_FRAME);
513	}
514	alloc_firstaddr = mapaddr = KERNBASE - to_map;
515	for (i = 0; dump_avail[i + 1]; i+= 2) {
516		vm_offset_t size = (dump_avail[i + 1] & S_FRAME) +
517		    S_SIZE - (dump_avail[i] & S_FRAME);
518		vm_offset_t did = 0;
519		while (size > 0) {
520#ifdef ARM_HAVE_SUPERSECTIONS
521			pmap_kenter_supersection(mapaddr,
522			    (dump_avail[i] & L1_SUP_FRAME) + did,
523			    SECTION_CACHE);
524#else
525			pmap_kenter_section(mapaddr,
526			    (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE);
527#endif
528			mapaddr += S_SIZE;
529			did += S_SIZE;
530			size -= S_SIZE;
531		}
532	}
533}
534
535void
536arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
537{
538	struct arm_small_page *pg;
539
540	bytes &= ~PAGE_MASK;
541	while (bytes > 0) {
542		pg = (struct arm_small_page *)list;
543		pg->addr = mem;
544		if (pagetable)
545			TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
546		else
547			TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
548		list = (char *)list + sizeof(*pg);
549		mem = (char *)mem + PAGE_SIZE;
550		bytes -= PAGE_SIZE;
551	}
552}
553
554void *
555uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
556{
557	void *ret;
558	struct arm_small_page *sp;
559	TAILQ_HEAD(,arm_small_page) *head;
560	static vm_pindex_t color;
561	vm_page_t m;
562
563	*flags = UMA_SLAB_PRIV;
564	/*
565	 * For CPUs where we setup page tables as write back, there's no
566	 * need to maintain two separate pools.
567	 */
568	if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
569		head = (void *)&pages_wt;
570	else
571		head = (void *)&pages_normal;
572
573	mtx_lock(&smallalloc_mtx);
574	sp = TAILQ_FIRST(head);
575
576	if (!sp) {
577		int pflags;
578
579		mtx_unlock(&smallalloc_mtx);
580		if (zone == l2zone &&
581		    pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) {
582			*flags = UMA_SLAB_KMEM;
583			ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT));
584			return (ret);
585		}
586		if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
587			pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
588		else
589			pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
590		if (wait & M_ZERO)
591			pflags |= VM_ALLOC_ZERO;
592		for (;;) {
593			m = vm_page_alloc(NULL, color++,
594			    pflags | VM_ALLOC_NOOBJ);
595			if (m == NULL) {
596				if (wait & M_NOWAIT)
597					return (NULL);
598				VM_WAIT;
599			} else
600				break;
601		}
602		ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m));
603		if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
604			bzero(ret, PAGE_SIZE);
605		return (ret);
606	}
607	TAILQ_REMOVE(head, sp, pg_list);
608	TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
609	ret = sp->addr;
610	mtx_unlock(&smallalloc_mtx);
611	if ((wait & M_ZERO))
612		bzero(ret, bytes);
613	return (ret);
614}
615
616void
617uma_small_free(void *mem, int size, u_int8_t flags)
618{
619	pd_entry_t *pd;
620	pt_entry_t *pt;
621
622	if (flags & UMA_SLAB_KMEM)
623		kmem_free(kmem_map, (vm_offset_t)mem, size);
624	else {
625		struct arm_small_page *sp;
626
627		if ((vm_offset_t)mem >= KERNBASE) {
628			mtx_lock(&smallalloc_mtx);
629			sp = TAILQ_FIRST(&free_pgdesc);
630			KASSERT(sp != NULL, ("No more free page descriptor ?"));
631			TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
632			sp->addr = mem;
633			pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd,
634			    &pt);
635			if ((*pd & pte_l1_s_cache_mask) ==
636			    pte_l1_s_cache_mode_pt &&
637			    pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
638				TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
639			else
640				TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
641			mtx_unlock(&smallalloc_mtx);
642		} else {
643			vm_page_t m;
644			vm_paddr_t pa = vtophys((vm_offset_t)mem);
645
646			m = PHYS_TO_VM_PAGE(pa);
647			m->wire_count--;
648			vm_page_free(m);
649			atomic_subtract_int(&cnt.v_wire_count, 1);
650		}
651	}
652}
653
654#endif
655