syscall.c revision 137275
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/arm/arm/trap.c 137275 2004-11-05 19:57:10Z cognet $");
86
87#include <sys/types.h>
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/proc.h>
92#include <sys/user.h>
93#include <sys/kernel.h>
94#include <sys/lock.h>
95#include <sys/mutex.h>
96#include <sys/syscall.h>
97#include <sys/sysent.h>
98#ifdef KTRACE
99#include <sys/uio.h>
100#include <sys/ktrace.h>
101#endif
102
103#include <vm/vm.h>
104#include <vm/pmap.h>
105#include <vm/vm_kern.h>
106#include <vm/vm_map.h>
107#include <vm/vm_extern.h>
108
109#include <machine/cpuconf.h>
110#include <machine/vmparam.h>
111#include <machine/frame.h>
112#include <machine/katelib.h>
113#include <machine/cpu.h>
114#include <machine/intr.h>
115#include <machine/proc.h>
116#include <machine/swi.h>
117#if !defined(DDB)
118#define kdb_trap	kgdb_trap
119#endif
120
121
122
123void swi_handler(trapframe_t *);
124void undefinedinstruction(trapframe_t *);
125
126#include <machine/disassem.h>
127#include <machine/machdep.h>
128
129extern char fusubailout[];
130
131#ifdef DEBUG
132int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
133#endif
134
135#if defined(CPU_ARM3) || defined(CPU_ARM6) || \
136    defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
137/* These CPUs may need data/prefetch abort fixups */
138#define	CPU_ABORT_FIXUP_REQUIRED
139#endif
140
141struct ksig {
142	int signb;
143	u_long code;
144};
145struct data_abort {
146	int (*func)(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
147	const char *desc;
148};
149
150static int dab_fatal(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
151static int dab_align(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
152static int dab_buserr(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
153
154static const struct data_abort data_aborts[] = {
155	{dab_fatal,	"Vector Exception"},
156	{dab_align,	"Alignment Fault 1"},
157	{dab_fatal,	"Terminal Exception"},
158	{dab_align,	"Alignment Fault 3"},
159	{dab_buserr,	"External Linefetch Abort (S)"},
160	{NULL,		"Translation Fault (S)"},
161	{dab_buserr,	"External Linefetch Abort (P)"},
162	{NULL,		"Translation Fault (P)"},
163	{dab_buserr,	"External Non-Linefetch Abort (S)"},
164	{NULL,		"Domain Fault (S)"},
165	{dab_buserr,	"External Non-Linefetch Abort (P)"},
166	{NULL,		"Domain Fault (P)"},
167	{dab_buserr,	"External Translation Abort (L1)"},
168	{NULL,		"Permission Fault (S)"},
169	{dab_buserr,	"External Translation Abort (L2)"},
170	{NULL,		"Permission Fault (P)"}
171};
172
173/* Determine if a fault came from user mode */
174#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
175
176/* Determine if 'x' is a permission fault */
177#define	IS_PERMISSION_FAULT(x)					\
178	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
179	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
180
181static __inline void
182call_trapsignal(struct thread *td, int sig, u_long code)
183{
184
185	trapsignal(td, sig, code);
186}
187
188static __inline int
189data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
190{
191#ifdef CPU_ABORT_FIXUP_REQUIRED
192	int error;
193
194	/* Call the cpu specific data abort fixup routine */
195	error = cpu_dataabt_fixup(tf);
196	if (__predict_true(error != ABORT_FIXUP_FAILED))
197		return (error);
198
199	/*
200	 * Oops, couldn't fix up the instruction
201	 */
202	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
203	    TRAP_USERMODE(tf) ? "user" : "kernel");
204	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
205	    *((u_int *)tf->tf_pc));
206	disassemble(tf->tf_pc);
207
208	/* Die now if this happened in kernel mode */
209	if (!TRAP_USERMODE(tf))
210		dab_fatal(tf, fsr, far, td, NULL, ksig);
211
212	return (error);
213#else
214	return (ABORT_FIXUP_OK);
215#endif /* CPU_ABORT_FIXUP_REQUIRED */
216}
217
218void
219data_abort_handler(trapframe_t *tf)
220{
221	struct vm_map *map;
222	struct pcb *pcb;
223	struct thread *td;
224	u_int user, far, fsr;
225	vm_prot_t ftype;
226	void *onfault;
227	vm_offset_t va;
228	u_int sticks = 0;
229	int error = 0;
230	struct ksig ksig;
231	struct proc *p;
232
233
234	/* Grab FAR/FSR before enabling interrupts */
235	far = cpu_faultaddress();
236	fsr = cpu_faultstatus();
237#if 0
238	printf("data abort: %p (from %p %p)\n", (void*)far, (void*)tf->tf_pc,
239	    (void*)tf->tf_svc_lr);
240#endif
241
242	/* Update vmmeter statistics */
243#if 0
244	vmexp.traps++;
245#endif
246
247	td = curthread;
248	p = td->td_proc;
249
250	/* Data abort came from user mode? */
251	user = TRAP_USERMODE(tf);
252
253	if (user) {
254		sticks = td->td_sticks;                                                         td->td_frame = tf;
255		if (td->td_ucred != td->td_proc->p_ucred)
256			cred_update_thread(td);
257		if (td->td_pflags & TDP_SA)
258			thread_user_enter(td);
259
260	}
261	/* Grab the current pcb */
262	pcb = td->td_pcb;
263	/* Re-enable interrupts if they were enabled previously */
264	if (td->td_critnest == 0 && __predict_true(tf->tf_spsr & I32_bit) == 0)
265		enable_interrupts(I32_bit);
266
267	/* Invoke the appropriate handler, if necessary */
268	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
269		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
270		    td, &ksig)) {
271			goto do_trapsignal;
272		}
273		goto out;
274	}
275
276	/*
277	 * At this point, we're dealing with one of the following data aborts:
278	 *
279	 *  FAULT_TRANS_S  - Translation -- Section
280	 *  FAULT_TRANS_P  - Translation -- Page
281	 *  FAULT_DOMAIN_S - Domain -- Section
282	 *  FAULT_DOMAIN_P - Domain -- Page
283	 *  FAULT_PERM_S   - Permission -- Section
284	 *  FAULT_PERM_P   - Permission -- Page
285	 *
286	 * These are the main virtual memory-related faults signalled by
287	 * the MMU.
288	 */
289
290	/* fusubailout is used by [fs]uswintr to avoid page faulting */
291	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
292		tf->tf_r0 = EFAULT;
293		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
294		return;
295	}
296
297	/*
298	 * Make sure the Program Counter is sane. We could fall foul of
299	 * someone executing Thumb code, in which case the PC might not
300	 * be word-aligned. This would cause a kernel alignment fault
301	 * further down if we have to decode the current instruction.
302	 * XXX: It would be nice to be able to support Thumb at some point.
303	 */
304	if (__predict_false((tf->tf_pc & 3) != 0)) {
305		if (user) {
306			/*
307			 * Give the user an illegal instruction signal.
308			 */
309			/* Deliver a SIGILL to the process */
310			ksig.signb = SIGILL;
311			ksig.code = 0;
312			goto do_trapsignal;
313		}
314
315		/*
316		 * The kernel never executes Thumb code.
317		 */
318		printf("\ndata_abort_fault: Misaligned Kernel-mode "
319		    "Program Counter\n");
320		dab_fatal(tf, fsr, far, td, &ksig);
321	}
322
323	/* See if the cpu state needs to be fixed up */
324	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
325	case ABORT_FIXUP_RETURN:
326		return;
327	case ABORT_FIXUP_FAILED:
328		/* Deliver a SIGILL to the process */
329		ksig.signb = SIGILL;
330		ksig.code = 0;
331		goto do_trapsignal;
332	default:
333		break;
334	}
335
336	va = trunc_page((vm_offset_t)far);
337
338	/*
339	 * It is only a kernel address space fault iff:
340	 *	1. user == 0  and
341	 *	2. pcb_onfault not set or
342	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
343	 */
344	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
345	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
346	    __predict_true((pcb->pcb_onfault == NULL ||
347	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
348		map = kernel_map;
349
350		/* Was the fault due to the FPE/IPKDB ? */
351		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
352
353			/*
354			 * Force exit via userret()
355			 * This is necessary as the FPE is an extension to
356			 * userland that actually runs in a priveledged mode
357			 * but uses USR mode permissions for its accesses.
358			 */
359			user = 1;
360			ksig.signb = SIGSEGV;
361			ksig.code = 0;
362			goto do_trapsignal;
363		}
364	} else {
365		map = &td->td_proc->p_vmspace->vm_map;
366	}
367
368	/*
369	 * We need to know whether the page should be mapped
370	 * as R or R/W. The MMU does not give us the info as
371	 * to whether the fault was caused by a read or a write.
372	 *
373	 * However, we know that a permission fault can only be
374	 * the result of a write to a read-only location, so
375	 * we can deal with those quickly.
376	 *
377	 * Otherwise we need to disassemble the instruction
378	 * responsible to determine if it was a write.
379	 */
380	if (IS_PERMISSION_FAULT(fsr)) {
381		ftype = VM_PROT_WRITE;
382	} else {
383		u_int insn = ReadWord(tf->tf_pc);
384
385		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
386		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
387		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
388		{
389			ftype = VM_PROT_WRITE;
390	}
391		else
392		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
393			ftype = VM_PROT_READ | VM_PROT_WRITE;
394		else
395			ftype = VM_PROT_READ;
396	}
397
398	/*
399	 * See if the fault is as a result of ref/mod emulation,
400	 * or domain mismatch.
401	 */
402#ifdef DEBUG
403	last_fault_code = fsr;
404#endif
405	if (pmap_fault_fixup(user ? vmspace_pmap(td->td_proc->p_vmspace) :
406	    kernel_pmap, va, ftype, user)) {
407		goto out;
408	}
409
410	onfault = pcb->pcb_onfault;
411	pcb->pcb_onfault = NULL;
412	if (map != kernel_map) {
413		PROC_LOCK(p);
414		p->p_lock++;
415		PROC_UNLOCK(p);
416	}
417	error = vm_fault(map, va, ftype, (ftype & VM_PROT_WRITE) ?
418	    VM_FAULT_DIRTY : VM_FAULT_NORMAL);
419	pcb->pcb_onfault = onfault;
420	if (__predict_true(error == 0)) {
421		goto out;
422	}
423
424	if (map != kernel_map) {
425		PROC_LOCK(p);
426		p->p_lock++;
427		PROC_UNLOCK(p);
428	}
429	if (user == 0) {
430		if (pcb->pcb_onfault) {
431			tf->tf_r0 = error;
432			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
433			return;
434		}
435
436		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
437		    error);
438		dab_fatal(tf, fsr, far, td, &ksig);
439	}
440
441
442	if (error == ENOMEM) {
443		printf("VM: pid %d (%s), uid %d killed: "
444		    "out of swap\n", td->td_proc->p_pid, td->td_proc->p_comm,
445		    (td->td_proc->p_ucred) ?
446		     td->td_proc->p_ucred->cr_uid : -1);
447		ksig.signb = SIGKILL;
448	} else {
449		ksig.signb = SIGSEGV;
450	}
451	ksig.code = 0;
452do_trapsignal:
453	call_trapsignal(td, ksig.signb, ksig.code);
454out:
455	/* If returning to user mode, make sure to invoke userret() */
456	if (user)
457		userret(td, tf, sticks);
458}
459
460/*
461 * dab_fatal() handles the following data aborts:
462 *
463 *  FAULT_WRTBUF_0 - Vector Exception
464 *  FAULT_WRTBUF_1 - Terminal Exception
465 *
466 * We should never see these on a properly functioning system.
467 *
468 * This function is also called by the other handlers if they
469 * detect a fatal problem.
470 *
471 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
472 */
473static int
474dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
475{
476	const char *mode;
477
478	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
479
480	if (td != NULL) {
481		printf("Fatal %s mode data abort: '%s'\n", mode,
482		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
483		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
484		if ((fsr & FAULT_IMPRECISE) == 0)
485			printf("%08x, ", far);
486		else
487			printf("Invalid,  ");
488		printf("spsr=%08x\n", tf->tf_spsr);
489	} else {
490		printf("Fatal %s mode prefetch abort at 0x%08x\n",
491		    mode, tf->tf_pc);
492		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
493	}
494
495	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
496	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
497	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
498	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
499	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
500	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
501	printf("r12=%08x, ", tf->tf_r12);
502
503	if (TRAP_USERMODE(tf))
504		printf("usp=%08x, ulr=%08x",
505		    tf->tf_usr_sp, tf->tf_usr_lr);
506	else
507		printf("ssp=%08x, slr=%08x",
508		    tf->tf_svc_sp, tf->tf_svc_lr);
509	printf(", pc =%08x\n\n", tf->tf_pc);
510
511#if defined(DDB) || defined(KGDB)
512	kdb_trap(T_FAULT, tf);
513#endif
514	panic("Fatal abort");
515	/*NOTREACHED*/
516}
517
518/*
519 * dab_align() handles the following data aborts:
520 *
521 *  FAULT_ALIGN_0 - Alignment fault
522 *  FAULT_ALIGN_0 - Alignment fault
523 *
524 * These faults are fatal if they happen in kernel mode. Otherwise, we
525 * deliver a bus error to the process.
526 */
527static int
528dab_align(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
529{
530
531	/* Alignment faults are always fatal if they occur in kernel mode */
532	if (!TRAP_USERMODE(tf)) {
533		if (!td || !td->td_pcb->pcb_onfault)
534			dab_fatal(tf, fsr, far, td, ksig);
535		tf->tf_r0 = EFAULT;
536		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
537		return (0);
538	}
539
540	/* pcb_onfault *must* be NULL at this point */
541
542	/* See if the cpu state needs to be fixed up */
543	(void) data_abort_fixup(tf, fsr, far, td, ksig);
544
545	/* Deliver a bus error signal to the process */
546	ksig->code = 0;
547	ksig->signb = SIGBUS;
548	td->td_frame = tf;
549
550	return (1);
551}
552
553/*
554 * dab_buserr() handles the following data aborts:
555 *
556 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
557 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
558 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
559 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
560 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
561 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
562 *
563 * If pcb_onfault is set, flag the fault and return to the handler.
564 * If the fault occurred in user mode, give the process a SIGBUS.
565 *
566 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
567 * can be flagged as imprecise in the FSR. This causes a real headache
568 * since some of the machine state is lost. In this case, tf->tf_pc
569 * may not actually point to the offending instruction. In fact, if
570 * we've taken a double abort fault, it generally points somewhere near
571 * the top of "data_abort_entry" in exception.S.
572 *
573 * In all other cases, these data aborts are considered fatal.
574 */
575static int
576dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
577{
578	struct pcb *pcb = td->td_pcb;
579
580#ifdef __XSCALE__
581	if ((fsr & FAULT_IMPRECISE) != 0 &&
582	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
583		/*
584		 * Oops, an imprecise, double abort fault. We've lost the
585		 * r14_abt/spsr_abt values corresponding to the original
586		 * abort, and the spsr saved in the trapframe indicates
587		 * ABT mode.
588		 */
589		tf->tf_spsr &= ~PSR_MODE;
590
591		/*
592		 * We use a simple heuristic to determine if the double abort
593		 * happened as a result of a kernel or user mode access.
594		 * If the current trapframe is at the top of the kernel stack,
595		 * the fault _must_ have come from user mode.
596		 */
597		if (tf != ((trapframe_t *)pcb->un_32.pcb32_sp) - 1) {
598			/*
599			 * Kernel mode. We're either about to die a
600			 * spectacular death, or pcb_onfault will come
601			 * to our rescue. Either way, the current value
602			 * of tf->tf_pc is irrelevant.
603			 */
604			tf->tf_spsr |= PSR_SVC32_MODE;
605			if (pcb->pcb_onfault == NULL)
606				printf("\nKernel mode double abort!\n");
607		} else {
608			/*
609			 * User mode. We've lost the program counter at the
610			 * time of the fault (not that it was accurate anyway;
611			 * it's not called an imprecise fault for nothing).
612			 * About all we can do is copy r14_usr to tf_pc and
613			 * hope for the best. The process is about to get a
614			 * SIGBUS, so it's probably history anyway.
615			 */
616			tf->tf_spsr |= PSR_USR32_MODE;
617			tf->tf_pc = tf->tf_usr_lr;
618		}
619	}
620
621	/* FAR is invalid for imprecise exceptions */
622	if ((fsr & FAULT_IMPRECISE) != 0)
623		far = 0;
624#endif /* __XSCALE__ */
625
626	if (pcb->pcb_onfault) {
627		tf->tf_r0 = EFAULT;
628		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
629		return (0);
630	}
631
632	/* See if the cpu state needs to be fixed up */
633	(void) data_abort_fixup(tf, fsr, far, td, ksig);
634
635	/*
636	 * At this point, if the fault happened in kernel mode, we're toast
637	 */
638	if (!TRAP_USERMODE(tf))
639		dab_fatal(tf, fsr, far, td, ksig);
640
641	/* Deliver a bus error signal to the process */
642	ksig->signb = SIGBUS;
643	ksig->code = 0;
644	td->td_frame = tf;
645
646	return (1);
647}
648
649static __inline int
650prefetch_abort_fixup(trapframe_t *tf, struct ksig *ksig)
651{
652#ifdef CPU_ABORT_FIXUP_REQUIRED
653	int error;
654
655	/* Call the cpu specific prefetch abort fixup routine */
656	error = cpu_prefetchabt_fixup(tf);
657	if (__predict_true(error != ABORT_FIXUP_FAILED))
658		return (error);
659
660	/*
661	 * Oops, couldn't fix up the instruction
662	 */
663	printf(
664	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
665	    TRAP_USERMODE(tf) ? "user" : "kernel");
666	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
667	    *((u_int *)tf->tf_pc));
668	disassemble(tf->tf_pc);
669
670	/* Die now if this happened in kernel mode */
671	if (!TRAP_USERMODE(tf))
672		dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
673
674	return (error);
675#else
676	return (ABORT_FIXUP_OK);
677#endif /* CPU_ABORT_FIXUP_REQUIRED */
678}
679
680/*
681 * void prefetch_abort_handler(trapframe_t *tf)
682 *
683 * Abort handler called when instruction execution occurs at
684 * a non existent or restricted (access permissions) memory page.
685 * If the address is invalid and we were in SVC mode then panic as
686 * the kernel should never prefetch abort.
687 * If the address is invalid and the page is mapped then the user process
688 * does no have read permission so send it a signal.
689 * Otherwise fault the page in and try again.
690 */
691void
692prefetch_abort_handler(trapframe_t *tf)
693{
694	struct thread *td;
695	struct proc * p;
696	struct vm_map *map;
697	vm_offset_t fault_pc, va;
698	int error = 0;
699	u_int sticks = 0;
700	struct ksig ksig;
701
702
703#if 0
704	/* Update vmmeter statistics */
705	uvmexp.traps++;
706#endif
707#if 0
708	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
709	    (void*)tf->tf_usr_lr);
710#endif
711
712 	td = curthread;
713	p = td->td_proc;
714
715	if (TRAP_USERMODE(tf)) {
716		td->td_frame = tf;
717		if (td->td_ucred != td->td_proc->p_ucred)
718			cred_update_thread(td);
719		if (td->td_proc->p_flag & P_SA)
720			thread_user_enter(td);
721	}
722	fault_pc = tf->tf_pc;
723	if (td->td_critnest == 0 &&
724	    __predict_true((tf->tf_spsr & I32_bit) == 0))
725		enable_interrupts(I32_bit);
726
727
728	/* See if the cpu state needs to be fixed up */
729	switch (prefetch_abort_fixup(tf, &ksig)) {
730	case ABORT_FIXUP_RETURN:
731		return;
732	case ABORT_FIXUP_FAILED:
733		/* Deliver a SIGILL to the process */
734		ksig.signb = SIGILL;
735		ksig.code = 0;
736		td->td_frame = tf;
737		goto do_trapsignal;
738	default:
739		break;
740	}
741
742	/* Prefetch aborts cannot happen in kernel mode */
743	if (__predict_false(!TRAP_USERMODE(tf)))
744		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
745	sticks = td->td_sticks;
746
747
748	/* Ok validate the address, can only execute in USER space */
749	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
750	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
751		ksig.signb = SIGSEGV;
752		ksig.code = 0;
753		goto do_trapsignal;
754	}
755
756	map = &td->td_proc->p_vmspace->vm_map;
757	va = trunc_page(fault_pc);
758
759	/*
760	 * See if the pmap can handle this fault on its own...
761	 */
762#ifdef DEBUG
763	last_fault_code = -1;
764#endif
765	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
766		goto out;
767
768	if (map != kernel_map) {
769		PROC_LOCK(p);
770		p->p_lock++;
771		PROC_UNLOCK(p);
772	}
773
774	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
775	    VM_FAULT_NORMAL);
776	if (map != kernel_map) {
777		PROC_LOCK(p);
778		p->p_lock--;
779		PROC_UNLOCK(p);
780	}
781
782	if (__predict_true(error == 0))
783		goto out;
784
785	if (error == ENOMEM) {
786		printf("VM: pid %d (%s), uid %d killed: "
787		    "out of swap\n", td->td_proc->p_pid, td->td_proc->p_comm,
788		    (td->td_proc->p_ucred) ?
789		     td->td_proc->p_ucred->cr_uid : -1);
790		ksig.signb = SIGKILL;
791	} else {
792		ksig.signb = SIGSEGV;
793	}
794	ksig.code = 0;
795
796do_trapsignal:
797	call_trapsignal(td, ksig.signb, ksig.code);
798
799out:
800	userret(td, tf, sticks);
801
802}
803
804extern int badaddr_read_1(const uint8_t *, uint8_t *);
805extern int badaddr_read_2(const uint16_t *, uint16_t *);
806extern int badaddr_read_4(const uint32_t *, uint32_t *);
807/*
808 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
809 * If the read succeeds, the value is written to 'rptr' and zero is returned.
810 * Else, return EFAULT.
811 */
812int
813badaddr_read(void *addr, size_t size, void *rptr)
814{
815	union {
816		uint8_t v1;
817		uint16_t v2;
818		uint32_t v4;
819	} u;
820	int rv;
821
822	cpu_drain_writebuf();
823
824	/* Read from the test address. */
825	switch (size) {
826	case sizeof(uint8_t):
827		rv = badaddr_read_1(addr, &u.v1);
828		if (rv == 0 && rptr)
829			*(uint8_t *) rptr = u.v1;
830		break;
831
832	case sizeof(uint16_t):
833		rv = badaddr_read_2(addr, &u.v2);
834		if (rv == 0 && rptr)
835			*(uint16_t *) rptr = u.v2;
836		break;
837
838	case sizeof(uint32_t):
839		rv = badaddr_read_4(addr, &u.v4);
840		if (rv == 0 && rptr)
841			*(uint32_t *) rptr = u.v4;
842		break;
843
844	default:
845		panic("badaddr: invalid size (%lu)", (u_long) size);
846	}
847
848	/* Return EFAULT if the address was invalid, else zero */
849	return (rv);
850}
851
852#define MAXARGS	8
853static void
854syscall(struct thread *td, trapframe_t *frame, u_int32_t insn)
855{
856	struct proc *p = td->td_proc;
857	int code, error;
858	u_int nap, nargs;
859	register_t *ap, *args, copyargs[MAXARGS];
860	struct sysent *callp;
861	int locked = 0;
862	u_int sticks = 0;
863
864	sticks = td->td_sticks;
865	if (td->td_ucred != td->td_proc->p_ucred)
866		cred_update_thread(td);
867	switch (insn & SWI_OS_MASK) {
868	case 0: /* XXX: we need our own one. */
869		nap = 4;
870		break;
871	default:
872		trapsignal(td, SIGILL, 0);
873		userret(td, frame, td->td_sticks);
874		return;
875	}
876	code = insn & 0x000fffff;
877	sticks = td->td_sticks;
878	ap = &frame->tf_r0;
879	if (code == SYS_syscall) {
880		code = *ap++;
881
882		nap--;
883	} else if (code == SYS___syscall) {
884		code = *ap++;
885		nap -= 2;
886		ap++;
887	}
888	if (p->p_sysent->sv_mask)
889		code &= p->p_sysent->sv_mask;
890	if (code >= p->p_sysent->sv_size)
891		callp = &p->p_sysent->sv_table[0];
892	else
893		callp = &p->p_sysent->sv_table[code];
894	nargs = callp->sy_narg & SYF_ARGMASK;
895	memcpy(copyargs, ap, nap * sizeof(register_t));
896	if (nargs > nap) {
897		error = copyin((void *)frame->tf_usr_sp, copyargs + nap,
898		    (nargs - nap) * sizeof(register_t));
899		if (error)
900			goto bad;
901	}
902	args = copyargs;
903	error = 0;
904#ifdef KTRACE
905	if (KTRPOINT(td, KTR_SYSCALL))
906		ktrsyscall(code, nargs, args);
907#endif
908
909	if ((callp->sy_narg & SYF_MPSAFE) == 0)
910		mtx_lock(&Giant);
911	locked = 1;
912	if (error == 0) {
913		td->td_retval[0] = 0;
914		td->td_retval[1] = 0;
915		error = (*callp->sy_call)(td, args);
916	}
917	  switch (error) {
918	  case 0:
919		  frame->tf_r0 = td->td_retval[0];
920		  frame->tf_r1 = td->td_retval[1];
921
922		  frame->tf_spsr &= ~PSR_C_bit;   /* carry bit */
923		  break;
924
925	  case ERESTART:
926		  /*
927 		   * Reconstruct the pc to point at the swi.
928		   */
929		  frame->tf_pc -= INSN_SIZE;
930		  break;
931	  case EJUSTRETURN:
932		  /* nothing to do */
933		  break;
934	  default:
935bad:
936		  frame->tf_r0 = error;
937		  frame->tf_spsr |= PSR_C_bit;    /* carry bit */
938		  break;
939	  }
940	  if (locked && (callp->sy_narg & SYF_MPSAFE) == 0)
941		  mtx_unlock(&Giant);
942
943
944	  userret(td, frame, sticks);
945#ifdef KTRACE
946	  if (KTRPOINT(td, KTR_SYSRET))
947		  ktrsysret(code, error, td->td_retval[0]);
948#endif
949	  mtx_assert(&sched_lock, MA_NOTOWNED);
950	  mtx_assert(&Giant, MA_NOTOWNED);
951}
952
953void
954swi_handler(trapframe_t *frame)
955{
956	struct thread *td = curthread;
957	uint32_t insn;
958
959	td->td_frame = frame;
960
961	if (td->td_proc->p_flag & P_SA)
962		thread_user_enter(td);
963	/*
964      	 * Make sure the program counter is correctly aligned so we
965	 * don't take an alignment fault trying to read the opcode.
966	 */
967	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
968		trapsignal(td, SIGILL, 0);
969		userret(td, frame, td->td_sticks);
970		return;
971	}
972	insn = *(u_int32_t *)(frame->tf_pc - INSN_SIZE);
973	/*
974	 * Enable interrupts if they were enabled before the exception.
975	 * Since all syscalls *should* come from user mode it will always
976	 * be safe to enable them, but check anyway.
977	 */
978	if (td->td_critnest == 0 && !(frame->tf_spsr & I32_bit))
979		enable_interrupts(I32_bit);
980
981	syscall(td, frame, insn);
982}
983
984