syscall.c revision 173600
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/arm/arm/trap.c 173600 2007-11-14 06:21:24Z julian $");
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/proc.h>
90#include <sys/kernel.h>
91#include <sys/lock.h>
92#include <sys/mutex.h>
93#include <sys/syscall.h>
94#include <sys/sysent.h>
95#include <sys/signalvar.h>
96#include <sys/ktr.h>
97#ifdef KTRACE
98#include <sys/uio.h>
99#include <sys/ktrace.h>
100#endif
101#include <sys/ptrace.h>
102#include <sys/pioctl.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_kern.h>
107#include <vm/vm_map.h>
108#include <vm/vm_extern.h>
109
110#include <machine/cpuconf.h>
111#include <machine/vmparam.h>
112#include <machine/frame.h>
113#include <machine/cpu.h>
114#include <machine/intr.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/swi.h>
118
119#include <security/audit/audit.h>
120
121#ifdef KDB
122#include <sys/kdb.h>
123#endif
124
125
126void swi_handler(trapframe_t *);
127void undefinedinstruction(trapframe_t *);
128
129#include <machine/disassem.h>
130#include <machine/machdep.h>
131
132extern char fusubailout[];
133extern char *syscallnames[];
134
135#ifdef DEBUG
136int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
137#endif
138
139#if defined(CPU_ARM7TDMI)
140/* These CPUs may need data/prefetch abort fixups */
141#define	CPU_ABORT_FIXUP_REQUIRED
142#endif
143
144struct ksig {
145	int signb;
146	u_long code;
147};
148struct data_abort {
149	int (*func)(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
150	const char *desc;
151};
152
153static int dab_fatal(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
154static int dab_align(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
155static int dab_buserr(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
156
157static const struct data_abort data_aborts[] = {
158	{dab_fatal,	"Vector Exception"},
159	{dab_align,	"Alignment Fault 1"},
160	{dab_fatal,	"Terminal Exception"},
161	{dab_align,	"Alignment Fault 3"},
162	{dab_buserr,	"External Linefetch Abort (S)"},
163	{NULL,		"Translation Fault (S)"},
164	{dab_buserr,	"External Linefetch Abort (P)"},
165	{NULL,		"Translation Fault (P)"},
166	{dab_buserr,	"External Non-Linefetch Abort (S)"},
167	{NULL,		"Domain Fault (S)"},
168	{dab_buserr,	"External Non-Linefetch Abort (P)"},
169	{NULL,		"Domain Fault (P)"},
170	{dab_buserr,	"External Translation Abort (L1)"},
171	{NULL,		"Permission Fault (S)"},
172	{dab_buserr,	"External Translation Abort (L2)"},
173	{NULL,		"Permission Fault (P)"}
174};
175
176/* Determine if a fault came from user mode */
177#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
178
179/* Determine if 'x' is a permission fault */
180#define	IS_PERMISSION_FAULT(x)					\
181	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
182	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
183
184static __inline void
185call_trapsignal(struct thread *td, int sig, u_long code)
186{
187	ksiginfo_t ksi;
188
189	ksiginfo_init_trap(&ksi);
190	ksi.ksi_signo = sig;
191	ksi.ksi_code = (int)code;
192	trapsignal(td, &ksi);
193}
194
195static __inline int
196data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
197{
198#ifdef CPU_ABORT_FIXUP_REQUIRED
199	int error;
200
201	/* Call the cpu specific data abort fixup routine */
202	error = cpu_dataabt_fixup(tf);
203	if (__predict_true(error != ABORT_FIXUP_FAILED))
204		return (error);
205
206	/*
207	 * Oops, couldn't fix up the instruction
208	 */
209	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
210	    TRAP_USERMODE(tf) ? "user" : "kernel");
211	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
212	    *((u_int *)tf->tf_pc));
213	disassemble(tf->tf_pc);
214
215	/* Die now if this happened in kernel mode */
216	if (!TRAP_USERMODE(tf))
217		dab_fatal(tf, fsr, far, td, NULL, ksig);
218
219	return (error);
220#else
221	return (ABORT_FIXUP_OK);
222#endif /* CPU_ABORT_FIXUP_REQUIRED */
223}
224
225void
226data_abort_handler(trapframe_t *tf)
227{
228	struct vm_map *map;
229	struct pcb *pcb;
230	struct thread *td;
231	u_int user, far, fsr;
232	vm_prot_t ftype;
233	void *onfault;
234	vm_offset_t va;
235	int error = 0;
236	struct ksig ksig;
237	struct proc *p;
238
239
240	/* Grab FAR/FSR before enabling interrupts */
241	far = cpu_faultaddress();
242	fsr = cpu_faultstatus();
243#if 0
244	printf("data abort: %p (from %p %p)\n", (void*)far, (void*)tf->tf_pc,
245	    (void*)tf->tf_svc_lr);
246#endif
247
248	/* Update vmmeter statistics */
249#if 0
250	vmexp.traps++;
251#endif
252
253	td = curthread;
254	p = td->td_proc;
255
256	PCPU_INC(cnt.v_trap);
257	/* Data abort came from user mode? */
258	user = TRAP_USERMODE(tf);
259
260	if (user) {
261		td->td_pticks = 0;
262		td->td_frame = tf;
263		if (td->td_ucred != td->td_proc->p_ucred)
264			cred_update_thread(td);
265#ifdef KSE
266		if (td->td_pflags & TDP_SA)
267			thread_user_enter(td);
268#endif
269
270	}
271	/* Grab the current pcb */
272	pcb = td->td_pcb;
273	/* Re-enable interrupts if they were enabled previously */
274	if (td->td_md.md_spinlock_count == 0) {
275		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
276			enable_interrupts(I32_bit);
277		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
278			enable_interrupts(F32_bit);
279	}
280
281
282	/* Invoke the appropriate handler, if necessary */
283	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
284		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
285		    td, &ksig)) {
286			goto do_trapsignal;
287		}
288		goto out;
289	}
290
291	/*
292	 * At this point, we're dealing with one of the following data aborts:
293	 *
294	 *  FAULT_TRANS_S  - Translation -- Section
295	 *  FAULT_TRANS_P  - Translation -- Page
296	 *  FAULT_DOMAIN_S - Domain -- Section
297	 *  FAULT_DOMAIN_P - Domain -- Page
298	 *  FAULT_PERM_S   - Permission -- Section
299	 *  FAULT_PERM_P   - Permission -- Page
300	 *
301	 * These are the main virtual memory-related faults signalled by
302	 * the MMU.
303	 */
304
305	/* fusubailout is used by [fs]uswintr to avoid page faulting */
306	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
307		tf->tf_r0 = EFAULT;
308		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
309		return;
310	}
311
312	/*
313	 * Make sure the Program Counter is sane. We could fall foul of
314	 * someone executing Thumb code, in which case the PC might not
315	 * be word-aligned. This would cause a kernel alignment fault
316	 * further down if we have to decode the current instruction.
317	 * XXX: It would be nice to be able to support Thumb at some point.
318	 */
319	if (__predict_false((tf->tf_pc & 3) != 0)) {
320		if (user) {
321			/*
322			 * Give the user an illegal instruction signal.
323			 */
324			/* Deliver a SIGILL to the process */
325			ksig.signb = SIGILL;
326			ksig.code = 0;
327			goto do_trapsignal;
328		}
329
330		/*
331		 * The kernel never executes Thumb code.
332		 */
333		printf("\ndata_abort_fault: Misaligned Kernel-mode "
334		    "Program Counter\n");
335		dab_fatal(tf, fsr, far, td, &ksig);
336	}
337
338	/* See if the cpu state needs to be fixed up */
339	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
340	case ABORT_FIXUP_RETURN:
341		return;
342	case ABORT_FIXUP_FAILED:
343		/* Deliver a SIGILL to the process */
344		ksig.signb = SIGILL;
345		ksig.code = 0;
346		goto do_trapsignal;
347	default:
348		break;
349	}
350
351	va = trunc_page((vm_offset_t)far);
352
353	/*
354	 * It is only a kernel address space fault iff:
355	 *	1. user == 0  and
356	 *	2. pcb_onfault not set or
357	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
358	 */
359	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
360	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
361	    __predict_true((pcb->pcb_onfault == NULL ||
362	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
363		map = kernel_map;
364
365		/* Was the fault due to the FPE/IPKDB ? */
366		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
367
368			/*
369			 * Force exit via userret()
370			 * This is necessary as the FPE is an extension to
371			 * userland that actually runs in a priveledged mode
372			 * but uses USR mode permissions for its accesses.
373			 */
374			user = 1;
375			ksig.signb = SIGSEGV;
376			ksig.code = 0;
377			goto do_trapsignal;
378		}
379	} else {
380		map = &td->td_proc->p_vmspace->vm_map;
381	}
382
383	/*
384	 * We need to know whether the page should be mapped
385	 * as R or R/W. The MMU does not give us the info as
386	 * to whether the fault was caused by a read or a write.
387	 *
388	 * However, we know that a permission fault can only be
389	 * the result of a write to a read-only location, so
390	 * we can deal with those quickly.
391	 *
392	 * Otherwise we need to disassemble the instruction
393	 * responsible to determine if it was a write.
394	 */
395	if (IS_PERMISSION_FAULT(fsr)) {
396		ftype = VM_PROT_WRITE;
397	} else {
398		u_int insn = ReadWord(tf->tf_pc);
399
400		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
401		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
402		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
403		{
404			ftype = VM_PROT_WRITE;
405	}
406		else
407		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
408			ftype = VM_PROT_READ | VM_PROT_WRITE;
409		else
410			ftype = VM_PROT_READ;
411	}
412
413	/*
414	 * See if the fault is as a result of ref/mod emulation,
415	 * or domain mismatch.
416	 */
417#ifdef DEBUG
418	last_fault_code = fsr;
419#endif
420	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
421	    user)) {
422		goto out;
423	}
424
425	onfault = pcb->pcb_onfault;
426	pcb->pcb_onfault = NULL;
427	if (map != kernel_map) {
428		PROC_LOCK(p);
429		p->p_lock++;
430		PROC_UNLOCK(p);
431	}
432	error = vm_fault(map, va, ftype, (ftype & VM_PROT_WRITE) ?
433	    VM_FAULT_DIRTY : VM_FAULT_NORMAL);
434	pcb->pcb_onfault = onfault;
435
436	if (map != kernel_map) {
437		PROC_LOCK(p);
438		p->p_lock--;
439		PROC_UNLOCK(p);
440	}
441	if (__predict_true(error == 0))
442		goto out;
443	if (user == 0) {
444		if (pcb->pcb_onfault) {
445			tf->tf_r0 = error;
446			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
447			return;
448		}
449
450		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
451		    error);
452		dab_fatal(tf, fsr, far, td, &ksig);
453	}
454
455
456	if (error == ENOMEM) {
457		printf("VM: pid %d (%s), uid %d killed: "
458		    "out of swap\n", td->td_proc->p_pid, td->td_name,
459		    (td->td_proc->p_ucred) ?
460		     td->td_proc->p_ucred->cr_uid : -1);
461		ksig.signb = SIGKILL;
462	} else {
463		ksig.signb = SIGSEGV;
464	}
465	ksig.code = 0;
466do_trapsignal:
467	call_trapsignal(td, ksig.signb, ksig.code);
468out:
469	/* If returning to user mode, make sure to invoke userret() */
470	if (user)
471		userret(td, tf);
472}
473
474/*
475 * dab_fatal() handles the following data aborts:
476 *
477 *  FAULT_WRTBUF_0 - Vector Exception
478 *  FAULT_WRTBUF_1 - Terminal Exception
479 *
480 * We should never see these on a properly functioning system.
481 *
482 * This function is also called by the other handlers if they
483 * detect a fatal problem.
484 *
485 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
486 */
487static int
488dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
489{
490	const char *mode;
491
492	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
493
494	disable_interrupts(I32_bit|F32_bit);
495	if (td != NULL) {
496		printf("Fatal %s mode data abort: '%s'\n", mode,
497		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
498		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
499		if ((fsr & FAULT_IMPRECISE) == 0)
500			printf("%08x, ", far);
501		else
502			printf("Invalid,  ");
503		printf("spsr=%08x\n", tf->tf_spsr);
504	} else {
505		printf("Fatal %s mode prefetch abort at 0x%08x\n",
506		    mode, tf->tf_pc);
507		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
508	}
509
510	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
511	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
512	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
513	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
514	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
515	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
516	printf("r12=%08x, ", tf->tf_r12);
517
518	if (TRAP_USERMODE(tf))
519		printf("usp=%08x, ulr=%08x",
520		    tf->tf_usr_sp, tf->tf_usr_lr);
521	else
522		printf("ssp=%08x, slr=%08x",
523		    tf->tf_svc_sp, tf->tf_svc_lr);
524	printf(", pc =%08x\n\n", tf->tf_pc);
525
526#ifdef KDB
527	kdb_trap(fsr, 0, tf);
528#endif
529	panic("Fatal abort");
530	/*NOTREACHED*/
531}
532
533/*
534 * dab_align() handles the following data aborts:
535 *
536 *  FAULT_ALIGN_0 - Alignment fault
537 *  FAULT_ALIGN_0 - Alignment fault
538 *
539 * These faults are fatal if they happen in kernel mode. Otherwise, we
540 * deliver a bus error to the process.
541 */
542static int
543dab_align(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
544{
545
546	/* Alignment faults are always fatal if they occur in kernel mode */
547	if (!TRAP_USERMODE(tf)) {
548		if (!td || !td->td_pcb->pcb_onfault)
549			dab_fatal(tf, fsr, far, td, ksig);
550		tf->tf_r0 = EFAULT;
551		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
552		return (0);
553	}
554
555	/* pcb_onfault *must* be NULL at this point */
556
557	/* See if the cpu state needs to be fixed up */
558	(void) data_abort_fixup(tf, fsr, far, td, ksig);
559
560	/* Deliver a bus error signal to the process */
561	ksig->code = 0;
562	ksig->signb = SIGBUS;
563	td->td_frame = tf;
564
565	return (1);
566}
567
568/*
569 * dab_buserr() handles the following data aborts:
570 *
571 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
572 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
573 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
574 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
575 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
576 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
577 *
578 * If pcb_onfault is set, flag the fault and return to the handler.
579 * If the fault occurred in user mode, give the process a SIGBUS.
580 *
581 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
582 * can be flagged as imprecise in the FSR. This causes a real headache
583 * since some of the machine state is lost. In this case, tf->tf_pc
584 * may not actually point to the offending instruction. In fact, if
585 * we've taken a double abort fault, it generally points somewhere near
586 * the top of "data_abort_entry" in exception.S.
587 *
588 * In all other cases, these data aborts are considered fatal.
589 */
590static int
591dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
592{
593	struct pcb *pcb = td->td_pcb;
594
595#ifdef __XSCALE__
596	if ((fsr & FAULT_IMPRECISE) != 0 &&
597	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
598		/*
599		 * Oops, an imprecise, double abort fault. We've lost the
600		 * r14_abt/spsr_abt values corresponding to the original
601		 * abort, and the spsr saved in the trapframe indicates
602		 * ABT mode.
603		 */
604		tf->tf_spsr &= ~PSR_MODE;
605
606		/*
607		 * We use a simple heuristic to determine if the double abort
608		 * happened as a result of a kernel or user mode access.
609		 * If the current trapframe is at the top of the kernel stack,
610		 * the fault _must_ have come from user mode.
611		 */
612		if (tf != ((trapframe_t *)pcb->un_32.pcb32_sp) - 1) {
613			/*
614			 * Kernel mode. We're either about to die a
615			 * spectacular death, or pcb_onfault will come
616			 * to our rescue. Either way, the current value
617			 * of tf->tf_pc is irrelevant.
618			 */
619			tf->tf_spsr |= PSR_SVC32_MODE;
620			if (pcb->pcb_onfault == NULL)
621				printf("\nKernel mode double abort!\n");
622		} else {
623			/*
624			 * User mode. We've lost the program counter at the
625			 * time of the fault (not that it was accurate anyway;
626			 * it's not called an imprecise fault for nothing).
627			 * About all we can do is copy r14_usr to tf_pc and
628			 * hope for the best. The process is about to get a
629			 * SIGBUS, so it's probably history anyway.
630			 */
631			tf->tf_spsr |= PSR_USR32_MODE;
632			tf->tf_pc = tf->tf_usr_lr;
633		}
634	}
635
636	/* FAR is invalid for imprecise exceptions */
637	if ((fsr & FAULT_IMPRECISE) != 0)
638		far = 0;
639#endif /* __XSCALE__ */
640
641	if (pcb->pcb_onfault) {
642		tf->tf_r0 = EFAULT;
643		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
644		return (0);
645	}
646
647	/* See if the cpu state needs to be fixed up */
648	(void) data_abort_fixup(tf, fsr, far, td, ksig);
649
650	/*
651	 * At this point, if the fault happened in kernel mode, we're toast
652	 */
653	if (!TRAP_USERMODE(tf))
654		dab_fatal(tf, fsr, far, td, ksig);
655
656	/* Deliver a bus error signal to the process */
657	ksig->signb = SIGBUS;
658	ksig->code = 0;
659	td->td_frame = tf;
660
661	return (1);
662}
663
664static __inline int
665prefetch_abort_fixup(trapframe_t *tf, struct ksig *ksig)
666{
667#ifdef CPU_ABORT_FIXUP_REQUIRED
668	int error;
669
670	/* Call the cpu specific prefetch abort fixup routine */
671	error = cpu_prefetchabt_fixup(tf);
672	if (__predict_true(error != ABORT_FIXUP_FAILED))
673		return (error);
674
675	/*
676	 * Oops, couldn't fix up the instruction
677	 */
678	printf(
679	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
680	    TRAP_USERMODE(tf) ? "user" : "kernel");
681	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
682	    *((u_int *)tf->tf_pc));
683	disassemble(tf->tf_pc);
684
685	/* Die now if this happened in kernel mode */
686	if (!TRAP_USERMODE(tf))
687		dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
688
689	return (error);
690#else
691	return (ABORT_FIXUP_OK);
692#endif /* CPU_ABORT_FIXUP_REQUIRED */
693}
694
695/*
696 * void prefetch_abort_handler(trapframe_t *tf)
697 *
698 * Abort handler called when instruction execution occurs at
699 * a non existent or restricted (access permissions) memory page.
700 * If the address is invalid and we were in SVC mode then panic as
701 * the kernel should never prefetch abort.
702 * If the address is invalid and the page is mapped then the user process
703 * does no have read permission so send it a signal.
704 * Otherwise fault the page in and try again.
705 */
706void
707prefetch_abort_handler(trapframe_t *tf)
708{
709	struct thread *td;
710	struct proc * p;
711	struct vm_map *map;
712	vm_offset_t fault_pc, va;
713	int error = 0;
714	struct ksig ksig;
715
716
717#if 0
718	/* Update vmmeter statistics */
719	uvmexp.traps++;
720#endif
721#if 0
722	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
723	    (void*)tf->tf_usr_lr);
724#endif
725
726 	td = curthread;
727	p = td->td_proc;
728	PCPU_INC(cnt.v_trap);
729
730	if (TRAP_USERMODE(tf)) {
731		td->td_frame = tf;
732		if (td->td_ucred != td->td_proc->p_ucred)
733			cred_update_thread(td);
734#ifdef KSE
735		if (td->td_proc->p_flag & P_SA)
736			thread_user_enter(td);
737#endif
738	}
739	fault_pc = tf->tf_pc;
740	if (td->td_md.md_spinlock_count == 0) {
741		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
742			enable_interrupts(I32_bit);
743		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
744			enable_interrupts(F32_bit);
745	}
746
747
748
749	/* See if the cpu state needs to be fixed up */
750	switch (prefetch_abort_fixup(tf, &ksig)) {
751	case ABORT_FIXUP_RETURN:
752		return;
753	case ABORT_FIXUP_FAILED:
754		/* Deliver a SIGILL to the process */
755		ksig.signb = SIGILL;
756		ksig.code = 0;
757		td->td_frame = tf;
758		goto do_trapsignal;
759	default:
760		break;
761	}
762
763	/* Prefetch aborts cannot happen in kernel mode */
764	if (__predict_false(!TRAP_USERMODE(tf)))
765		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
766	td->td_pticks = 0;
767
768
769	/* Ok validate the address, can only execute in USER space */
770	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
771	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
772		ksig.signb = SIGSEGV;
773		ksig.code = 0;
774		goto do_trapsignal;
775	}
776
777	map = &td->td_proc->p_vmspace->vm_map;
778	va = trunc_page(fault_pc);
779
780	/*
781	 * See if the pmap can handle this fault on its own...
782	 */
783#ifdef DEBUG
784	last_fault_code = -1;
785#endif
786	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
787		goto out;
788
789	if (map != kernel_map) {
790		PROC_LOCK(p);
791		p->p_lock++;
792		PROC_UNLOCK(p);
793	}
794
795	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
796	    VM_FAULT_NORMAL);
797	if (map != kernel_map) {
798		PROC_LOCK(p);
799		p->p_lock--;
800		PROC_UNLOCK(p);
801	}
802
803	if (__predict_true(error == 0))
804		goto out;
805
806	if (error == ENOMEM) {
807		printf("VM: pid %d (%s), uid %d killed: "
808		    "out of swap\n", td->td_proc->p_pid, td->td_name,
809		    (td->td_proc->p_ucred) ?
810		     td->td_proc->p_ucred->cr_uid : -1);
811		ksig.signb = SIGKILL;
812	} else {
813		ksig.signb = SIGSEGV;
814	}
815	ksig.code = 0;
816
817do_trapsignal:
818	call_trapsignal(td, ksig.signb, ksig.code);
819
820out:
821	userret(td, tf);
822
823}
824
825extern int badaddr_read_1(const uint8_t *, uint8_t *);
826extern int badaddr_read_2(const uint16_t *, uint16_t *);
827extern int badaddr_read_4(const uint32_t *, uint32_t *);
828/*
829 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
830 * If the read succeeds, the value is written to 'rptr' and zero is returned.
831 * Else, return EFAULT.
832 */
833int
834badaddr_read(void *addr, size_t size, void *rptr)
835{
836	union {
837		uint8_t v1;
838		uint16_t v2;
839		uint32_t v4;
840	} u;
841	int rv;
842
843	cpu_drain_writebuf();
844
845	/* Read from the test address. */
846	switch (size) {
847	case sizeof(uint8_t):
848		rv = badaddr_read_1(addr, &u.v1);
849		if (rv == 0 && rptr)
850			*(uint8_t *) rptr = u.v1;
851		break;
852
853	case sizeof(uint16_t):
854		rv = badaddr_read_2(addr, &u.v2);
855		if (rv == 0 && rptr)
856			*(uint16_t *) rptr = u.v2;
857		break;
858
859	case sizeof(uint32_t):
860		rv = badaddr_read_4(addr, &u.v4);
861		if (rv == 0 && rptr)
862			*(uint32_t *) rptr = u.v4;
863		break;
864
865	default:
866		panic("badaddr: invalid size (%lu)", (u_long) size);
867	}
868
869	/* Return EFAULT if the address was invalid, else zero */
870	return (rv);
871}
872
873#define MAXARGS	8
874static void
875syscall(struct thread *td, trapframe_t *frame, u_int32_t insn)
876{
877	struct proc *p = td->td_proc;
878	int code, error;
879	u_int nap, nargs;
880	register_t *ap, *args, copyargs[MAXARGS];
881	struct sysent *callp;
882
883	PCPU_INC(cnt.v_syscall);
884	td->td_pticks = 0;
885	if (td->td_ucred != td->td_proc->p_ucred)
886		cred_update_thread(td);
887	switch (insn & SWI_OS_MASK) {
888	case 0: /* XXX: we need our own one. */
889		nap = 4;
890		break;
891	default:
892		call_trapsignal(td, SIGILL, 0);
893		userret(td, frame);
894		return;
895	}
896	code = insn & 0x000fffff;
897	td->td_pticks = 0;
898	ap = &frame->tf_r0;
899	if (code == SYS_syscall) {
900		code = *ap++;
901
902		nap--;
903	} else if (code == SYS___syscall) {
904		code = ap[_QUAD_LOWWORD];
905		nap -= 2;
906		ap += 2;
907	}
908	if (p->p_sysent->sv_mask)
909		code &= p->p_sysent->sv_mask;
910	if (code >= p->p_sysent->sv_size)
911		callp = &p->p_sysent->sv_table[0];
912	else
913		callp = &p->p_sysent->sv_table[code];
914	nargs = callp->sy_narg;
915	memcpy(copyargs, ap, nap * sizeof(register_t));
916	if (nargs > nap) {
917		error = copyin((void *)frame->tf_usr_sp, copyargs + nap,
918		    (nargs - nap) * sizeof(register_t));
919		if (error)
920			goto bad;
921	}
922	args = copyargs;
923	error = 0;
924#ifdef KTRACE
925	if (KTRPOINT(td, KTR_SYSCALL))
926		ktrsyscall(code, nargs, args);
927#endif
928
929	CTR4(KTR_SYSC, "syscall enter thread %p pid %d proc %s code %d", td,
930	    td->td_proc->p_pid, td->td_name, code);
931	if (error == 0) {
932		td->td_retval[0] = 0;
933		td->td_retval[1] = 0;
934		STOPEVENT(p, S_SCE, callp->sy_narg);
935		PTRACESTOP_SC(p, td, S_PT_SCE);
936		AUDIT_SYSCALL_ENTER(code, td);
937		error = (*callp->sy_call)(td, args);
938		AUDIT_SYSCALL_EXIT(error, td);
939		KASSERT(td->td_ar == NULL,
940		    ("returning from syscall with td_ar set!"));
941	}
942	switch (error) {
943	case 0:
944#ifdef __ARMEB__
945		if ((insn & 0x000fffff) == SYS___syscall &&
946		    code != SYS_freebsd6_lseek && code != SYS_lseek) {
947			/*
948			 * 64-bit return, 32-bit syscall. Fixup byte order
949			 */
950			frame->tf_r0 = 0;
951			frame->tf_r1 = td->td_retval[0];
952		} else {
953			frame->tf_r0 = td->td_retval[0];
954			frame->tf_r1 = td->td_retval[1];
955		}
956#else
957		frame->tf_r0 = td->td_retval[0];
958	  	frame->tf_r1 = td->td_retval[1];
959#endif
960
961		frame->tf_spsr &= ~PSR_C_bit;   /* carry bit */
962		break;
963
964	case ERESTART:
965		/*
966		 * Reconstruct the pc to point at the swi.
967		 */
968		frame->tf_pc -= INSN_SIZE;
969		break;
970	case EJUSTRETURN:
971		/* nothing to do */
972		break;
973	default:
974bad:
975		frame->tf_r0 = error;
976		frame->tf_spsr |= PSR_C_bit;    /* carry bit */
977		break;
978	}
979
980	WITNESS_WARN(WARN_PANIC, NULL, "System call %s returning",
981	    (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???");
982	KASSERT(td->td_critnest == 0,
983	    ("System call %s returning in a critical section",
984	    (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???"));
985	KASSERT(td->td_locks == 0,
986	    ("System call %s returning with %d locks held",
987	    (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???",
988	    td->td_locks));
989
990	userret(td, frame);
991	CTR4(KTR_SYSC, "syscall exit thread %p pid %d proc %s code %d", td,
992	    td->td_proc->p_pid, td->td_name, code);
993
994	STOPEVENT(p, S_SCX, code);
995	PTRACESTOP_SC(p, td, S_PT_SCX);
996#ifdef KTRACE
997      	if (KTRPOINT(td, KTR_SYSRET))
998		ktrsysret(code, error, td->td_retval[0]);
999#endif
1000}
1001
1002void
1003swi_handler(trapframe_t *frame)
1004{
1005	struct thread *td = curthread;
1006	uint32_t insn;
1007
1008	td->td_frame = frame;
1009
1010	td->td_pticks = 0;
1011#ifdef KSE
1012	if (td->td_proc->p_flag & P_SA)
1013		thread_user_enter(td);
1014#endif
1015	/*
1016      	 * Make sure the program counter is correctly aligned so we
1017	 * don't take an alignment fault trying to read the opcode.
1018	 */
1019	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
1020		call_trapsignal(td, SIGILL, 0);
1021		userret(td, frame);
1022		return;
1023	}
1024	insn = *(u_int32_t *)(frame->tf_pc - INSN_SIZE);
1025	/*
1026	 * Enable interrupts if they were enabled before the exception.
1027	 * Since all syscalls *should* come from user mode it will always
1028	 * be safe to enable them, but check anyway.
1029	 */
1030	if (td->td_md.md_spinlock_count == 0) {
1031		if (__predict_true(frame->tf_spsr & I32_bit) == 0)
1032			enable_interrupts(I32_bit);
1033		if (__predict_true(frame->tf_spsr & F32_bit) == 0)
1034			enable_interrupts(F32_bit);
1035	}
1036
1037	syscall(td, frame, insn);
1038}
1039
1040