syscall.c revision 250928
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/arm/arm/trap.c 250928 2013-05-23 12:07:41Z gber $");
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/proc.h>
90#include <sys/kernel.h>
91#include <sys/lock.h>
92#include <sys/mutex.h>
93#include <sys/syscall.h>
94#include <sys/sysent.h>
95#include <sys/signalvar.h>
96#include <sys/ktr.h>
97#ifdef KTRACE
98#include <sys/uio.h>
99#include <sys/ktrace.h>
100#endif
101#include <sys/ptrace.h>
102#include <sys/pioctl.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_kern.h>
107#include <vm/vm_map.h>
108#include <vm/vm_extern.h>
109
110#include <machine/cpuconf.h>
111#include <machine/vmparam.h>
112#include <machine/frame.h>
113#include <machine/cpu.h>
114#include <machine/intr.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/swi.h>
118
119#include <security/audit/audit.h>
120
121#ifdef KDB
122#include <sys/kdb.h>
123#endif
124
125
126void swi_handler(trapframe_t *);
127void undefinedinstruction(trapframe_t *);
128
129#include <machine/disassem.h>
130#include <machine/machdep.h>
131
132extern char fusubailout[];
133
134#ifdef DEBUG
135int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
136#endif
137
138#if defined(CPU_ARM7TDMI)
139/* These CPUs may need data/prefetch abort fixups */
140#define	CPU_ABORT_FIXUP_REQUIRED
141#endif
142
143struct ksig {
144	int signb;
145	u_long code;
146};
147struct data_abort {
148	int (*func)(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
149	const char *desc;
150};
151
152static int dab_fatal(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
153static int dab_align(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
154static int dab_buserr(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
155
156static const struct data_abort data_aborts[] = {
157	{dab_fatal,	"Vector Exception"},
158	{dab_align,	"Alignment Fault 1"},
159	{dab_fatal,	"Terminal Exception"},
160	{dab_align,	"Alignment Fault 3"},
161	{dab_buserr,	"External Linefetch Abort (S)"},
162	{NULL,		"Translation Fault (S)"},
163#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
164	{NULL,		"Translation Flag Fault"},
165#else
166	{dab_buserr,	"External Linefetch Abort (P)"},
167#endif
168	{NULL,		"Translation Fault (P)"},
169	{dab_buserr,	"External Non-Linefetch Abort (S)"},
170	{NULL,		"Domain Fault (S)"},
171	{dab_buserr,	"External Non-Linefetch Abort (P)"},
172	{NULL,		"Domain Fault (P)"},
173	{dab_buserr,	"External Translation Abort (L1)"},
174	{NULL,		"Permission Fault (S)"},
175	{dab_buserr,	"External Translation Abort (L2)"},
176	{NULL,		"Permission Fault (P)"}
177};
178
179/* Determine if a fault came from user mode */
180#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
181
182/* Determine if 'x' is a permission fault */
183#define	IS_PERMISSION_FAULT(x)					\
184	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
185	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
186
187static __inline void
188call_trapsignal(struct thread *td, int sig, u_long code)
189{
190	ksiginfo_t ksi;
191
192	ksiginfo_init_trap(&ksi);
193	ksi.ksi_signo = sig;
194	ksi.ksi_code = (int)code;
195	trapsignal(td, &ksi);
196}
197
198static __inline int
199data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
200{
201#ifdef CPU_ABORT_FIXUP_REQUIRED
202	int error;
203
204	/* Call the cpu specific data abort fixup routine */
205	error = cpu_dataabt_fixup(tf);
206	if (__predict_true(error != ABORT_FIXUP_FAILED))
207		return (error);
208
209	/*
210	 * Oops, couldn't fix up the instruction
211	 */
212	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
213	    TRAP_USERMODE(tf) ? "user" : "kernel");
214	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
215	    *((u_int *)tf->tf_pc));
216	disassemble(tf->tf_pc);
217
218	/* Die now if this happened in kernel mode */
219	if (!TRAP_USERMODE(tf))
220		dab_fatal(tf, fsr, far, td, NULL, ksig);
221
222	return (error);
223#else
224	return (ABORT_FIXUP_OK);
225#endif /* CPU_ABORT_FIXUP_REQUIRED */
226}
227
228void
229data_abort_handler(trapframe_t *tf)
230{
231	struct vm_map *map;
232	struct pcb *pcb;
233	struct thread *td;
234	u_int user, far, fsr;
235	vm_prot_t ftype;
236	void *onfault;
237	vm_offset_t va;
238	int error = 0;
239	struct ksig ksig;
240	struct proc *p;
241
242
243	/* Grab FAR/FSR before enabling interrupts */
244	far = cpu_faultaddress();
245	fsr = cpu_faultstatus();
246#if 0
247	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
248	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
249#endif
250
251	/* Update vmmeter statistics */
252#if 0
253	vmexp.traps++;
254#endif
255
256	td = curthread;
257	p = td->td_proc;
258
259	PCPU_INC(cnt.v_trap);
260	/* Data abort came from user mode? */
261	user = TRAP_USERMODE(tf);
262
263	if (user) {
264		td->td_pticks = 0;
265		td->td_frame = tf;
266		if (td->td_ucred != td->td_proc->p_ucred)
267			cred_update_thread(td);
268
269	}
270	/* Grab the current pcb */
271	pcb = td->td_pcb;
272	/* Re-enable interrupts if they were enabled previously */
273	if (td->td_md.md_spinlock_count == 0) {
274		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
275			enable_interrupts(I32_bit);
276		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
277			enable_interrupts(F32_bit);
278	}
279
280
281	/* Invoke the appropriate handler, if necessary */
282	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
283		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
284		    td, &ksig)) {
285			goto do_trapsignal;
286		}
287		goto out;
288	}
289
290	/*
291	 * At this point, we're dealing with one of the following data aborts:
292	 *
293	 *  FAULT_TRANS_S  - Translation -- Section
294	 *  FAULT_TRANS_P  - Translation -- Page
295	 *  FAULT_DOMAIN_S - Domain -- Section
296	 *  FAULT_DOMAIN_P - Domain -- Page
297	 *  FAULT_PERM_S   - Permission -- Section
298	 *  FAULT_PERM_P   - Permission -- Page
299	 *
300	 * These are the main virtual memory-related faults signalled by
301	 * the MMU.
302	 */
303
304	/* fusubailout is used by [fs]uswintr to avoid page faulting */
305	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
306		tf->tf_r0 = EFAULT;
307		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
308		return;
309	}
310
311	/*
312	 * Make sure the Program Counter is sane. We could fall foul of
313	 * someone executing Thumb code, in which case the PC might not
314	 * be word-aligned. This would cause a kernel alignment fault
315	 * further down if we have to decode the current instruction.
316	 * XXX: It would be nice to be able to support Thumb at some point.
317	 */
318	if (__predict_false((tf->tf_pc & 3) != 0)) {
319		if (user) {
320			/*
321			 * Give the user an illegal instruction signal.
322			 */
323			/* Deliver a SIGILL to the process */
324			ksig.signb = SIGILL;
325			ksig.code = 0;
326			goto do_trapsignal;
327		}
328
329		/*
330		 * The kernel never executes Thumb code.
331		 */
332		printf("\ndata_abort_fault: Misaligned Kernel-mode "
333		    "Program Counter\n");
334		dab_fatal(tf, fsr, far, td, &ksig);
335	}
336
337	/* See if the cpu state needs to be fixed up */
338	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
339	case ABORT_FIXUP_RETURN:
340		return;
341	case ABORT_FIXUP_FAILED:
342		/* Deliver a SIGILL to the process */
343		ksig.signb = SIGILL;
344		ksig.code = 0;
345		goto do_trapsignal;
346	default:
347		break;
348	}
349
350	va = trunc_page((vm_offset_t)far);
351
352	/*
353	 * It is only a kernel address space fault iff:
354	 *	1. user == 0  and
355	 *	2. pcb_onfault not set or
356	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
357	 */
358	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
359	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
360	    __predict_true((pcb->pcb_onfault == NULL ||
361	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
362		map = kernel_map;
363
364		/* Was the fault due to the FPE/IPKDB ? */
365		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
366
367			/*
368			 * Force exit via userret()
369			 * This is necessary as the FPE is an extension to
370			 * userland that actually runs in a priveledged mode
371			 * but uses USR mode permissions for its accesses.
372			 */
373			user = 1;
374			ksig.signb = SIGSEGV;
375			ksig.code = 0;
376			goto do_trapsignal;
377		}
378	} else {
379		map = &td->td_proc->p_vmspace->vm_map;
380	}
381
382	/*
383	 * We need to know whether the page should be mapped
384	 * as R or R/W. The MMU does not give us the info as
385	 * to whether the fault was caused by a read or a write.
386	 *
387	 * However, we know that a permission fault can only be
388	 * the result of a write to a read-only location, so
389	 * we can deal with those quickly.
390	 *
391	 * Otherwise we need to disassemble the instruction
392	 * responsible to determine if it was a write.
393	 */
394	if (IS_PERMISSION_FAULT(fsr)) {
395		ftype = VM_PROT_WRITE;
396	} else {
397		u_int insn = ReadWord(tf->tf_pc);
398
399		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
400		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
401		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
402		{
403			ftype = VM_PROT_WRITE;
404	}
405		else
406		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
407			ftype = VM_PROT_READ | VM_PROT_WRITE;
408		else
409			ftype = VM_PROT_READ;
410	}
411
412	/*
413	 * See if the fault is as a result of ref/mod emulation,
414	 * or domain mismatch.
415	 */
416#ifdef DEBUG
417	last_fault_code = fsr;
418#endif
419	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
420	    user)) {
421		goto out;
422	}
423
424	onfault = pcb->pcb_onfault;
425	pcb->pcb_onfault = NULL;
426	if (map != kernel_map) {
427		PROC_LOCK(p);
428		p->p_lock++;
429		PROC_UNLOCK(p);
430	}
431	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
432	pcb->pcb_onfault = onfault;
433
434	if (map != kernel_map) {
435		PROC_LOCK(p);
436		p->p_lock--;
437		PROC_UNLOCK(p);
438	}
439	if (__predict_true(error == 0))
440		goto out;
441	if (user == 0) {
442		if (pcb->pcb_onfault) {
443			tf->tf_r0 = error;
444			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
445			return;
446		}
447
448		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
449		    error);
450		dab_fatal(tf, fsr, far, td, &ksig);
451	}
452
453
454	if (error == ENOMEM) {
455		printf("VM: pid %d (%s), uid %d killed: "
456		    "out of swap\n", td->td_proc->p_pid, td->td_name,
457		    (td->td_proc->p_ucred) ?
458		     td->td_proc->p_ucred->cr_uid : -1);
459		ksig.signb = SIGKILL;
460	} else {
461		ksig.signb = SIGSEGV;
462	}
463	ksig.code = 0;
464do_trapsignal:
465	call_trapsignal(td, ksig.signb, ksig.code);
466out:
467	/* If returning to user mode, make sure to invoke userret() */
468	if (user)
469		userret(td, tf);
470}
471
472/*
473 * dab_fatal() handles the following data aborts:
474 *
475 *  FAULT_WRTBUF_0 - Vector Exception
476 *  FAULT_WRTBUF_1 - Terminal Exception
477 *
478 * We should never see these on a properly functioning system.
479 *
480 * This function is also called by the other handlers if they
481 * detect a fatal problem.
482 *
483 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
484 */
485static int
486dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
487{
488	const char *mode;
489
490	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
491
492	disable_interrupts(I32_bit|F32_bit);
493	if (td != NULL) {
494		printf("Fatal %s mode data abort: '%s'\n", mode,
495		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
496		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
497		if ((fsr & FAULT_IMPRECISE) == 0)
498			printf("%08x, ", far);
499		else
500			printf("Invalid,  ");
501		printf("spsr=%08x\n", tf->tf_spsr);
502	} else {
503		printf("Fatal %s mode prefetch abort at 0x%08x\n",
504		    mode, tf->tf_pc);
505		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
506	}
507
508	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
509	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
510	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
511	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
512	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
513	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
514	printf("r12=%08x, ", tf->tf_r12);
515
516	if (TRAP_USERMODE(tf))
517		printf("usp=%08x, ulr=%08x",
518		    tf->tf_usr_sp, tf->tf_usr_lr);
519	else
520		printf("ssp=%08x, slr=%08x",
521		    tf->tf_svc_sp, tf->tf_svc_lr);
522	printf(", pc =%08x\n\n", tf->tf_pc);
523
524#ifdef KDB
525	if (debugger_on_panic || kdb_active)
526		kdb_trap(fsr, 0, tf);
527#endif
528	panic("Fatal abort");
529	/*NOTREACHED*/
530}
531
532/*
533 * dab_align() handles the following data aborts:
534 *
535 *  FAULT_ALIGN_0 - Alignment fault
536 *  FAULT_ALIGN_1 - Alignment fault
537 *
538 * These faults are fatal if they happen in kernel mode. Otherwise, we
539 * deliver a bus error to the process.
540 */
541static int
542dab_align(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
543{
544
545	/* Alignment faults are always fatal if they occur in kernel mode */
546	if (!TRAP_USERMODE(tf)) {
547		if (!td || !td->td_pcb->pcb_onfault)
548			dab_fatal(tf, fsr, far, td, ksig);
549		tf->tf_r0 = EFAULT;
550		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
551		return (0);
552	}
553
554	/* pcb_onfault *must* be NULL at this point */
555
556	/* See if the cpu state needs to be fixed up */
557	(void) data_abort_fixup(tf, fsr, far, td, ksig);
558
559	/* Deliver a bus error signal to the process */
560	ksig->code = 0;
561	ksig->signb = SIGBUS;
562	td->td_frame = tf;
563
564	return (1);
565}
566
567/*
568 * dab_buserr() handles the following data aborts:
569 *
570 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
571 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
572 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
573 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
574 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
575 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
576 *
577 * If pcb_onfault is set, flag the fault and return to the handler.
578 * If the fault occurred in user mode, give the process a SIGBUS.
579 *
580 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
581 * can be flagged as imprecise in the FSR. This causes a real headache
582 * since some of the machine state is lost. In this case, tf->tf_pc
583 * may not actually point to the offending instruction. In fact, if
584 * we've taken a double abort fault, it generally points somewhere near
585 * the top of "data_abort_entry" in exception.S.
586 *
587 * In all other cases, these data aborts are considered fatal.
588 */
589static int
590dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
591{
592	struct pcb *pcb = td->td_pcb;
593
594#ifdef __XSCALE__
595	if ((fsr & FAULT_IMPRECISE) != 0 &&
596	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
597		/*
598		 * Oops, an imprecise, double abort fault. We've lost the
599		 * r14_abt/spsr_abt values corresponding to the original
600		 * abort, and the spsr saved in the trapframe indicates
601		 * ABT mode.
602		 */
603		tf->tf_spsr &= ~PSR_MODE;
604
605		/*
606		 * We use a simple heuristic to determine if the double abort
607		 * happened as a result of a kernel or user mode access.
608		 * If the current trapframe is at the top of the kernel stack,
609		 * the fault _must_ have come from user mode.
610		 */
611		if (tf != ((trapframe_t *)pcb->un_32.pcb32_sp) - 1) {
612			/*
613			 * Kernel mode. We're either about to die a
614			 * spectacular death, or pcb_onfault will come
615			 * to our rescue. Either way, the current value
616			 * of tf->tf_pc is irrelevant.
617			 */
618			tf->tf_spsr |= PSR_SVC32_MODE;
619			if (pcb->pcb_onfault == NULL)
620				printf("\nKernel mode double abort!\n");
621		} else {
622			/*
623			 * User mode. We've lost the program counter at the
624			 * time of the fault (not that it was accurate anyway;
625			 * it's not called an imprecise fault for nothing).
626			 * About all we can do is copy r14_usr to tf_pc and
627			 * hope for the best. The process is about to get a
628			 * SIGBUS, so it's probably history anyway.
629			 */
630			tf->tf_spsr |= PSR_USR32_MODE;
631			tf->tf_pc = tf->tf_usr_lr;
632		}
633	}
634
635	/* FAR is invalid for imprecise exceptions */
636	if ((fsr & FAULT_IMPRECISE) != 0)
637		far = 0;
638#endif /* __XSCALE__ */
639
640	if (pcb->pcb_onfault) {
641		tf->tf_r0 = EFAULT;
642		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
643		return (0);
644	}
645
646	/* See if the cpu state needs to be fixed up */
647	(void) data_abort_fixup(tf, fsr, far, td, ksig);
648
649	/*
650	 * At this point, if the fault happened in kernel mode, we're toast
651	 */
652	if (!TRAP_USERMODE(tf))
653		dab_fatal(tf, fsr, far, td, ksig);
654
655	/* Deliver a bus error signal to the process */
656	ksig->signb = SIGBUS;
657	ksig->code = 0;
658	td->td_frame = tf;
659
660	return (1);
661}
662
663static __inline int
664prefetch_abort_fixup(trapframe_t *tf, struct ksig *ksig)
665{
666#ifdef CPU_ABORT_FIXUP_REQUIRED
667	int error;
668
669	/* Call the cpu specific prefetch abort fixup routine */
670	error = cpu_prefetchabt_fixup(tf);
671	if (__predict_true(error != ABORT_FIXUP_FAILED))
672		return (error);
673
674	/*
675	 * Oops, couldn't fix up the instruction
676	 */
677	printf(
678	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
679	    TRAP_USERMODE(tf) ? "user" : "kernel");
680	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
681	    *((u_int *)tf->tf_pc));
682	disassemble(tf->tf_pc);
683
684	/* Die now if this happened in kernel mode */
685	if (!TRAP_USERMODE(tf))
686		dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
687
688	return (error);
689#else
690	return (ABORT_FIXUP_OK);
691#endif /* CPU_ABORT_FIXUP_REQUIRED */
692}
693
694/*
695 * void prefetch_abort_handler(trapframe_t *tf)
696 *
697 * Abort handler called when instruction execution occurs at
698 * a non existent or restricted (access permissions) memory page.
699 * If the address is invalid and we were in SVC mode then panic as
700 * the kernel should never prefetch abort.
701 * If the address is invalid and the page is mapped then the user process
702 * does no have read permission so send it a signal.
703 * Otherwise fault the page in and try again.
704 */
705void
706prefetch_abort_handler(trapframe_t *tf)
707{
708	struct thread *td;
709	struct proc * p;
710	struct vm_map *map;
711	vm_offset_t fault_pc, va;
712	int error = 0;
713	struct ksig ksig;
714
715
716#if 0
717	/* Update vmmeter statistics */
718	uvmexp.traps++;
719#endif
720#if 0
721	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
722	    (void*)tf->tf_usr_lr);
723#endif
724
725 	td = curthread;
726	p = td->td_proc;
727	PCPU_INC(cnt.v_trap);
728
729	if (TRAP_USERMODE(tf)) {
730		td->td_frame = tf;
731		if (td->td_ucred != td->td_proc->p_ucred)
732			cred_update_thread(td);
733	}
734	fault_pc = tf->tf_pc;
735	if (td->td_md.md_spinlock_count == 0) {
736		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
737			enable_interrupts(I32_bit);
738		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
739			enable_interrupts(F32_bit);
740	}
741
742	/* See if the cpu state needs to be fixed up */
743	switch (prefetch_abort_fixup(tf, &ksig)) {
744	case ABORT_FIXUP_RETURN:
745		return;
746	case ABORT_FIXUP_FAILED:
747		/* Deliver a SIGILL to the process */
748		ksig.signb = SIGILL;
749		ksig.code = 0;
750		td->td_frame = tf;
751		goto do_trapsignal;
752	default:
753		break;
754	}
755
756	/* Prefetch aborts cannot happen in kernel mode */
757	if (__predict_false(!TRAP_USERMODE(tf)))
758		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
759	td->td_pticks = 0;
760
761
762	/* Ok validate the address, can only execute in USER space */
763	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
764	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
765		ksig.signb = SIGSEGV;
766		ksig.code = 0;
767		goto do_trapsignal;
768	}
769
770	map = &td->td_proc->p_vmspace->vm_map;
771	va = trunc_page(fault_pc);
772
773	/*
774	 * See if the pmap can handle this fault on its own...
775	 */
776#ifdef DEBUG
777	last_fault_code = -1;
778#endif
779	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
780		goto out;
781
782	if (map != kernel_map) {
783		PROC_LOCK(p);
784		p->p_lock++;
785		PROC_UNLOCK(p);
786	}
787
788	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
789	    VM_FAULT_NORMAL);
790	if (map != kernel_map) {
791		PROC_LOCK(p);
792		p->p_lock--;
793		PROC_UNLOCK(p);
794	}
795
796	if (__predict_true(error == 0))
797		goto out;
798
799	if (error == ENOMEM) {
800		printf("VM: pid %d (%s), uid %d killed: "
801		    "out of swap\n", td->td_proc->p_pid, td->td_name,
802		    (td->td_proc->p_ucred) ?
803		     td->td_proc->p_ucred->cr_uid : -1);
804		ksig.signb = SIGKILL;
805	} else {
806		ksig.signb = SIGSEGV;
807	}
808	ksig.code = 0;
809
810do_trapsignal:
811	call_trapsignal(td, ksig.signb, ksig.code);
812
813out:
814	userret(td, tf);
815
816}
817
818extern int badaddr_read_1(const uint8_t *, uint8_t *);
819extern int badaddr_read_2(const uint16_t *, uint16_t *);
820extern int badaddr_read_4(const uint32_t *, uint32_t *);
821/*
822 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
823 * If the read succeeds, the value is written to 'rptr' and zero is returned.
824 * Else, return EFAULT.
825 */
826int
827badaddr_read(void *addr, size_t size, void *rptr)
828{
829	union {
830		uint8_t v1;
831		uint16_t v2;
832		uint32_t v4;
833	} u;
834	int rv;
835
836	cpu_drain_writebuf();
837
838	/* Read from the test address. */
839	switch (size) {
840	case sizeof(uint8_t):
841		rv = badaddr_read_1(addr, &u.v1);
842		if (rv == 0 && rptr)
843			*(uint8_t *) rptr = u.v1;
844		break;
845
846	case sizeof(uint16_t):
847		rv = badaddr_read_2(addr, &u.v2);
848		if (rv == 0 && rptr)
849			*(uint16_t *) rptr = u.v2;
850		break;
851
852	case sizeof(uint32_t):
853		rv = badaddr_read_4(addr, &u.v4);
854		if (rv == 0 && rptr)
855			*(uint32_t *) rptr = u.v4;
856		break;
857
858	default:
859		panic("badaddr: invalid size (%lu)", (u_long) size);
860	}
861
862	/* Return EFAULT if the address was invalid, else zero */
863	return (rv);
864}
865
866int
867cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
868{
869	struct proc *p;
870	register_t *ap;
871	int error;
872
873#ifdef __ARM_EABI__
874	sa->code = td->td_frame->tf_r7;
875#else
876	sa->code = sa->insn & 0x000fffff;
877#endif
878	ap = &td->td_frame->tf_r0;
879	if (sa->code == SYS_syscall) {
880		sa->code = *ap++;
881		sa->nap--;
882	} else if (sa->code == SYS___syscall) {
883		sa->code = ap[_QUAD_LOWWORD];
884		sa->nap -= 2;
885		ap += 2;
886	}
887	p = td->td_proc;
888	if (p->p_sysent->sv_mask)
889		sa->code &= p->p_sysent->sv_mask;
890	if (sa->code >= p->p_sysent->sv_size)
891		sa->callp = &p->p_sysent->sv_table[0];
892	else
893		sa->callp = &p->p_sysent->sv_table[sa->code];
894	sa->narg = sa->callp->sy_narg;
895	error = 0;
896	memcpy(sa->args, ap, sa->nap * sizeof(register_t));
897	if (sa->narg > sa->nap) {
898		error = copyin((void *)td->td_frame->tf_usr_sp, sa->args +
899		    sa->nap, (sa->narg - sa->nap) * sizeof(register_t));
900	}
901	if (error == 0) {
902		td->td_retval[0] = 0;
903		td->td_retval[1] = 0;
904	}
905	return (error);
906}
907
908#include "../../kern/subr_syscall.c"
909
910static void
911syscall(struct thread *td, trapframe_t *frame)
912{
913	struct syscall_args sa;
914	int error;
915
916#ifndef __ARM_EABI__
917	sa.insn = *(uint32_t *)(frame->tf_pc - INSN_SIZE);
918	switch (sa.insn & SWI_OS_MASK) {
919	case 0: /* XXX: we need our own one. */
920		break;
921	default:
922		call_trapsignal(td, SIGILL, 0);
923		userret(td, frame);
924		return;
925	}
926#endif
927	sa.nap = 4;
928
929	error = syscallenter(td, &sa);
930	KASSERT(error != 0 || td->td_ar == NULL,
931	    ("returning from syscall with td_ar set!"));
932	syscallret(td, error, &sa);
933}
934
935void
936swi_handler(trapframe_t *frame)
937{
938	struct thread *td = curthread;
939
940	td->td_frame = frame;
941
942	td->td_pticks = 0;
943	/*
944      	 * Make sure the program counter is correctly aligned so we
945	 * don't take an alignment fault trying to read the opcode.
946	 */
947	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
948		call_trapsignal(td, SIGILL, 0);
949		userret(td, frame);
950		return;
951	}
952	/*
953	 * Enable interrupts if they were enabled before the exception.
954	 * Since all syscalls *should* come from user mode it will always
955	 * be safe to enable them, but check anyway.
956	 */
957	if (td->td_md.md_spinlock_count == 0) {
958		if (__predict_true(frame->tf_spsr & I32_bit) == 0)
959			enable_interrupts(I32_bit);
960		if (__predict_true(frame->tf_spsr & F32_bit) == 0)
961			enable_interrupts(F32_bit);
962	}
963
964	syscall(td, frame);
965}
966
967