pmap-v6.c revision 327656
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
6 * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
7 * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department and William Jolitz of UUNET Technologies Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
39 */
40/*-
41 * Copyright (c) 2003 Networks Associates Technology, Inc.
42 * All rights reserved.
43 *
44 * This software was developed for the FreeBSD Project by Jake Burkholder,
45 * Safeport Network Services, and Network Associates Laboratories, the
46 * Security Research Division of Network Associates, Inc. under
47 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48 * CHATS research program.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 *    notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 *    notice, this list of conditions and the following disclaimer in the
57 *    documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72#include <sys/cdefs.h>
73__FBSDID("$FreeBSD: stable/11/sys/arm/arm/pmap-v6.c 327656 2018-01-06 23:24:52Z ian $");
74
75/*
76 *	Manages physical address maps.
77 *
78 *	Since the information managed by this module is
79 *	also stored by the logical address mapping module,
80 *	this module may throw away valid virtual-to-physical
81 *	mappings at almost any time.  However, invalidations
82 *	of virtual-to-physical mappings must be done as
83 *	requested.
84 *
85 *	In order to cope with hardware architectures which
86 *	make virtual-to-physical map invalidates expensive,
87 *	this module may delay invalidate or reduced protection
88 *	operations until such time as they are actually
89 *	necessary.  This module is given full information as
90 *	to which processors are currently using which maps,
91 *	and to when physical maps must be made correct.
92 */
93
94#include "opt_vm.h"
95#include "opt_pmap.h"
96#include "opt_ddb.h"
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#include <sys/kernel.h>
101#include <sys/ktr.h>
102#include <sys/lock.h>
103#include <sys/proc.h>
104#include <sys/rwlock.h>
105#include <sys/malloc.h>
106#include <sys/vmmeter.h>
107#include <sys/malloc.h>
108#include <sys/mman.h>
109#include <sys/sf_buf.h>
110#include <sys/smp.h>
111#include <sys/sched.h>
112#include <sys/sysctl.h>
113
114#ifdef DDB
115#include <ddb/ddb.h>
116#endif
117
118#include <machine/physmem.h>
119
120#include <vm/vm.h>
121#include <vm/uma.h>
122#include <vm/pmap.h>
123#include <vm/vm_param.h>
124#include <vm/vm_kern.h>
125#include <vm/vm_object.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/vm_pageout.h>
129#include <vm/vm_phys.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_reserv.h>
132#include <sys/lock.h>
133#include <sys/mutex.h>
134
135#include <machine/md_var.h>
136#include <machine/pmap_var.h>
137#include <machine/cpu.h>
138#include <machine/pcb.h>
139#include <machine/sf_buf.h>
140#ifdef SMP
141#include <machine/smp.h>
142#endif
143
144#ifndef PMAP_SHPGPERPROC
145#define PMAP_SHPGPERPROC 200
146#endif
147
148#ifndef DIAGNOSTIC
149#define PMAP_INLINE	__inline
150#else
151#define PMAP_INLINE
152#endif
153
154#ifdef PMAP_DEBUG
155static void pmap_zero_page_check(vm_page_t m);
156void pmap_debug(int level);
157int pmap_pid_dump(int pid);
158
159#define PDEBUG(_lev_,_stat_) \
160	if (pmap_debug_level >= (_lev_)) \
161		((_stat_))
162#define dprintf printf
163int pmap_debug_level = 1;
164#else   /* PMAP_DEBUG */
165#define PDEBUG(_lev_,_stat_) /* Nothing */
166#define dprintf(x, arg...)
167#endif  /* PMAP_DEBUG */
168
169/*
170 *  Level 2 page tables map definion ('max' is excluded).
171 */
172
173#define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
174#define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
175
176#define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
177#define UPT2V_MAX_ADDRESS \
178    ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
179
180/*
181 *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
182 *  4KB (PTE2) page mappings have identical settings for the following fields:
183 */
184#define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
185			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
186			 PTE2_ATTR_MASK)
187
188#define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
189			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
190			 PTE1_ATTR_MASK)
191
192#define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
193				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
194				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
195				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
196				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
197				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
198				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
199				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
200				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
201				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
202				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
203
204#define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
205				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
206				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
207				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
208				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
209				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
210				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
211				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
212				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
213				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
214				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
215
216/*
217 *  PTE2 descriptors creation macros.
218 */
219#define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
220#define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
221
222#define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223#define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224
225#define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
226#define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
227
228#define PV_STATS
229#ifdef PV_STATS
230#define PV_STAT(x)	do { x ; } while (0)
231#else
232#define PV_STAT(x)	do { } while (0)
233#endif
234
235/*
236 *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
237 *  We can init many things with no memory allocation thanks to its static
238 *  allocation and this brings two main advantages:
239 *  (1) other cores can be started very simply,
240 *  (2) various boot loaders can be supported as its arguments can be processed
241 *      in virtual address space and can be moved to safe location before
242 *      first allocation happened.
243 *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
244 *  However, the table is uninitialized and so lays in bss. Therefore kernel
245 *  image size is not influenced.
246 *
247 *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
248 *       CPU suspend/resume game.
249 */
250extern pt1_entry_t boot_pt1[];
251
252vm_paddr_t base_pt1;
253pt1_entry_t *kern_pt1;
254pt2_entry_t *kern_pt2tab;
255pt2_entry_t *PT2MAP;
256
257static uint32_t ttb_flags;
258static vm_memattr_t pt_memattr;
259ttb_entry_t pmap_kern_ttb;
260
261struct pmap kernel_pmap_store;
262LIST_HEAD(pmaplist, pmap);
263static struct pmaplist allpmaps;
264static struct mtx allpmaps_lock;
265
266vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
267vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
268
269static vm_offset_t kernel_vm_end_new;
270vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
271vm_offset_t vm_max_kernel_address;
272vm_paddr_t kernel_l1pa;
273
274static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
275
276/*
277 *  Data for the pv entry allocation mechanism
278 */
279static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
281static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
282static int shpgperproc = PMAP_SHPGPERPROC;
283
284struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
285int pv_maxchunks;			/* How many chunks we have KVA for */
286vm_offset_t pv_vafree;			/* freelist stored in the PTE */
287
288vm_paddr_t first_managed_pa;
289#define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
290
291/*
292 *  All those kernel PT submaps that BSD is so fond of
293 */
294static pt2_entry_t *CMAP3;
295static caddr_t CADDR3;
296caddr_t _tmppt = 0;
297
298struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
299
300/*
301 *  Crashdump maps.
302 */
303static caddr_t crashdumpmap;
304
305static pt2_entry_t *PMAP1 = NULL, *PMAP2;
306static pt2_entry_t *PADDR1 = NULL, *PADDR2;
307#ifdef DDB
308static pt2_entry_t *PMAP3;
309static pt2_entry_t *PADDR3;
310static int PMAP3cpu __unused; /* for SMP only */
311#endif
312#ifdef SMP
313static int PMAP1cpu;
314static int PMAP1changedcpu;
315SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
316    &PMAP1changedcpu, 0,
317    "Number of times pmap_pte2_quick changed CPU with same PMAP1");
318#endif
319static int PMAP1changed;
320SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
321    &PMAP1changed, 0,
322    "Number of times pmap_pte2_quick changed PMAP1");
323static int PMAP1unchanged;
324SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
325    &PMAP1unchanged, 0,
326    "Number of times pmap_pte2_quick didn't change PMAP1");
327static struct mtx PMAP2mutex;
328
329static __inline void pt2_wirecount_init(vm_page_t m);
330static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
331    vm_offset_t va);
332void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
333
334/*
335 *  Function to set the debug level of the pmap code.
336 */
337#ifdef PMAP_DEBUG
338void
339pmap_debug(int level)
340{
341
342	pmap_debug_level = level;
343	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
344}
345#endif /* PMAP_DEBUG */
346
347/*
348 *  This table must corespond with memory attribute configuration in vm.h.
349 *  First entry is used for normal system mapping.
350 *
351 *  Device memory is always marked as shared.
352 *  Normal memory is shared only in SMP .
353 *  Not outer shareable bits are not used yet.
354 *  Class 6 cannot be used on ARM11.
355 */
356#define TEXDEF_TYPE_SHIFT	0
357#define TEXDEF_TYPE_MASK	0x3
358#define TEXDEF_INNER_SHIFT	2
359#define TEXDEF_INNER_MASK	0x3
360#define TEXDEF_OUTER_SHIFT	4
361#define TEXDEF_OUTER_MASK	0x3
362#define TEXDEF_NOS_SHIFT	6
363#define TEXDEF_NOS_MASK		0x1
364
365#define TEX(t, i, o, s) 			\
366		((t) << TEXDEF_TYPE_SHIFT) |	\
367		((i) << TEXDEF_INNER_SHIFT) |	\
368		((o) << TEXDEF_OUTER_SHIFT | 	\
369		((s) << TEXDEF_NOS_SHIFT))
370
371static uint32_t tex_class[8] = {
372/*	    type      inner cache outer cache */
373	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
374	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
375	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
376	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
377	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
378	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
379	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
380	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
381};
382#undef TEX
383
384static uint32_t pte2_attr_tab[8] = {
385	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
386	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
387	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
388	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
389	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
390	0,			/* 5 - NOT USED YET */
391	0,			/* 6 - NOT USED YET */
392	0			/* 7 - NOT USED YET */
393};
394CTASSERT(VM_MEMATTR_WB_WA == 0);
395CTASSERT(VM_MEMATTR_NOCACHE == 1);
396CTASSERT(VM_MEMATTR_DEVICE == 2);
397CTASSERT(VM_MEMATTR_SO == 3);
398CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
399
400static inline uint32_t
401vm_memattr_to_pte2(vm_memattr_t ma)
402{
403
404	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
405	return (pte2_attr_tab[(u_int)ma]);
406}
407
408static inline uint32_t
409vm_page_pte2_attr(vm_page_t m)
410{
411
412	return (vm_memattr_to_pte2(m->md.pat_mode));
413}
414
415/*
416 * Convert TEX definition entry to TTB flags.
417 */
418static uint32_t
419encode_ttb_flags(int idx)
420{
421	uint32_t inner, outer, nos, reg;
422
423	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
424		TEXDEF_INNER_MASK;
425	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
426		TEXDEF_OUTER_MASK;
427	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
428		TEXDEF_NOS_MASK;
429
430	reg = nos << 5;
431	reg |= outer << 3;
432	if (cpuinfo.coherent_walk)
433		reg |= (inner & 0x1) << 6;
434	reg |= (inner & 0x2) >> 1;
435#ifdef SMP
436	reg |= 1 << 1;
437#endif
438	return reg;
439}
440
441/*
442 *  Set TEX remapping registers in current CPU.
443 */
444void
445pmap_set_tex(void)
446{
447	uint32_t prrr, nmrr;
448	uint32_t type, inner, outer, nos;
449	int i;
450
451#ifdef PMAP_PTE_NOCACHE
452	/* XXX fixme */
453	if (cpuinfo.coherent_walk) {
454		pt_memattr = VM_MEMATTR_WB_WA;
455		ttb_flags = encode_ttb_flags(0);
456	}
457	else {
458		pt_memattr = VM_MEMATTR_NOCACHE;
459		ttb_flags = encode_ttb_flags(1);
460	}
461#else
462	pt_memattr = VM_MEMATTR_WB_WA;
463	ttb_flags = encode_ttb_flags(0);
464#endif
465
466	prrr = 0;
467	nmrr = 0;
468
469	/* Build remapping register from TEX classes. */
470	for (i = 0; i < 8; i++) {
471		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
472			TEXDEF_TYPE_MASK;
473		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
474			TEXDEF_INNER_MASK;
475		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
476			TEXDEF_OUTER_MASK;
477		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
478			TEXDEF_NOS_MASK;
479
480		prrr |= type  << (i * 2);
481		prrr |= nos   << (i + 24);
482		nmrr |= inner << (i * 2);
483		nmrr |= outer << (i * 2 + 16);
484	}
485	/* Add shareable bits for device memory. */
486	prrr |= PRRR_DS0 | PRRR_DS1;
487
488	/* Add shareable bits for normal memory in SMP case. */
489#ifdef SMP
490	prrr |= PRRR_NS1;
491#endif
492	cp15_prrr_set(prrr);
493	cp15_nmrr_set(nmrr);
494
495	/* Caches are disabled, so full TLB flush should be enough. */
496	tlb_flush_all_local();
497}
498
499/*
500 * Remap one vm_meattr class to another one. This can be useful as
501 * workaround for SOC errata, e.g. if devices must be accessed using
502 * SO memory class.
503 *
504 * !!! Please note that this function is absolutely last resort thing.
505 * It should not be used under normal circumstances. !!!
506 *
507 * Usage rules:
508 * - it shall be called after pmap_bootstrap_prepare() and before
509 *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
510 *   to be called from platform_attach() or platform_late_init().
511 *
512 * - if remapping doesn't change caching mode, or until uncached class
513 *   is remapped to any kind of cached one, then no other restriction exists.
514 *
515 * - if pmap_remap_vm_attr() changes caching mode, but both (original and
516 *   remapped) remain cached, then caller is resposible for calling
517 *   of dcache_wbinv_poc_all().
518 *
519 * - remapping of any kind of cached class to uncached is not permitted.
520 */
521void
522pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
523{
524	int old_idx, new_idx;
525
526	/* Map VM memattrs to indexes to tex_class table. */
527	old_idx = pte2_attr_tab[(int)old_attr];
528	new_idx = pte2_attr_tab[(int)new_attr];
529
530	/* Replace TEX attribute and apply it. */
531	tex_class[old_idx] = tex_class[new_idx];
532	pmap_set_tex();
533}
534
535/*
536 * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
537 * KERNBASE is mapped by first L2 page table in L2 page table page. It
538 * meets same constrain due to PT2MAP being placed just under KERNBASE.
539 */
540CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
541CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
542
543/*
544 *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
545 *  For now, anyhow, the following check must be fulfilled.
546 */
547CTASSERT(PAGE_SIZE == PTE2_SIZE);
548/*
549 *  We don't want to mess up MI code with all MMU and PMAP definitions,
550 *  so some things, which depend on other ones, are defined independently.
551 *  Now, it is time to check that we don't screw up something.
552 */
553CTASSERT(PDRSHIFT == PTE1_SHIFT);
554/*
555 *  Check L1 and L2 page table entries definitions consistency.
556 */
557CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
558CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
559/*
560 *  Check L2 page tables page consistency.
561 */
562CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
563CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
564/*
565 *  Check PT2TAB consistency.
566 *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
567 *  This should be done without remainder.
568 */
569CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
570
571/*
572 *	A PT2MAP magic.
573 *
574 *  All level 2 page tables (PT2s) are mapped continuously and accordingly
575 *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
576 *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
577 *  must be used together, but not necessary at once. The first PT2 in a page
578 *  must map things on correctly aligned address and the others must follow
579 *  in right order.
580 */
581#define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
582#define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
583#define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
584
585/*
586 *  Check PT2TAB consistency.
587 *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
588 *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
589 *  The both should be done without remainder.
590 */
591CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
592CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
593/*
594 *  The implementation was made general, however, with the assumption
595 *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
596 *  the code should be once more rechecked.
597 */
598CTASSERT(NPG_IN_PT2TAB == 1);
599
600/*
601 *  Get offset of PT2 in a page
602 *  associated with given PT1 index.
603 */
604static __inline u_int
605page_pt2off(u_int pt1_idx)
606{
607
608	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
609}
610
611/*
612 *  Get physical address of PT2
613 *  associated with given PT2s page and PT1 index.
614 */
615static __inline vm_paddr_t
616page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
617{
618
619	return (pgpa + page_pt2off(pt1_idx));
620}
621
622/*
623 *  Get first entry of PT2
624 *  associated with given PT2s page and PT1 index.
625 */
626static __inline pt2_entry_t *
627page_pt2(vm_offset_t pgva, u_int pt1_idx)
628{
629
630	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
631}
632
633/*
634 *  Get virtual address of PT2s page (mapped in PT2MAP)
635 *  which holds PT2 which holds entry which maps given virtual address.
636 */
637static __inline vm_offset_t
638pt2map_pt2pg(vm_offset_t va)
639{
640
641	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
642	return ((vm_offset_t)pt2map_entry(va));
643}
644
645/*****************************************************************************
646 *
647 *     THREE pmap initialization milestones exist:
648 *
649 *  locore.S
650 *    -> fundamental init (including MMU) in ASM
651 *
652 *  initarm()
653 *    -> fundamental init continues in C
654 *    -> first available physical address is known
655 *
656 *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
657 *      -> basic (safe) interface for physical address allocation is made
658 *      -> basic (safe) interface for virtual mapping is made
659 *      -> limited not SMP coherent work is possible
660 *
661 *    -> more fundamental init continues in C
662 *    -> locks and some more things are available
663 *    -> all fundamental allocations and mappings are done
664 *
665 *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
666 *      -> phys_avail[] and virtual_avail is set
667 *      -> control is passed to vm subsystem
668 *      -> physical and virtual address allocation are off limit
669 *      -> low level mapping functions, some SMP coherent,
670 *         are available, which cannot be used before vm subsystem
671 *         is being inited
672 *
673 *  mi_startup()
674 *    -> vm subsystem is being inited
675 *
676 *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
677 *        -> pmap is fully inited
678 *
679 *****************************************************************************/
680
681/*****************************************************************************
682 *
683 *	PMAP first stage initialization and utility functions
684 *	for pre-bootstrap epoch.
685 *
686 *  After pmap_bootstrap_prepare() is called, the following functions
687 *  can be used:
688 *
689 *  (1) strictly only for this stage functions for physical page allocations,
690 *      virtual space allocations, and mappings:
691 *
692 *  vm_paddr_t pmap_preboot_get_pages(u_int num);
693 *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
694 *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
695 *  vm_offset_t pmap_preboot_get_vpages(u_int num);
696 *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
697 *      vm_prot_t prot, vm_memattr_t attr);
698 *
699 *  (2) for all stages:
700 *
701 *  vm_paddr_t pmap_kextract(vm_offset_t va);
702 *
703 *  NOTE: This is not SMP coherent stage.
704 *
705 *****************************************************************************/
706
707#define KERNEL_P2V(pa) \
708    ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
709#define KERNEL_V2P(va) \
710    ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
711
712static vm_paddr_t last_paddr;
713
714/*
715 *  Pre-bootstrap epoch page allocator.
716 */
717vm_paddr_t
718pmap_preboot_get_pages(u_int num)
719{
720	vm_paddr_t ret;
721
722	ret = last_paddr;
723	last_paddr += num * PAGE_SIZE;
724
725	return (ret);
726}
727
728/*
729 *	The fundamental initialization of PMAP stuff.
730 *
731 *  Some things already happened in locore.S and some things could happen
732 *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
733 *  1. Caches are disabled.
734 *  2. We are running on virtual addresses already with 'boot_pt1'
735 *     as L1 page table.
736 *  3. So far, all virtual addresses can be converted to physical ones and
737 *     vice versa by the following macros:
738 *       KERNEL_P2V(pa) .... physical to virtual ones,
739 *       KERNEL_V2P(va) .... virtual to physical ones.
740 *
741 *  What is done herein:
742 *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
743 *  2. PT2MAP magic is brought to live.
744 *  3. Basic preboot functions for page allocations and mappings can be used.
745 *  4. Everything is prepared for L1 cache enabling.
746 *
747 *  Variations:
748 *  1. To use second TTB register, so kernel and users page tables will be
749 *     separated. This way process forking - pmap_pinit() - could be faster,
750 *     it saves physical pages and KVA per a process, and it's simple change.
751 *     However, it will lead, due to hardware matter, to the following:
752 *     (a) 2G space for kernel and 2G space for users.
753 *     (b) 1G space for kernel in low addresses and 3G for users above it.
754 *     A question is: Is the case (b) really an option? Note that case (b)
755 *     does save neither physical memory and KVA.
756 */
757void
758pmap_bootstrap_prepare(vm_paddr_t last)
759{
760	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
761	vm_offset_t pt2pg_va;
762	pt1_entry_t *pte1p;
763	pt2_entry_t *pte2p;
764	u_int i;
765	uint32_t actlr_mask, actlr_set, l1_attr;
766
767	/*
768	 * Now, we are going to make real kernel mapping. Note that we are
769	 * already running on some mapping made in locore.S and we expect
770	 * that it's large enough to ensure nofault access to physical memory
771	 * allocated herein before switch.
772	 *
773	 * As kernel image and everything needed before are and will be mapped
774	 * by section mappings, we align last physical address to PTE1_SIZE.
775	 */
776	last_paddr = pte1_roundup(last);
777
778	/*
779	 * Allocate and zero page(s) for kernel L1 page table.
780	 *
781	 * Note that it's first allocation on space which was PTE1_SIZE
782	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
783	 */
784	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
785	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
786	bzero((void*)kern_pt1, NB_IN_PT1);
787	pte1_sync_range(kern_pt1, NB_IN_PT1);
788
789	/* Allocate and zero page(s) for kernel PT2TAB. */
790	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
791	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
792	bzero(kern_pt2tab, NB_IN_PT2TAB);
793	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
794
795	/* Allocate and zero page(s) for kernel L2 page tables. */
796	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
797	pt2pg_va = KERNEL_P2V(pt2pg_pa);
798	size = NKPT2PG * PAGE_SIZE;
799	bzero((void*)pt2pg_va, size);
800	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
801
802	/*
803	 * Add a physical memory segment (vm_phys_seg) corresponding to the
804	 * preallocated pages for kernel L2 page tables so that vm_page
805	 * structures representing these pages will be created. The vm_page
806	 * structures are required for promotion of the corresponding kernel
807	 * virtual addresses to section mappings.
808	 */
809	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
810
811	/*
812	 * Insert allocated L2 page table pages to PT2TAB and make
813	 * link to all PT2s in L1 page table. See how kernel_vm_end
814	 * is initialized.
815	 *
816	 * We play simple and safe. So every KVA will have underlaying
817	 * L2 page table, even kernel image mapped by sections.
818	 */
819	pte2p = kern_pt2tab_entry(KERNBASE);
820	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
821		pt2tab_store(pte2p++, PTE2_KPT(pa));
822
823	pte1p = kern_pte1(KERNBASE);
824	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
825		pte1_store(pte1p++, PTE1_LINK(pa));
826
827	/* Make section mappings for kernel. */
828	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
829	pte1p = kern_pte1(KERNBASE);
830	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
831		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
832
833	/*
834	 * Get free and aligned space for PT2MAP and make L1 page table links
835	 * to L2 page tables held in PT2TAB.
836	 *
837	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
838	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
839	 * each entry in PT2TAB maps all PT2s in a page. This implies that
840	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
841	 */
842	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
843	pte1p = kern_pte1((vm_offset_t)PT2MAP);
844	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
845		pte1_store(pte1p++, PTE1_LINK(pa));
846	}
847
848	/*
849	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
850	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
851	 */
852	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
853	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
854		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
855	}
856
857	/*
858	 * Choose correct L2 page table and make mappings for allocations
859	 * made herein which replaces temporary locore.S mappings after a while.
860	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
861	 *
862	 * Note, that these allocations started aligned on 1M section and
863	 * kernel PT1 was allocated first. Making of mappings must follow
864	 * order of physical allocations as we've used KERNEL_P2V() macro
865	 * for virtual addresses resolution.
866	 */
867	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
868	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
869
870	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
871
872	/* Make mapping for kernel L1 page table. */
873	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
874		pte2_store(pte2p++, PTE2_KPT(pa));
875
876	/* Make mapping for kernel PT2TAB. */
877	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
878		pte2_store(pte2p++, PTE2_KPT(pa));
879
880	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
881	pmap_kern_ttb = base_pt1 | ttb_flags;
882	cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
883	reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
884	/*
885	 * Initialize the first available KVA. As kernel image is mapped by
886	 * sections, we are leaving some gap behind.
887	 */
888	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
889}
890
891/*
892 *  Setup L2 page table page for given KVA.
893 *  Used in pre-bootstrap epoch.
894 *
895 *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
896 *  and used them for mapping KVA starting from KERNBASE. However, this is not
897 *  enough. Vectors and devices need L2 page tables too. Note that they are
898 *  even above VM_MAX_KERNEL_ADDRESS.
899 */
900static __inline vm_paddr_t
901pmap_preboot_pt2pg_setup(vm_offset_t va)
902{
903	pt2_entry_t *pte2p, pte2;
904	vm_paddr_t pt2pg_pa;
905
906	/* Get associated entry in PT2TAB. */
907	pte2p = kern_pt2tab_entry(va);
908
909	/* Just return, if PT2s page exists already. */
910	pte2 = pt2tab_load(pte2p);
911	if (pte2_is_valid(pte2))
912		return (pte2_pa(pte2));
913
914	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
915	    ("%s: NKPT2PG too small", __func__));
916
917	/*
918	 * Allocate page for PT2s and insert it to PT2TAB.
919	 * In other words, map it into PT2MAP space.
920	 */
921	pt2pg_pa = pmap_preboot_get_pages(1);
922	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
923
924	/* Zero all PT2s in allocated page. */
925	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
926	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
927
928	return (pt2pg_pa);
929}
930
931/*
932 *  Setup L2 page table for given KVA.
933 *  Used in pre-bootstrap epoch.
934 */
935static void
936pmap_preboot_pt2_setup(vm_offset_t va)
937{
938	pt1_entry_t *pte1p;
939	vm_paddr_t pt2pg_pa, pt2_pa;
940
941	/* Setup PT2's page. */
942	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
943	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
944
945	/* Insert PT2 to PT1. */
946	pte1p = kern_pte1(va);
947	pte1_store(pte1p, PTE1_LINK(pt2_pa));
948}
949
950/*
951 *  Get L2 page entry associated with given KVA.
952 *  Used in pre-bootstrap epoch.
953 */
954static __inline pt2_entry_t*
955pmap_preboot_vtopte2(vm_offset_t va)
956{
957	pt1_entry_t *pte1p;
958
959	/* Setup PT2 if needed. */
960	pte1p = kern_pte1(va);
961	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
962		pmap_preboot_pt2_setup(va);
963
964	return (pt2map_entry(va));
965}
966
967/*
968 *  Pre-bootstrap epoch page(s) mapping(s).
969 */
970void
971pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
972{
973	u_int i;
974	pt2_entry_t *pte2p;
975
976	/* Map all the pages. */
977	for (i = 0; i < num; i++) {
978		pte2p = pmap_preboot_vtopte2(va);
979		pte2_store(pte2p, PTE2_KRW(pa));
980		va += PAGE_SIZE;
981		pa += PAGE_SIZE;
982	}
983}
984
985/*
986 *  Pre-bootstrap epoch virtual space alocator.
987 */
988vm_offset_t
989pmap_preboot_reserve_pages(u_int num)
990{
991	u_int i;
992	vm_offset_t start, va;
993	pt2_entry_t *pte2p;
994
995	/* Allocate virtual space. */
996	start = va = virtual_avail;
997	virtual_avail += num * PAGE_SIZE;
998
999	/* Zero the mapping. */
1000	for (i = 0; i < num; i++) {
1001		pte2p = pmap_preboot_vtopte2(va);
1002		pte2_store(pte2p, 0);
1003		va += PAGE_SIZE;
1004	}
1005
1006	return (start);
1007}
1008
1009/*
1010 *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1011 */
1012vm_offset_t
1013pmap_preboot_get_vpages(u_int num)
1014{
1015	vm_paddr_t  pa;
1016	vm_offset_t va;
1017
1018	/* Allocate physical page(s). */
1019	pa = pmap_preboot_get_pages(num);
1020
1021	/* Allocate virtual space. */
1022	va = virtual_avail;
1023	virtual_avail += num * PAGE_SIZE;
1024
1025	/* Map and zero all. */
1026	pmap_preboot_map_pages(pa, va, num);
1027	bzero((void *)va, num * PAGE_SIZE);
1028
1029	return (va);
1030}
1031
1032/*
1033 *  Pre-bootstrap epoch page mapping(s) with attributes.
1034 */
1035void
1036pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1037    vm_prot_t prot, vm_memattr_t attr)
1038{
1039	u_int num;
1040	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1041	pt1_entry_t *pte1p;
1042	pt2_entry_t *pte2p;
1043
1044	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1045	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1046	l2_attr = vm_memattr_to_pte2(attr);
1047	l1_prot = ATTR_TO_L1(l2_prot);
1048	l1_attr = ATTR_TO_L1(l2_attr);
1049
1050	/* Map all the pages. */
1051	num = round_page(size);
1052	while (num > 0) {
1053		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1054			pte1p = kern_pte1(va);
1055			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1056			va += PTE1_SIZE;
1057			pa += PTE1_SIZE;
1058			num -= PTE1_SIZE;
1059		} else {
1060			pte2p = pmap_preboot_vtopte2(va);
1061			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1062			va += PAGE_SIZE;
1063			pa += PAGE_SIZE;
1064			num -= PAGE_SIZE;
1065		}
1066	}
1067}
1068
1069/*
1070 *  Extract from the kernel page table the physical address
1071 *  that is mapped by the given virtual address "va".
1072 */
1073vm_paddr_t
1074pmap_kextract(vm_offset_t va)
1075{
1076	vm_paddr_t pa;
1077	pt1_entry_t pte1;
1078	pt2_entry_t pte2;
1079
1080	pte1 = pte1_load(kern_pte1(va));
1081	if (pte1_is_section(pte1)) {
1082		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1083	} else if (pte1_is_link(pte1)) {
1084		/*
1085		 * We should beware of concurrent promotion that changes
1086		 * pte1 at this point. However, it's not a problem as PT2
1087		 * page is preserved by promotion in PT2TAB. So even if
1088		 * it happens, using of PT2MAP is still safe.
1089		 *
1090		 * QQQ: However, concurrent removing is a problem which
1091		 *      ends in abort on PT2MAP space. Locking must be used
1092		 *      to deal with this.
1093		 */
1094		pte2 = pte2_load(pt2map_entry(va));
1095		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1096	}
1097	else {
1098		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1099	}
1100	return (pa);
1101}
1102
1103/*
1104 *  Extract from the kernel page table the physical address
1105 *  that is mapped by the given virtual address "va". Also
1106 *  return L2 page table entry which maps the address.
1107 *
1108 *  This is only intended to be used for panic dumps.
1109 */
1110vm_paddr_t
1111pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1112{
1113	vm_paddr_t pa;
1114	pt1_entry_t pte1;
1115	pt2_entry_t pte2;
1116
1117	pte1 = pte1_load(kern_pte1(va));
1118	if (pte1_is_section(pte1)) {
1119		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1120		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1121	} else if (pte1_is_link(pte1)) {
1122		pte2 = pte2_load(pt2map_entry(va));
1123		pa = pte2_pa(pte2);
1124	} else {
1125		pte2 = 0;
1126		pa = 0;
1127	}
1128	if (pte2p != NULL)
1129		*pte2p = pte2;
1130	return (pa);
1131}
1132
1133/*****************************************************************************
1134 *
1135 *	PMAP second stage initialization and utility functions
1136 *	for bootstrap epoch.
1137 *
1138 *  After pmap_bootstrap() is called, the following functions for
1139 *  mappings can be used:
1140 *
1141 *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1142 *  void pmap_kremove(vm_offset_t va);
1143 *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1144 *      int prot);
1145 *
1146 *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1147 *        allowed during this stage.
1148 *
1149 *****************************************************************************/
1150
1151/*
1152 *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1153 *  reserve various virtual spaces for temporary mappings.
1154 */
1155void
1156pmap_bootstrap(vm_offset_t firstaddr)
1157{
1158	pt2_entry_t *unused __unused;
1159	struct pcpu *pc;
1160
1161	/*
1162	 * Initialize the kernel pmap (which is statically allocated).
1163	 */
1164	PMAP_LOCK_INIT(kernel_pmap);
1165	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1166	kernel_pmap->pm_pt1 = kern_pt1;
1167	kernel_pmap->pm_pt2tab = kern_pt2tab;
1168	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1169	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1170
1171	/*
1172	 * Initialize the global pv list lock.
1173	 */
1174	rw_init(&pvh_global_lock, "pmap pv global");
1175
1176	LIST_INIT(&allpmaps);
1177
1178	/*
1179	 * Request a spin mutex so that changes to allpmaps cannot be
1180	 * preempted by smp_rendezvous_cpus().
1181	 */
1182	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1183	mtx_lock_spin(&allpmaps_lock);
1184	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1185	mtx_unlock_spin(&allpmaps_lock);
1186
1187	/*
1188	 * Reserve some special page table entries/VA space for temporary
1189	 * mapping of pages.
1190	 */
1191#define	SYSMAP(c, p, v, n)  do {		\
1192	v = (c)pmap_preboot_reserve_pages(n);	\
1193	p = pt2map_entry((vm_offset_t)v);	\
1194	} while (0)
1195
1196	/*
1197	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1198	 * Local CMAP2 is also used for data cache cleaning.
1199	 * Global CMAP3 is used for the idle process page zeroing.
1200	 */
1201	pc = get_pcpu();
1202	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1203	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1204	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1205	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1206	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
1207
1208	/*
1209	 * Crashdump maps.
1210	 */
1211	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1212
1213	/*
1214	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1215	 */
1216	SYSMAP(caddr_t, unused, _tmppt, 1);
1217
1218	/*
1219	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1220	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1221	 */
1222	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1223	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1224#ifdef DDB
1225	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1226#endif
1227	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1228
1229	/*
1230	 * Note that in very short time in initarm(), we are going to
1231	 * initialize phys_avail[] array and no further page allocation
1232	 * can happen after that until vm subsystem will be initialized.
1233	 */
1234	kernel_vm_end_new = kernel_vm_end;
1235	virtual_end = vm_max_kernel_address;
1236}
1237
1238static void
1239pmap_init_reserved_pages(void)
1240{
1241	struct pcpu *pc;
1242	vm_offset_t pages;
1243	int i;
1244
1245	CPU_FOREACH(i) {
1246		pc = pcpu_find(i);
1247		/*
1248		 * Skip if the mapping has already been initialized,
1249		 * i.e. this is the BSP.
1250		 */
1251		if (pc->pc_cmap1_addr != 0)
1252			continue;
1253		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1254		pages = kva_alloc(PAGE_SIZE * 3);
1255		if (pages == 0)
1256			panic("%s: unable to allocate KVA", __func__);
1257		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1258		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1259		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1260		pc->pc_cmap1_addr = (caddr_t)pages;
1261		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1262		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1263	}
1264}
1265SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1266
1267/*
1268 *  The function can already be use in second initialization stage.
1269 *  As such, the function DOES NOT call pmap_growkernel() where PT2
1270 *  allocation can happen. So if used, be sure that PT2 for given
1271 *  virtual address is allocated already!
1272 *
1273 *  Add a wired page to the kva.
1274 *  Note: not SMP coherent.
1275 */
1276static __inline void
1277pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1278    uint32_t attr)
1279{
1280	pt1_entry_t *pte1p;
1281	pt2_entry_t *pte2p;
1282
1283	pte1p = kern_pte1(va);
1284	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1285		/*
1286		 * This is a very low level function, so PT2 and particularly
1287		 * PT2PG associated with given virtual address must be already
1288		 * allocated. It's a pain mainly during pmap initialization
1289		 * stage. However, called after pmap initialization with
1290		 * virtual address not under kernel_vm_end will lead to
1291		 * the same misery.
1292		 */
1293		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1294			panic("%s: kernel PT2 not allocated!", __func__);
1295	}
1296
1297	pte2p = pt2map_entry(va);
1298	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1299}
1300
1301PMAP_INLINE void
1302pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1303{
1304
1305	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1306}
1307
1308/*
1309 *  Remove a page from the kernel pagetables.
1310 *  Note: not SMP coherent.
1311 */
1312PMAP_INLINE void
1313pmap_kremove(vm_offset_t va)
1314{
1315	pt1_entry_t *pte1p;
1316	pt2_entry_t *pte2p;
1317
1318	pte1p = kern_pte1(va);
1319	if (pte1_is_section(pte1_load(pte1p))) {
1320		pte1_clear(pte1p);
1321	} else {
1322		pte2p = pt2map_entry(va);
1323		pte2_clear(pte2p);
1324	}
1325}
1326
1327/*
1328 *  Share new kernel PT2PG with all pmaps.
1329 *  The caller is responsible for maintaining TLB consistency.
1330 */
1331static void
1332pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1333{
1334	pmap_t pmap;
1335	pt2_entry_t *pte2p;
1336
1337	mtx_lock_spin(&allpmaps_lock);
1338	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1339		pte2p = pmap_pt2tab_entry(pmap, va);
1340		pt2tab_store(pte2p, npte2);
1341	}
1342	mtx_unlock_spin(&allpmaps_lock);
1343}
1344
1345/*
1346 *  Share new kernel PTE1 with all pmaps.
1347 *  The caller is responsible for maintaining TLB consistency.
1348 */
1349static void
1350pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1351{
1352	pmap_t pmap;
1353	pt1_entry_t *pte1p;
1354
1355	mtx_lock_spin(&allpmaps_lock);
1356	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1357		pte1p = pmap_pte1(pmap, va);
1358		pte1_store(pte1p, npte1);
1359	}
1360	mtx_unlock_spin(&allpmaps_lock);
1361}
1362
1363/*
1364 *  Used to map a range of physical addresses into kernel
1365 *  virtual address space.
1366 *
1367 *  The value passed in '*virt' is a suggested virtual address for
1368 *  the mapping. Architectures which can support a direct-mapped
1369 *  physical to virtual region can return the appropriate address
1370 *  within that region, leaving '*virt' unchanged. Other
1371 *  architectures should map the pages starting at '*virt' and
1372 *  update '*virt' with the first usable address after the mapped
1373 *  region.
1374 *
1375 *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1376 *        the function is used herein!
1377 */
1378vm_offset_t
1379pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1380{
1381	vm_offset_t va, sva;
1382	vm_paddr_t pte1_offset;
1383	pt1_entry_t npte1;
1384	uint32_t l1prot, l2prot;
1385	uint32_t l1attr, l2attr;
1386
1387	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1388	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1389
1390	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1391	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1392	l1prot = ATTR_TO_L1(l2prot);
1393
1394	l2attr = PTE2_ATTR_DEFAULT;
1395	l1attr = ATTR_TO_L1(l2attr);
1396
1397	va = *virt;
1398	/*
1399	 * Does the physical address range's size and alignment permit at
1400	 * least one section mapping to be created?
1401	 */
1402	pte1_offset = start & PTE1_OFFSET;
1403	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1404	    PTE1_SIZE) {
1405		/*
1406		 * Increase the starting virtual address so that its alignment
1407		 * does not preclude the use of section mappings.
1408		 */
1409		if ((va & PTE1_OFFSET) < pte1_offset)
1410			va = pte1_trunc(va) + pte1_offset;
1411		else if ((va & PTE1_OFFSET) > pte1_offset)
1412			va = pte1_roundup(va) + pte1_offset;
1413	}
1414	sva = va;
1415	while (start < end) {
1416		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1417			KASSERT((va & PTE1_OFFSET) == 0,
1418			    ("%s: misaligned va %#x", __func__, va));
1419			npte1 = PTE1_KERN(start, l1prot, l1attr);
1420			pmap_kenter_pte1(va, npte1);
1421			va += PTE1_SIZE;
1422			start += PTE1_SIZE;
1423		} else {
1424			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1425			va += PAGE_SIZE;
1426			start += PAGE_SIZE;
1427		}
1428	}
1429	tlb_flush_range(sva, va - sva);
1430	*virt = va;
1431	return (sva);
1432}
1433
1434/*
1435 *  Make a temporary mapping for a physical address.
1436 *  This is only intended to be used for panic dumps.
1437 */
1438void *
1439pmap_kenter_temporary(vm_paddr_t pa, int i)
1440{
1441	vm_offset_t va;
1442
1443	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1444
1445	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1446	pmap_kenter(va, pa);
1447	tlb_flush_local(va);
1448	return ((void *)crashdumpmap);
1449}
1450
1451
1452/*************************************
1453 *
1454 *  TLB & cache maintenance routines.
1455 *
1456 *************************************/
1457
1458/*
1459 *  We inline these within pmap.c for speed.
1460 */
1461PMAP_INLINE void
1462pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1463{
1464
1465	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1466		tlb_flush(va);
1467}
1468
1469PMAP_INLINE void
1470pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1471{
1472
1473	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1474		tlb_flush_range(sva, size);
1475}
1476
1477/*
1478 *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1479 *  Requirements:
1480 *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1481 *     are ever set, PTE2_V in particular.
1482 *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1483 *   - Assumes nothing will ever test these addresses for 0 to indicate
1484 *     no mapping instead of correctly checking PTE2_V.
1485 *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1486 *  Because PTE2_V is never set, there can be no mappings to invalidate.
1487 */
1488static vm_offset_t
1489pmap_pte2list_alloc(vm_offset_t *head)
1490{
1491	pt2_entry_t *pte2p;
1492	vm_offset_t va;
1493
1494	va = *head;
1495	if (va == 0)
1496		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1497	pte2p = pt2map_entry(va);
1498	*head = *pte2p;
1499	if (*head & PTE2_V)
1500		panic("%s: va with PTE2_V set!", __func__);
1501	*pte2p = 0;
1502	return (va);
1503}
1504
1505static void
1506pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1507{
1508	pt2_entry_t *pte2p;
1509
1510	if (va & PTE2_V)
1511		panic("%s: freeing va with PTE2_V set!", __func__);
1512	pte2p = pt2map_entry(va);
1513	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1514	*head = va;
1515}
1516
1517static void
1518pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1519{
1520	int i;
1521	vm_offset_t va;
1522
1523	*head = 0;
1524	for (i = npages - 1; i >= 0; i--) {
1525		va = (vm_offset_t)base + i * PAGE_SIZE;
1526		pmap_pte2list_free(head, va);
1527	}
1528}
1529
1530/*****************************************************************************
1531 *
1532 *	PMAP third and final stage initialization.
1533 *
1534 *  After pmap_init() is called, PMAP subsystem is fully initialized.
1535 *
1536 *****************************************************************************/
1537
1538SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1539
1540SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1541    "Max number of PV entries");
1542SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1543    "Page share factor per proc");
1544
1545static u_long nkpt2pg = NKPT2PG;
1546SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1547    &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1548
1549static int sp_enabled = 1;
1550SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1551    &sp_enabled, 0, "Are large page mappings enabled?");
1552
1553static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1554    "1MB page mapping counters");
1555
1556static u_long pmap_pte1_demotions;
1557SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1558    &pmap_pte1_demotions, 0, "1MB page demotions");
1559
1560static u_long pmap_pte1_mappings;
1561SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1562    &pmap_pte1_mappings, 0, "1MB page mappings");
1563
1564static u_long pmap_pte1_p_failures;
1565SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1566    &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1567
1568static u_long pmap_pte1_promotions;
1569SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1570    &pmap_pte1_promotions, 0, "1MB page promotions");
1571
1572static u_long pmap_pte1_kern_demotions;
1573SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1574    &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1575
1576static u_long pmap_pte1_kern_promotions;
1577SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1578    &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1579
1580static __inline ttb_entry_t
1581pmap_ttb_get(pmap_t pmap)
1582{
1583
1584	return (vtophys(pmap->pm_pt1) | ttb_flags);
1585}
1586
1587/*
1588 *  Initialize a vm_page's machine-dependent fields.
1589 *
1590 *  Variations:
1591 *  1. Pages for L2 page tables are always not managed. So, pv_list and
1592 *     pt2_wirecount can share same physical space. However, proper
1593 *     initialization on a page alloc for page tables and reinitialization
1594 *     on the page free must be ensured.
1595 */
1596void
1597pmap_page_init(vm_page_t m)
1598{
1599
1600	TAILQ_INIT(&m->md.pv_list);
1601	pt2_wirecount_init(m);
1602	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1603}
1604
1605/*
1606 *  Virtualization for faster way how to zero whole page.
1607 */
1608static __inline void
1609pagezero(void *page)
1610{
1611
1612	bzero(page, PAGE_SIZE);
1613}
1614
1615/*
1616 *  Zero L2 page table page.
1617 *  Use same KVA as in pmap_zero_page().
1618 */
1619static __inline vm_paddr_t
1620pmap_pt2pg_zero(vm_page_t m)
1621{
1622	pt2_entry_t *cmap2_pte2p;
1623	vm_paddr_t pa;
1624	struct pcpu *pc;
1625
1626	pa = VM_PAGE_TO_PHYS(m);
1627
1628	/*
1629	 * XXX: For now, we map whole page even if it's already zero,
1630	 *      to sync it even if the sync is only DSB.
1631	 */
1632	sched_pin();
1633	pc = get_pcpu();
1634	cmap2_pte2p = pc->pc_cmap2_pte2p;
1635	mtx_lock(&pc->pc_cmap_lock);
1636	if (pte2_load(cmap2_pte2p) != 0)
1637		panic("%s: CMAP2 busy", __func__);
1638	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1639	    vm_page_pte2_attr(m)));
1640	/*  Even VM_ALLOC_ZERO request is only advisory. */
1641	if ((m->flags & PG_ZERO) == 0)
1642		pagezero(pc->pc_cmap2_addr);
1643	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1644	pte2_clear(cmap2_pte2p);
1645	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1646
1647	/*
1648	 * Unpin the thread before releasing the lock.  Otherwise the thread
1649	 * could be rescheduled while still bound to the current CPU, only
1650	 * to unpin itself immediately upon resuming execution.
1651	 */
1652	sched_unpin();
1653	mtx_unlock(&pc->pc_cmap_lock);
1654
1655	return (pa);
1656}
1657
1658/*
1659 *  Init just allocated page as L2 page table(s) holder
1660 *  and return its physical address.
1661 */
1662static __inline vm_paddr_t
1663pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1664{
1665	vm_paddr_t pa;
1666	pt2_entry_t *pte2p;
1667
1668	/* Check page attributes. */
1669	if (m->md.pat_mode != pt_memattr)
1670		pmap_page_set_memattr(m, pt_memattr);
1671
1672	/* Zero page and init wire counts. */
1673	pa = pmap_pt2pg_zero(m);
1674	pt2_wirecount_init(m);
1675
1676	/*
1677	 * Map page to PT2MAP address space for given pmap.
1678	 * Note that PT2MAP space is shared with all pmaps.
1679	 */
1680	if (pmap == kernel_pmap)
1681		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1682	else {
1683		pte2p = pmap_pt2tab_entry(pmap, va);
1684		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1685	}
1686
1687	return (pa);
1688}
1689
1690/*
1691 *  Initialize the pmap module.
1692 *  Called by vm_init, to initialize any structures that the pmap
1693 *  system needs to map virtual memory.
1694 */
1695void
1696pmap_init(void)
1697{
1698	vm_size_t s;
1699	pt2_entry_t *pte2p, pte2;
1700	u_int i, pte1_idx, pv_npg;
1701
1702	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1703
1704	/*
1705	 * Initialize the vm page array entries for kernel pmap's
1706	 * L2 page table pages allocated in advance.
1707	 */
1708	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1709	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1710	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1711		vm_paddr_t pa;
1712		vm_page_t m;
1713
1714		pte2 = pte2_load(pte2p);
1715		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1716
1717		pa = pte2_pa(pte2);
1718		m = PHYS_TO_VM_PAGE(pa);
1719		KASSERT(m >= vm_page_array &&
1720		    m < &vm_page_array[vm_page_array_size],
1721		    ("%s: L2 page table page is out of range", __func__));
1722
1723		m->pindex = pte1_idx;
1724		m->phys_addr = pa;
1725		pte1_idx += NPT2_IN_PG;
1726	}
1727
1728	/*
1729	 * Initialize the address space (zone) for the pv entries.  Set a
1730	 * high water mark so that the system can recover from excessive
1731	 * numbers of pv entries.
1732	 */
1733	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1734	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1735	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1736	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1737	pv_entry_high_water = 9 * (pv_entry_max / 10);
1738
1739	/*
1740	 * Are large page mappings enabled?
1741	 */
1742	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1743	if (sp_enabled) {
1744		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1745		    ("%s: can't assign to pagesizes[1]", __func__));
1746		pagesizes[1] = PTE1_SIZE;
1747	}
1748
1749	/*
1750	 * Calculate the size of the pv head table for sections.
1751	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1752	 * Note that the table is only for sections which could be promoted.
1753	 */
1754	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1755	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1756	    - first_managed_pa) / PTE1_SIZE + 1;
1757
1758	/*
1759	 * Allocate memory for the pv head table for sections.
1760	 */
1761	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1762	s = round_page(s);
1763	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1764	    M_WAITOK | M_ZERO);
1765	for (i = 0; i < pv_npg; i++)
1766		TAILQ_INIT(&pv_table[i].pv_list);
1767
1768	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1769	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1770	if (pv_chunkbase == NULL)
1771		panic("%s: not enough kvm for pv chunks", __func__);
1772	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1773}
1774
1775/*
1776 *  Add a list of wired pages to the kva
1777 *  this routine is only used for temporary
1778 *  kernel mappings that do not need to have
1779 *  page modification or references recorded.
1780 *  Note that old mappings are simply written
1781 *  over.  The page *must* be wired.
1782 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1783 */
1784void
1785pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1786{
1787	u_int anychanged;
1788	pt2_entry_t *epte2p, *pte2p, pte2;
1789	vm_page_t m;
1790	vm_paddr_t pa;
1791
1792	anychanged = 0;
1793	pte2p = pt2map_entry(sva);
1794	epte2p = pte2p + count;
1795	while (pte2p < epte2p) {
1796		m = *ma++;
1797		pa = VM_PAGE_TO_PHYS(m);
1798		pte2 = pte2_load(pte2p);
1799		if ((pte2_pa(pte2) != pa) ||
1800		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1801			anychanged++;
1802			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1803			    vm_page_pte2_attr(m)));
1804		}
1805		pte2p++;
1806	}
1807	if (__predict_false(anychanged))
1808		tlb_flush_range(sva, count * PAGE_SIZE);
1809}
1810
1811/*
1812 *  This routine tears out page mappings from the
1813 *  kernel -- it is meant only for temporary mappings.
1814 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1815 */
1816void
1817pmap_qremove(vm_offset_t sva, int count)
1818{
1819	vm_offset_t va;
1820
1821	va = sva;
1822	while (count-- > 0) {
1823		pmap_kremove(va);
1824		va += PAGE_SIZE;
1825	}
1826	tlb_flush_range(sva, va - sva);
1827}
1828
1829/*
1830 *  Are we current address space or kernel?
1831 */
1832static __inline int
1833pmap_is_current(pmap_t pmap)
1834{
1835
1836	return (pmap == kernel_pmap ||
1837		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1838}
1839
1840/*
1841 *  If the given pmap is not the current or kernel pmap, the returned
1842 *  pte2 must be released by passing it to pmap_pte2_release().
1843 */
1844static pt2_entry_t *
1845pmap_pte2(pmap_t pmap, vm_offset_t va)
1846{
1847	pt1_entry_t pte1;
1848	vm_paddr_t pt2pg_pa;
1849
1850	pte1 = pte1_load(pmap_pte1(pmap, va));
1851	if (pte1_is_section(pte1))
1852		panic("%s: attempt to map PTE1", __func__);
1853	if (pte1_is_link(pte1)) {
1854		/* Are we current address space or kernel? */
1855		if (pmap_is_current(pmap))
1856			return (pt2map_entry(va));
1857		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1858		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1859		mtx_lock(&PMAP2mutex);
1860		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1861			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1862			tlb_flush((vm_offset_t)PADDR2);
1863		}
1864		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1865	}
1866	return (NULL);
1867}
1868
1869/*
1870 *  Releases a pte2 that was obtained from pmap_pte2().
1871 *  Be prepared for the pte2p being NULL.
1872 */
1873static __inline void
1874pmap_pte2_release(pt2_entry_t *pte2p)
1875{
1876
1877	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1878		mtx_unlock(&PMAP2mutex);
1879	}
1880}
1881
1882/*
1883 *  Super fast pmap_pte2 routine best used when scanning
1884 *  the pv lists.  This eliminates many coarse-grained
1885 *  invltlb calls.  Note that many of the pv list
1886 *  scans are across different pmaps.  It is very wasteful
1887 *  to do an entire tlb flush for checking a single mapping.
1888 *
1889 *  If the given pmap is not the current pmap, pvh_global_lock
1890 *  must be held and curthread pinned to a CPU.
1891 */
1892static pt2_entry_t *
1893pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1894{
1895	pt1_entry_t pte1;
1896	vm_paddr_t pt2pg_pa;
1897
1898	pte1 = pte1_load(pmap_pte1(pmap, va));
1899	if (pte1_is_section(pte1))
1900		panic("%s: attempt to map PTE1", __func__);
1901	if (pte1_is_link(pte1)) {
1902		/* Are we current address space or kernel? */
1903		if (pmap_is_current(pmap))
1904			return (pt2map_entry(va));
1905		rw_assert(&pvh_global_lock, RA_WLOCKED);
1906		KASSERT(curthread->td_pinned > 0,
1907		    ("%s: curthread not pinned", __func__));
1908		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1909		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1910		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1911			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1912#ifdef SMP
1913			PMAP1cpu = PCPU_GET(cpuid);
1914#endif
1915			tlb_flush_local((vm_offset_t)PADDR1);
1916			PMAP1changed++;
1917		} else
1918#ifdef SMP
1919		if (PMAP1cpu != PCPU_GET(cpuid)) {
1920			PMAP1cpu = PCPU_GET(cpuid);
1921			tlb_flush_local((vm_offset_t)PADDR1);
1922			PMAP1changedcpu++;
1923		} else
1924#endif
1925			PMAP1unchanged++;
1926		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1927	}
1928	return (NULL);
1929}
1930
1931/*
1932 *  Routine: pmap_extract
1933 *  Function:
1934 * 	Extract the physical page address associated
1935 *	with the given map/virtual_address pair.
1936 */
1937vm_paddr_t
1938pmap_extract(pmap_t pmap, vm_offset_t va)
1939{
1940	vm_paddr_t pa;
1941	pt1_entry_t pte1;
1942	pt2_entry_t *pte2p;
1943
1944	PMAP_LOCK(pmap);
1945	pte1 = pte1_load(pmap_pte1(pmap, va));
1946	if (pte1_is_section(pte1))
1947		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1948	else if (pte1_is_link(pte1)) {
1949		pte2p = pmap_pte2(pmap, va);
1950		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1951		pmap_pte2_release(pte2p);
1952	} else
1953		pa = 0;
1954	PMAP_UNLOCK(pmap);
1955	return (pa);
1956}
1957
1958/*
1959 *  Routine: pmap_extract_and_hold
1960 *  Function:
1961 *	Atomically extract and hold the physical page
1962 *	with the given pmap and virtual address pair
1963 *	if that mapping permits the given protection.
1964 */
1965vm_page_t
1966pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1967{
1968	vm_paddr_t pa, lockpa;
1969	pt1_entry_t pte1;
1970	pt2_entry_t pte2, *pte2p;
1971	vm_page_t m;
1972
1973	lockpa = 0;
1974	m = NULL;
1975	PMAP_LOCK(pmap);
1976retry:
1977	pte1 = pte1_load(pmap_pte1(pmap, va));
1978	if (pte1_is_section(pte1)) {
1979		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1980			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1981			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1982				goto retry;
1983			m = PHYS_TO_VM_PAGE(pa);
1984			vm_page_hold(m);
1985		}
1986	} else if (pte1_is_link(pte1)) {
1987		pte2p = pmap_pte2(pmap, va);
1988		pte2 = pte2_load(pte2p);
1989		pmap_pte2_release(pte2p);
1990		if (pte2_is_valid(pte2) &&
1991		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1992			pa = pte2_pa(pte2);
1993			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1994				goto retry;
1995			m = PHYS_TO_VM_PAGE(pa);
1996			vm_page_hold(m);
1997		}
1998	}
1999	PA_UNLOCK_COND(lockpa);
2000	PMAP_UNLOCK(pmap);
2001	return (m);
2002}
2003
2004/*
2005 *  Grow the number of kernel L2 page table entries, if needed.
2006 */
2007void
2008pmap_growkernel(vm_offset_t addr)
2009{
2010	vm_page_t m;
2011	vm_paddr_t pt2pg_pa, pt2_pa;
2012	pt1_entry_t pte1;
2013	pt2_entry_t pte2;
2014
2015	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2016	/*
2017	 * All the time kernel_vm_end is first KVA for which underlying
2018	 * L2 page table is either not allocated or linked from L1 page table
2019	 * (not considering sections). Except for two possible cases:
2020	 *
2021	 *   (1) in the very beginning as long as pmap_growkernel() was
2022	 *       not called, it could be first unused KVA (which is not
2023	 *       rounded up to PTE1_SIZE),
2024	 *
2025	 *   (2) when all KVA space is mapped and kernel_map->max_offset
2026	 *       address is not rounded up to PTE1_SIZE. (For example,
2027	 *       it could be 0xFFFFFFFF.)
2028	 */
2029	kernel_vm_end = pte1_roundup(kernel_vm_end);
2030	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2031	addr = roundup2(addr, PTE1_SIZE);
2032	if (addr - 1 >= kernel_map->max_offset)
2033		addr = kernel_map->max_offset;
2034	while (kernel_vm_end < addr) {
2035		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2036		if (pte1_is_valid(pte1)) {
2037			kernel_vm_end += PTE1_SIZE;
2038			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2039				kernel_vm_end = kernel_map->max_offset;
2040				break;
2041			}
2042			continue;
2043		}
2044
2045		/*
2046		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2047		 * mappings are entered to new pmap all at once to avoid race
2048		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2049		 * The same aplies to pmap_kenter_pt2tab().
2050		 */
2051		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2052
2053		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2054		if (!pte2_is_valid(pte2)) {
2055			/*
2056			 * Install new PT2s page into kernel PT2TAB.
2057			 */
2058			m = vm_page_alloc(NULL,
2059			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2060			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2061			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2062			if (m == NULL)
2063				panic("%s: no memory to grow kernel", __func__);
2064			/*
2065			 * QQQ: To link all new L2 page tables from L1 page
2066			 *      table now and so pmap_kenter_pte1() them
2067			 *      at once together with pmap_kenter_pt2tab()
2068			 *      could be nice speed up. However,
2069			 *      pmap_growkernel() does not happen so often...
2070			 * QQQ: The other TTBR is another option.
2071			 */
2072			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2073			    m);
2074		} else
2075			pt2pg_pa = pte2_pa(pte2);
2076
2077		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2078		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2079
2080		kernel_vm_end = kernel_vm_end_new;
2081		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2082			kernel_vm_end = kernel_map->max_offset;
2083			break;
2084		}
2085	}
2086}
2087
2088static int
2089kvm_size(SYSCTL_HANDLER_ARGS)
2090{
2091	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2092
2093	return (sysctl_handle_long(oidp, &ksize, 0, req));
2094}
2095SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2096    0, 0, kvm_size, "IU", "Size of KVM");
2097
2098static int
2099kvm_free(SYSCTL_HANDLER_ARGS)
2100{
2101	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2102
2103	return (sysctl_handle_long(oidp, &kfree, 0, req));
2104}
2105SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2106    0, 0, kvm_free, "IU", "Amount of KVM free");
2107
2108/***********************************************
2109 *
2110 *  Pmap allocation/deallocation routines.
2111 *
2112 ***********************************************/
2113
2114/*
2115 *  Initialize the pmap for the swapper process.
2116 */
2117void
2118pmap_pinit0(pmap_t pmap)
2119{
2120	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2121
2122	PMAP_LOCK_INIT(pmap);
2123
2124	/*
2125	 * Kernel page table directory and pmap stuff around is already
2126	 * initialized, we are using it right now and here. So, finish
2127	 * only PMAP structures initialization for process0 ...
2128	 *
2129	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2130	 * which is already included in the list "allpmaps", this pmap does
2131	 * not need to be inserted into that list.
2132	 */
2133	pmap->pm_pt1 = kern_pt1;
2134	pmap->pm_pt2tab = kern_pt2tab;
2135	CPU_ZERO(&pmap->pm_active);
2136	PCPU_SET(curpmap, pmap);
2137	TAILQ_INIT(&pmap->pm_pvchunk);
2138	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2139	CPU_SET(0, &pmap->pm_active);
2140}
2141
2142static __inline void
2143pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2144    vm_offset_t eva)
2145{
2146	u_int idx, count;
2147
2148	idx = pte1_index(sva);
2149	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2150	bcopy(spte1p + idx, dpte1p + idx, count);
2151}
2152
2153static __inline void
2154pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2155    vm_offset_t eva)
2156{
2157	u_int idx, count;
2158
2159	idx = pt2tab_index(sva);
2160	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2161	bcopy(spte2p + idx, dpte2p + idx, count);
2162}
2163
2164/*
2165 *  Initialize a preallocated and zeroed pmap structure,
2166 *  such as one in a vmspace structure.
2167 */
2168int
2169pmap_pinit(pmap_t pmap)
2170{
2171	pt1_entry_t *pte1p;
2172	pt2_entry_t *pte2p;
2173	vm_paddr_t pa, pt2tab_pa;
2174	u_int i;
2175
2176	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2177	    pmap->pm_pt1));
2178
2179	/*
2180	 * No need to allocate L2 page table space yet but we do need
2181	 * a valid L1 page table and PT2TAB table.
2182	 *
2183	 * Install shared kernel mappings to these tables. It's a little
2184	 * tricky as some parts of KVA are reserved for vectors, devices,
2185	 * and whatever else. These parts are supposed to be above
2186	 * vm_max_kernel_address. Thus two regions should be installed:
2187	 *
2188	 *   (1) <KERNBASE, kernel_vm_end),
2189	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2190	 *
2191	 * QQQ: The second region should be stable enough to be installed
2192	 *      only once in time when the tables are allocated.
2193	 * QQQ: Maybe copy of both regions at once could be faster ...
2194	 * QQQ: Maybe the other TTBR is an option.
2195	 *
2196	 * Finally, install own PT2TAB table to these tables.
2197	 */
2198
2199	if (pmap->pm_pt1 == NULL) {
2200		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2201		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2202		    pt_memattr);
2203		if (pmap->pm_pt1 == NULL)
2204			return (0);
2205	}
2206	if (pmap->pm_pt2tab == NULL) {
2207		/*
2208		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2209		 *      only, what should be the only size for 32 bit systems,
2210		 *      then we could allocate it with vm_page_alloc() and all
2211		 *      the stuff needed as other L2 page table pages.
2212		 *      (2) Note that a process PT2TAB is special L2 page table
2213		 *      page. Its mapping in kernel_arena is permanent and can
2214		 *      be used no matter which process is current. Its mapping
2215		 *      in PT2MAP can be used only for current process.
2216		 */
2217		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2218		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2219		if (pmap->pm_pt2tab == NULL) {
2220			/*
2221			 * QQQ: As struct pmap is allocated from UMA with
2222			 *      UMA_ZONE_NOFREE flag, it's important to leave
2223			 *      no allocation in pmap if initialization failed.
2224			 */
2225			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2226			    NB_IN_PT1);
2227			pmap->pm_pt1 = NULL;
2228			return (0);
2229		}
2230		/*
2231		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2232		 *      pte1 index of virtual address mapped by this page.
2233		 *      It's not valid for non kernel PT2TABs themselves.
2234		 *      The pindex of these pages can not be altered because
2235		 *      of the way how they are allocated now. However, it
2236		 *      should not be a problem.
2237		 */
2238	}
2239
2240	mtx_lock_spin(&allpmaps_lock);
2241	/*
2242	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2243	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2244	 */
2245	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2246	    kernel_vm_end_new - 1);
2247	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2248	    0xFFFFFFFF);
2249	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2250	    kernel_vm_end_new - 1);
2251	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2252	    0xFFFFFFFF);
2253	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2254	mtx_unlock_spin(&allpmaps_lock);
2255
2256	/*
2257	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2258	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2259	 * into shared PT2MAP space, so the mapping should be not global.
2260	 */
2261	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2262	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2263	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2264		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2265	}
2266
2267	/* Insert PT2MAP PT2s into pmap PT1. */
2268	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2269	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2270		pte1_store(pte1p++, PTE1_LINK(pa));
2271	}
2272
2273	/*
2274	 * Now synchronize new mapping which was made above.
2275	 */
2276	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2277	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2278
2279	CPU_ZERO(&pmap->pm_active);
2280	TAILQ_INIT(&pmap->pm_pvchunk);
2281	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2282
2283	return (1);
2284}
2285
2286#ifdef INVARIANTS
2287static boolean_t
2288pt2tab_user_is_empty(pt2_entry_t *tab)
2289{
2290	u_int i, end;
2291
2292	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2293	for (i = 0; i < end; i++)
2294		if (tab[i] != 0) return (FALSE);
2295	return (TRUE);
2296}
2297#endif
2298/*
2299 *  Release any resources held by the given physical map.
2300 *  Called when a pmap initialized by pmap_pinit is being released.
2301 *  Should only be called if the map contains no valid mappings.
2302 */
2303void
2304pmap_release(pmap_t pmap)
2305{
2306#ifdef INVARIANTS
2307	vm_offset_t start, end;
2308#endif
2309	KASSERT(pmap->pm_stats.resident_count == 0,
2310	    ("%s: pmap resident count %ld != 0", __func__,
2311	    pmap->pm_stats.resident_count));
2312	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2313	    ("%s: has allocated user PT2(s)", __func__));
2314	KASSERT(CPU_EMPTY(&pmap->pm_active),
2315	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2316
2317	mtx_lock_spin(&allpmaps_lock);
2318	LIST_REMOVE(pmap, pm_list);
2319	mtx_unlock_spin(&allpmaps_lock);
2320
2321#ifdef INVARIANTS
2322	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2323	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2324	bzero((char *)pmap->pm_pt1 + start, end - start);
2325
2326	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2327	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2328	bzero((char *)pmap->pm_pt2tab + start, end - start);
2329#endif
2330	/*
2331	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2332	 * so hopefully UMA vmspace_zone will always be inited with
2333	 * UMA_ZONE_NOFREE flag.
2334	 */
2335}
2336
2337/*********************************************************
2338 *
2339 *  L2 table pages and their pages management routines.
2340 *
2341 *********************************************************/
2342
2343/*
2344 *  Virtual interface for L2 page table wire counting.
2345 *
2346 *  Each L2 page table in a page has own counter which counts a number of
2347 *  valid mappings in a table. Global page counter counts mappings in all
2348 *  tables in a page plus a single itself mapping in PT2TAB.
2349 *
2350 *  During a promotion we leave the associated L2 page table counter
2351 *  untouched, so the table (strictly speaking a page which holds it)
2352 *  is never freed if promoted.
2353 *
2354 *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2355 *  table in the page and the page itself is only mapped in PT2TAB.
2356 */
2357
2358static __inline void
2359pt2_wirecount_init(vm_page_t m)
2360{
2361	u_int i;
2362
2363	/*
2364	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2365	 *       m->wire_count should be already set correctly.
2366	 *       So, there is no need to set it again herein.
2367	 */
2368	for (i = 0; i < NPT2_IN_PG; i++)
2369		m->md.pt2_wirecount[i] = 0;
2370}
2371
2372static __inline void
2373pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2374{
2375
2376	/*
2377	 * Note: A just modificated pte2 (i.e. already allocated)
2378	 *       is acquiring one extra reference which must be
2379	 *       explicitly cleared. It influences the KASSERTs herein.
2380	 *       All L2 page tables in a page always belong to the same
2381	 *       pmap, so we allow only one extra reference for the page.
2382	 */
2383	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2384	    ("%s: PT2 is overflowing ...", __func__));
2385	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2386	    ("%s: PT2PG is overflowing ...", __func__));
2387
2388	m->wire_count++;
2389	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2390}
2391
2392static __inline void
2393pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2394{
2395
2396	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2397	    ("%s: PT2 is underflowing ...", __func__));
2398	KASSERT(m->wire_count > 1,
2399	    ("%s: PT2PG is underflowing ...", __func__));
2400
2401	m->wire_count--;
2402	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2403}
2404
2405static __inline void
2406pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2407{
2408
2409	KASSERT(count <= NPTE2_IN_PT2,
2410	    ("%s: invalid count %u", __func__, count));
2411	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2412	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2413	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2414
2415	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2416	m->wire_count += count;
2417	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2418
2419	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2420	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2421}
2422
2423static __inline uint32_t
2424pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2425{
2426
2427	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2428}
2429
2430static __inline boolean_t
2431pt2_is_empty(vm_page_t m, vm_offset_t va)
2432{
2433
2434	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2435}
2436
2437static __inline boolean_t
2438pt2_is_full(vm_page_t m, vm_offset_t va)
2439{
2440
2441	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2442	    NPTE2_IN_PT2);
2443}
2444
2445static __inline boolean_t
2446pt2pg_is_empty(vm_page_t m)
2447{
2448
2449	return (m->wire_count == 1);
2450}
2451
2452/*
2453 *  This routine is called if the L2 page table
2454 *  is not mapped correctly.
2455 */
2456static vm_page_t
2457_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2458{
2459	uint32_t pte1_idx;
2460	pt1_entry_t *pte1p;
2461	pt2_entry_t pte2;
2462	vm_page_t  m;
2463	vm_paddr_t pt2pg_pa, pt2_pa;
2464
2465	pte1_idx = pte1_index(va);
2466	pte1p = pmap->pm_pt1 + pte1_idx;
2467
2468	KASSERT(pte1_load(pte1p) == 0,
2469	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2470	    pte1_load(pte1p)));
2471
2472	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2473	if (!pte2_is_valid(pte2)) {
2474		/*
2475		 * Install new PT2s page into pmap PT2TAB.
2476		 */
2477		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2478		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2479		if (m == NULL) {
2480			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2481				PMAP_UNLOCK(pmap);
2482				rw_wunlock(&pvh_global_lock);
2483				VM_WAIT;
2484				rw_wlock(&pvh_global_lock);
2485				PMAP_LOCK(pmap);
2486			}
2487
2488			/*
2489			 * Indicate the need to retry.  While waiting,
2490			 * the L2 page table page may have been allocated.
2491			 */
2492			return (NULL);
2493		}
2494		pmap->pm_stats.resident_count++;
2495		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2496	} else {
2497		pt2pg_pa = pte2_pa(pte2);
2498		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2499	}
2500
2501	pt2_wirecount_inc(m, pte1_idx);
2502	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2503	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2504
2505	return (m);
2506}
2507
2508static vm_page_t
2509pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2510{
2511	u_int pte1_idx;
2512	pt1_entry_t *pte1p, pte1;
2513	vm_page_t m;
2514
2515	pte1_idx = pte1_index(va);
2516retry:
2517	pte1p = pmap->pm_pt1 + pte1_idx;
2518	pte1 = pte1_load(pte1p);
2519
2520	/*
2521	 * This supports switching from a 1MB page to a
2522	 * normal 4K page.
2523	 */
2524	if (pte1_is_section(pte1)) {
2525		(void)pmap_demote_pte1(pmap, pte1p, va);
2526		/*
2527		 * Reload pte1 after demotion.
2528		 *
2529		 * Note: Demotion can even fail as either PT2 is not find for
2530		 *       the virtual address or PT2PG can not be allocated.
2531		 */
2532		pte1 = pte1_load(pte1p);
2533	}
2534
2535	/*
2536	 * If the L2 page table page is mapped, we just increment the
2537	 * hold count, and activate it.
2538	 */
2539	if (pte1_is_link(pte1)) {
2540		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2541		pt2_wirecount_inc(m, pte1_idx);
2542	} else  {
2543		/*
2544		 * Here if the PT2 isn't mapped, or if it has
2545		 * been deallocated.
2546		 */
2547		m = _pmap_allocpte2(pmap, va, flags);
2548		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2549			goto retry;
2550	}
2551
2552	return (m);
2553}
2554
2555static __inline void
2556pmap_free_zero_pages(struct spglist *free)
2557{
2558	vm_page_t m;
2559
2560	while ((m = SLIST_FIRST(free)) != NULL) {
2561		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2562		/* Preserve the page's PG_ZERO setting. */
2563		vm_page_free_toq(m);
2564	}
2565}
2566
2567/*
2568 *  Schedule the specified unused L2 page table page to be freed. Specifically,
2569 *  add the page to the specified list of pages that will be released to the
2570 *  physical memory manager after the TLB has been updated.
2571 */
2572static __inline void
2573pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2574{
2575
2576	/*
2577	 * Put page on a list so that it is released after
2578	 * *ALL* TLB shootdown is done
2579	 */
2580#ifdef PMAP_DEBUG
2581	pmap_zero_page_check(m);
2582#endif
2583	m->flags |= PG_ZERO;
2584	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2585}
2586
2587/*
2588 *  Unwire L2 page tables page.
2589 */
2590static void
2591pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2592{
2593	pt1_entry_t *pte1p, opte1 __unused;
2594	pt2_entry_t *pte2p;
2595	uint32_t i;
2596
2597	KASSERT(pt2pg_is_empty(m),
2598	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2599
2600	/*
2601	 * Unmap all L2 page tables in the page from L1 page table.
2602	 *
2603	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2604	 * earlier. However, we are doing that this way.
2605	 */
2606	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2607	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2608	pte1p = pmap->pm_pt1 + m->pindex;
2609	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2610		KASSERT(m->md.pt2_wirecount[i] == 0,
2611		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2612		opte1 = pte1_load(pte1p);
2613		if (pte1_is_link(opte1)) {
2614			pte1_clear(pte1p);
2615			/*
2616			 * Flush intermediate TLB cache.
2617			 */
2618			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2619		}
2620#ifdef INVARIANTS
2621		else
2622			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2623			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2624			    pmap, va, opte1, i));
2625#endif
2626	}
2627
2628	/*
2629	 * Unmap the page from PT2TAB.
2630	 */
2631	pte2p = pmap_pt2tab_entry(pmap, va);
2632	(void)pt2tab_load_clear(pte2p);
2633	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2634
2635	m->wire_count = 0;
2636	pmap->pm_stats.resident_count--;
2637
2638	/*
2639	 * This is a release store so that the ordinary store unmapping
2640	 * the L2 page table page is globally performed before TLB shoot-
2641	 * down is begun.
2642	 */
2643	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2644}
2645
2646/*
2647 *  Decrements a L2 page table page's wire count, which is used to record the
2648 *  number of valid page table entries within the page.  If the wire count
2649 *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2650 *  page table page was unmapped and FALSE otherwise.
2651 */
2652static __inline boolean_t
2653pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2654{
2655	pt2_wirecount_dec(m, pte1_index(va));
2656	if (pt2pg_is_empty(m)) {
2657		/*
2658		 * QQQ: Wire count is zero, so whole page should be zero and
2659		 *      we can set PG_ZERO flag to it.
2660		 *      Note that when promotion is enabled, it takes some
2661		 *      more efforts. See pmap_unwire_pt2_all() below.
2662		 */
2663		pmap_unwire_pt2pg(pmap, va, m);
2664		pmap_add_delayed_free_list(m, free);
2665		return (TRUE);
2666	} else
2667		return (FALSE);
2668}
2669
2670/*
2671 *  Drop a L2 page table page's wire count at once, which is used to record
2672 *  the number of valid L2 page table entries within the page. If the wire
2673 *  count drops to zero, then the L2 page table page is unmapped.
2674 */
2675static __inline void
2676pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2677    struct spglist *free)
2678{
2679	u_int pte1_idx = pte1_index(va);
2680
2681	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2682		("%s: PT2 page's pindex is wrong", __func__));
2683	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2684	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2685	    pt2_wirecount_get(m, pte1_idx)));
2686
2687	/*
2688	 * It's possible that the L2 page table was never used.
2689	 * It happened in case that a section was created without promotion.
2690	 */
2691	if (pt2_is_full(m, va)) {
2692		pt2_wirecount_set(m, pte1_idx, 0);
2693
2694		/*
2695		 * QQQ: We clear L2 page table now, so when L2 page table page
2696		 *      is going to be freed, we can set it PG_ZERO flag ...
2697		 *      This function is called only on section mappings, so
2698		 *      hopefully it's not to big overload.
2699		 *
2700		 * XXX: If pmap is current, existing PT2MAP mapping could be
2701		 *      used for zeroing.
2702		 */
2703		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2704	}
2705#ifdef INVARIANTS
2706	else
2707		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2708		    __func__, pt2_wirecount_get(m, pte1_idx)));
2709#endif
2710	if (pt2pg_is_empty(m)) {
2711		pmap_unwire_pt2pg(pmap, va, m);
2712		pmap_add_delayed_free_list(m, free);
2713	}
2714}
2715
2716/*
2717 *  After removing a L2 page table entry, this routine is used to
2718 *  conditionally free the page, and manage the hold/wire counts.
2719 */
2720static boolean_t
2721pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2722{
2723	pt1_entry_t pte1;
2724	vm_page_t mpte;
2725
2726	if (va >= VM_MAXUSER_ADDRESS)
2727		return (FALSE);
2728	pte1 = pte1_load(pmap_pte1(pmap, va));
2729	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2730	return (pmap_unwire_pt2(pmap, va, mpte, free));
2731}
2732
2733/*************************************
2734 *
2735 *  Page management routines.
2736 *
2737 *************************************/
2738
2739CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2740CTASSERT(_NPCM == 11);
2741CTASSERT(_NPCPV == 336);
2742
2743static __inline struct pv_chunk *
2744pv_to_chunk(pv_entry_t pv)
2745{
2746
2747	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2748}
2749
2750#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2751
2752#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2753#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2754
2755static const uint32_t pc_freemask[_NPCM] = {
2756	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2757	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2758	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2759	PC_FREE0_9, PC_FREE10
2760};
2761
2762SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2763	"Current number of pv entries");
2764
2765#ifdef PV_STATS
2766static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2767
2768SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2769    "Current number of pv entry chunks");
2770SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2771    "Current number of pv entry chunks allocated");
2772SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2773    "Current number of pv entry chunks frees");
2774SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2775    0, "Number of times tried to get a chunk page but failed.");
2776
2777static long pv_entry_frees, pv_entry_allocs;
2778static int pv_entry_spare;
2779
2780SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2781    "Current number of pv entry frees");
2782SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2783    0, "Current number of pv entry allocs");
2784SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2785    "Current number of spare pv entries");
2786#endif
2787
2788/*
2789 *  Is given page managed?
2790 */
2791static __inline bool
2792is_managed(vm_paddr_t pa)
2793{
2794	vm_page_t m;
2795
2796	m = PHYS_TO_VM_PAGE(pa);
2797	if (m == NULL)
2798		return (false);
2799	return ((m->oflags & VPO_UNMANAGED) == 0);
2800}
2801
2802static __inline bool
2803pte1_is_managed(pt1_entry_t pte1)
2804{
2805
2806	return (is_managed(pte1_pa(pte1)));
2807}
2808
2809static __inline bool
2810pte2_is_managed(pt2_entry_t pte2)
2811{
2812
2813	return (is_managed(pte2_pa(pte2)));
2814}
2815
2816/*
2817 *  We are in a serious low memory condition.  Resort to
2818 *  drastic measures to free some pages so we can allocate
2819 *  another pv entry chunk.
2820 */
2821static vm_page_t
2822pmap_pv_reclaim(pmap_t locked_pmap)
2823{
2824	struct pch newtail;
2825	struct pv_chunk *pc;
2826	struct md_page *pvh;
2827	pt1_entry_t *pte1p;
2828	pmap_t pmap;
2829	pt2_entry_t *pte2p, tpte2;
2830	pv_entry_t pv;
2831	vm_offset_t va;
2832	vm_page_t m, m_pc;
2833	struct spglist free;
2834	uint32_t inuse;
2835	int bit, field, freed;
2836
2837	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2838	pmap = NULL;
2839	m_pc = NULL;
2840	SLIST_INIT(&free);
2841	TAILQ_INIT(&newtail);
2842	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2843	    SLIST_EMPTY(&free))) {
2844		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2845		if (pmap != pc->pc_pmap) {
2846			if (pmap != NULL) {
2847				if (pmap != locked_pmap)
2848					PMAP_UNLOCK(pmap);
2849			}
2850			pmap = pc->pc_pmap;
2851			/* Avoid deadlock and lock recursion. */
2852			if (pmap > locked_pmap)
2853				PMAP_LOCK(pmap);
2854			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2855				pmap = NULL;
2856				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2857				continue;
2858			}
2859		}
2860
2861		/*
2862		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2863		 */
2864		freed = 0;
2865		for (field = 0; field < _NPCM; field++) {
2866			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2867			    inuse != 0; inuse &= ~(1UL << bit)) {
2868				bit = ffs(inuse) - 1;
2869				pv = &pc->pc_pventry[field * 32 + bit];
2870				va = pv->pv_va;
2871				pte1p = pmap_pte1(pmap, va);
2872				if (pte1_is_section(pte1_load(pte1p)))
2873					continue;
2874				pte2p = pmap_pte2(pmap, va);
2875				tpte2 = pte2_load(pte2p);
2876				if ((tpte2 & PTE2_W) == 0)
2877					tpte2 = pte2_load_clear(pte2p);
2878				pmap_pte2_release(pte2p);
2879				if ((tpte2 & PTE2_W) != 0)
2880					continue;
2881				KASSERT(tpte2 != 0,
2882				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2883				    pmap, va));
2884				pmap_tlb_flush(pmap, va);
2885				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2886				if (pte2_is_dirty(tpte2))
2887					vm_page_dirty(m);
2888				if ((tpte2 & PTE2_A) != 0)
2889					vm_page_aflag_set(m, PGA_REFERENCED);
2890				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2891				if (TAILQ_EMPTY(&m->md.pv_list) &&
2892				    (m->flags & PG_FICTITIOUS) == 0) {
2893					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2894					if (TAILQ_EMPTY(&pvh->pv_list)) {
2895						vm_page_aflag_clear(m,
2896						    PGA_WRITEABLE);
2897					}
2898				}
2899				pc->pc_map[field] |= 1UL << bit;
2900				pmap_unuse_pt2(pmap, va, &free);
2901				freed++;
2902			}
2903		}
2904		if (freed == 0) {
2905			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2906			continue;
2907		}
2908		/* Every freed mapping is for a 4 KB page. */
2909		pmap->pm_stats.resident_count -= freed;
2910		PV_STAT(pv_entry_frees += freed);
2911		PV_STAT(pv_entry_spare += freed);
2912		pv_entry_count -= freed;
2913		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2914		for (field = 0; field < _NPCM; field++)
2915			if (pc->pc_map[field] != pc_freemask[field]) {
2916				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2917				    pc_list);
2918				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2919
2920				/*
2921				 * One freed pv entry in locked_pmap is
2922				 * sufficient.
2923				 */
2924				if (pmap == locked_pmap)
2925					goto out;
2926				break;
2927			}
2928		if (field == _NPCM) {
2929			PV_STAT(pv_entry_spare -= _NPCPV);
2930			PV_STAT(pc_chunk_count--);
2931			PV_STAT(pc_chunk_frees++);
2932			/* Entire chunk is free; return it. */
2933			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2934			pmap_qremove((vm_offset_t)pc, 1);
2935			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2936			break;
2937		}
2938	}
2939out:
2940	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2941	if (pmap != NULL) {
2942		if (pmap != locked_pmap)
2943			PMAP_UNLOCK(pmap);
2944	}
2945	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2946		m_pc = SLIST_FIRST(&free);
2947		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2948		/* Recycle a freed page table page. */
2949		m_pc->wire_count = 1;
2950		atomic_add_int(&vm_cnt.v_wire_count, 1);
2951	}
2952	pmap_free_zero_pages(&free);
2953	return (m_pc);
2954}
2955
2956static void
2957free_pv_chunk(struct pv_chunk *pc)
2958{
2959	vm_page_t m;
2960
2961	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2962	PV_STAT(pv_entry_spare -= _NPCPV);
2963	PV_STAT(pc_chunk_count--);
2964	PV_STAT(pc_chunk_frees++);
2965	/* entire chunk is free, return it */
2966	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2967	pmap_qremove((vm_offset_t)pc, 1);
2968	vm_page_unwire(m, PQ_NONE);
2969	vm_page_free(m);
2970	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2971}
2972
2973/*
2974 *  Free the pv_entry back to the free list.
2975 */
2976static void
2977free_pv_entry(pmap_t pmap, pv_entry_t pv)
2978{
2979	struct pv_chunk *pc;
2980	int idx, field, bit;
2981
2982	rw_assert(&pvh_global_lock, RA_WLOCKED);
2983	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2984	PV_STAT(pv_entry_frees++);
2985	PV_STAT(pv_entry_spare++);
2986	pv_entry_count--;
2987	pc = pv_to_chunk(pv);
2988	idx = pv - &pc->pc_pventry[0];
2989	field = idx / 32;
2990	bit = idx % 32;
2991	pc->pc_map[field] |= 1ul << bit;
2992	for (idx = 0; idx < _NPCM; idx++)
2993		if (pc->pc_map[idx] != pc_freemask[idx]) {
2994			/*
2995			 * 98% of the time, pc is already at the head of the
2996			 * list.  If it isn't already, move it to the head.
2997			 */
2998			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2999			    pc)) {
3000				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3001				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
3002				    pc_list);
3003			}
3004			return;
3005		}
3006	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3007	free_pv_chunk(pc);
3008}
3009
3010/*
3011 *  Get a new pv_entry, allocating a block from the system
3012 *  when needed.
3013 */
3014static pv_entry_t
3015get_pv_entry(pmap_t pmap, boolean_t try)
3016{
3017	static const struct timeval printinterval = { 60, 0 };
3018	static struct timeval lastprint;
3019	int bit, field;
3020	pv_entry_t pv;
3021	struct pv_chunk *pc;
3022	vm_page_t m;
3023
3024	rw_assert(&pvh_global_lock, RA_WLOCKED);
3025	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3026	PV_STAT(pv_entry_allocs++);
3027	pv_entry_count++;
3028	if (pv_entry_count > pv_entry_high_water)
3029		if (ratecheck(&lastprint, &printinterval))
3030			printf("Approaching the limit on PV entries, consider "
3031			    "increasing either the vm.pmap.shpgperproc or the "
3032			    "vm.pmap.pv_entry_max tunable.\n");
3033retry:
3034	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3035	if (pc != NULL) {
3036		for (field = 0; field < _NPCM; field++) {
3037			if (pc->pc_map[field]) {
3038				bit = ffs(pc->pc_map[field]) - 1;
3039				break;
3040			}
3041		}
3042		if (field < _NPCM) {
3043			pv = &pc->pc_pventry[field * 32 + bit];
3044			pc->pc_map[field] &= ~(1ul << bit);
3045			/* If this was the last item, move it to tail */
3046			for (field = 0; field < _NPCM; field++)
3047				if (pc->pc_map[field] != 0) {
3048					PV_STAT(pv_entry_spare--);
3049					return (pv);	/* not full, return */
3050				}
3051			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3052			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3053			PV_STAT(pv_entry_spare--);
3054			return (pv);
3055		}
3056	}
3057	/*
3058	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3059	 * global lock.  If "pv_vafree" is currently non-empty, it will
3060	 * remain non-empty until pmap_pte2list_alloc() completes.
3061	 */
3062	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3063	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3064		if (try) {
3065			pv_entry_count--;
3066			PV_STAT(pc_chunk_tryfail++);
3067			return (NULL);
3068		}
3069		m = pmap_pv_reclaim(pmap);
3070		if (m == NULL)
3071			goto retry;
3072	}
3073	PV_STAT(pc_chunk_count++);
3074	PV_STAT(pc_chunk_allocs++);
3075	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3076	pmap_qenter((vm_offset_t)pc, &m, 1);
3077	pc->pc_pmap = pmap;
3078	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3079	for (field = 1; field < _NPCM; field++)
3080		pc->pc_map[field] = pc_freemask[field];
3081	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3082	pv = &pc->pc_pventry[0];
3083	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3084	PV_STAT(pv_entry_spare += _NPCPV - 1);
3085	return (pv);
3086}
3087
3088/*
3089 *  Create a pv entry for page at pa for
3090 *  (pmap, va).
3091 */
3092static void
3093pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3094{
3095	pv_entry_t pv;
3096
3097	rw_assert(&pvh_global_lock, RA_WLOCKED);
3098	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3099	pv = get_pv_entry(pmap, FALSE);
3100	pv->pv_va = va;
3101	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3102}
3103
3104static __inline pv_entry_t
3105pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3106{
3107	pv_entry_t pv;
3108
3109	rw_assert(&pvh_global_lock, RA_WLOCKED);
3110	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3111		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3112			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3113			break;
3114		}
3115	}
3116	return (pv);
3117}
3118
3119static void
3120pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3121{
3122	pv_entry_t pv;
3123
3124	pv = pmap_pvh_remove(pvh, pmap, va);
3125	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3126	free_pv_entry(pmap, pv);
3127}
3128
3129static void
3130pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3131{
3132	struct md_page *pvh;
3133
3134	rw_assert(&pvh_global_lock, RA_WLOCKED);
3135	pmap_pvh_free(&m->md, pmap, va);
3136	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3137		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3138		if (TAILQ_EMPTY(&pvh->pv_list))
3139			vm_page_aflag_clear(m, PGA_WRITEABLE);
3140	}
3141}
3142
3143static void
3144pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3145{
3146	struct md_page *pvh;
3147	pv_entry_t pv;
3148	vm_offset_t va_last;
3149	vm_page_t m;
3150
3151	rw_assert(&pvh_global_lock, RA_WLOCKED);
3152	KASSERT((pa & PTE1_OFFSET) == 0,
3153	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3154
3155	/*
3156	 * Transfer the 1mpage's pv entry for this mapping to the first
3157	 * page's pv list.
3158	 */
3159	pvh = pa_to_pvh(pa);
3160	va = pte1_trunc(va);
3161	pv = pmap_pvh_remove(pvh, pmap, va);
3162	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3163	m = PHYS_TO_VM_PAGE(pa);
3164	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3165	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3166	va_last = va + PTE1_SIZE - PAGE_SIZE;
3167	do {
3168		m++;
3169		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3170		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3171		va += PAGE_SIZE;
3172		pmap_insert_entry(pmap, va, m);
3173	} while (va < va_last);
3174}
3175
3176#if VM_NRESERVLEVEL > 0
3177static void
3178pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3179{
3180	struct md_page *pvh;
3181	pv_entry_t pv;
3182	vm_offset_t va_last;
3183	vm_page_t m;
3184
3185	rw_assert(&pvh_global_lock, RA_WLOCKED);
3186	KASSERT((pa & PTE1_OFFSET) == 0,
3187	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3188
3189	/*
3190	 * Transfer the first page's pv entry for this mapping to the
3191	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3192	 * to get_pv_entry(), a transfer avoids the possibility that
3193	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3194	 * removes one of the mappings that is being promoted.
3195	 */
3196	m = PHYS_TO_VM_PAGE(pa);
3197	va = pte1_trunc(va);
3198	pv = pmap_pvh_remove(&m->md, pmap, va);
3199	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3200	pvh = pa_to_pvh(pa);
3201	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3202	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3203	va_last = va + PTE1_SIZE - PAGE_SIZE;
3204	do {
3205		m++;
3206		va += PAGE_SIZE;
3207		pmap_pvh_free(&m->md, pmap, va);
3208	} while (va < va_last);
3209}
3210#endif
3211
3212/*
3213 *  Conditionally create a pv entry.
3214 */
3215static boolean_t
3216pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3217{
3218	pv_entry_t pv;
3219
3220	rw_assert(&pvh_global_lock, RA_WLOCKED);
3221	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3222	if (pv_entry_count < pv_entry_high_water &&
3223	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3224		pv->pv_va = va;
3225		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3226		return (TRUE);
3227	} else
3228		return (FALSE);
3229}
3230
3231/*
3232 *  Create the pv entries for each of the pages within a section.
3233 */
3234static boolean_t
3235pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3236{
3237	struct md_page *pvh;
3238	pv_entry_t pv;
3239
3240	rw_assert(&pvh_global_lock, RA_WLOCKED);
3241	if (pv_entry_count < pv_entry_high_water &&
3242	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3243		pv->pv_va = va;
3244		pvh = pa_to_pvh(pa);
3245		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3246		return (TRUE);
3247	} else
3248		return (FALSE);
3249}
3250
3251static inline void
3252pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3253{
3254
3255	/* Kill all the small mappings or the big one only. */
3256	if (pte1_is_section(npte1))
3257		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3258	else
3259		pmap_tlb_flush(pmap, pte1_trunc(va));
3260}
3261
3262/*
3263 *  Update kernel pte1 on all pmaps.
3264 *
3265 *  The following function is called only on one cpu with disabled interrupts.
3266 *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3267 *  nobody can invoke explicit hardware table walk during the update of pte1.
3268 *  Unsolicited hardware table walk can still happen, invoked by speculative
3269 *  data or instruction prefetch or even by speculative hardware table walk.
3270 *
3271 *  The break-before-make approach should be implemented here. However, it's
3272 *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3273 *  itself unexpectedly but voluntarily.
3274 */
3275static void
3276pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3277{
3278	pmap_t pmap;
3279	pt1_entry_t *pte1p;
3280
3281	/*
3282	 * Get current pmap. Interrupts should be disabled here
3283	 * so PCPU_GET() is done atomically.
3284	 */
3285	pmap = PCPU_GET(curpmap);
3286	if (pmap == NULL)
3287		pmap = kernel_pmap;
3288
3289	/*
3290	 * (1) Change pte1 on current pmap.
3291	 * (2) Flush all obsolete TLB entries on current CPU.
3292	 * (3) Change pte1 on all pmaps.
3293	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3294	 */
3295
3296	pte1p = pmap_pte1(pmap, va);
3297	pte1_store(pte1p, npte1);
3298
3299	/* Kill all the small mappings or the big one only. */
3300	if (pte1_is_section(npte1)) {
3301		pmap_pte1_kern_promotions++;
3302		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3303	} else {
3304		pmap_pte1_kern_demotions++;
3305		tlb_flush_local(pte1_trunc(va));
3306	}
3307
3308	/*
3309	 * In SMP case, this function is called when all cpus are at smp
3310	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3311	 * In UP case, the function is called with this lock locked.
3312	 */
3313	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3314		pte1p = pmap_pte1(pmap, va);
3315		pte1_store(pte1p, npte1);
3316	}
3317
3318#ifdef SMP
3319	/* Kill all the small mappings or the big one only. */
3320	if (pte1_is_section(npte1))
3321		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3322	else
3323		tlb_flush(pte1_trunc(va));
3324#endif
3325}
3326
3327#ifdef SMP
3328struct pte1_action {
3329	vm_offset_t va;
3330	pt1_entry_t npte1;
3331	u_int update;		/* CPU that updates the PTE1 */
3332};
3333
3334static void
3335pmap_update_pte1_action(void *arg)
3336{
3337	struct pte1_action *act = arg;
3338
3339	if (act->update == PCPU_GET(cpuid))
3340		pmap_update_pte1_kernel(act->va, act->npte1);
3341}
3342
3343/*
3344 *  Change pte1 on current pmap.
3345 *  Note that kernel pte1 must be changed on all pmaps.
3346 *
3347 *  According to the architecture reference manual published by ARM,
3348 *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3349 *  According to this manual, UNPREDICTABLE behaviours must never happen in
3350 *  a viable system. In contrast, on x86 processors, it is not specified which
3351 *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3352 *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3353 *  Black).
3354 *
3355 *  It's a problem when either promotion or demotion is being done. The pte1
3356 *  update and appropriate TLB flush must be done atomically in general.
3357 */
3358static void
3359pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3360    pt1_entry_t npte1)
3361{
3362
3363	if (pmap == kernel_pmap) {
3364		struct pte1_action act;
3365
3366		sched_pin();
3367		act.va = va;
3368		act.npte1 = npte1;
3369		act.update = PCPU_GET(cpuid);
3370		smp_rendezvous_cpus(all_cpus, smp_no_rendevous_barrier,
3371		    pmap_update_pte1_action, NULL, &act);
3372		sched_unpin();
3373	} else {
3374		register_t cspr;
3375
3376		/*
3377		 * Use break-before-make approach for changing userland
3378		 * mappings. It can cause L1 translation aborts on other
3379		 * cores in SMP case. So, special treatment is implemented
3380		 * in pmap_fault(). To reduce the likelihood that another core
3381		 * will be affected by the broken mapping, disable interrupts
3382		 * until the mapping change is completed.
3383		 */
3384		cspr = disable_interrupts(PSR_I | PSR_F);
3385		pte1_clear(pte1p);
3386		pmap_tlb_flush_pte1(pmap, va, npte1);
3387		pte1_store(pte1p, npte1);
3388		restore_interrupts(cspr);
3389	}
3390}
3391#else
3392static void
3393pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3394    pt1_entry_t npte1)
3395{
3396
3397	if (pmap == kernel_pmap) {
3398		mtx_lock_spin(&allpmaps_lock);
3399		pmap_update_pte1_kernel(va, npte1);
3400		mtx_unlock_spin(&allpmaps_lock);
3401	} else {
3402		register_t cspr;
3403
3404		/*
3405		 * Use break-before-make approach for changing userland
3406		 * mappings. It's absolutely safe in UP case when interrupts
3407		 * are disabled.
3408		 */
3409		cspr = disable_interrupts(PSR_I | PSR_F);
3410		pte1_clear(pte1p);
3411		pmap_tlb_flush_pte1(pmap, va, npte1);
3412		pte1_store(pte1p, npte1);
3413		restore_interrupts(cspr);
3414	}
3415}
3416#endif
3417
3418#if VM_NRESERVLEVEL > 0
3419/*
3420 *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3421 *  within a single page table page (PT2) to a single 1MB page mapping.
3422 *  For promotion to occur, two conditions must be met: (1) the 4KB page
3423 *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3424 *  mappings must have identical characteristics.
3425 *
3426 *  Managed (PG_MANAGED) mappings within the kernel address space are not
3427 *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3428 *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3429 *  read the PTE1 from the kernel pmap.
3430 */
3431static void
3432pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3433{
3434	pt1_entry_t npte1;
3435	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3436	pt2_entry_t *pte2p, pte2;
3437	vm_offset_t pteva __unused;
3438	vm_page_t m __unused;
3439
3440	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3441	    pmap, va, pte1_load(pte1p), pte1p));
3442
3443	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3444
3445	/*
3446	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3447	 * either invalid, unused, or does not map the first 4KB physical page
3448	 * within a 1MB page.
3449	 */
3450	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3451	fpte2 = pte2_load(fpte2p);
3452	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3453	    (PTE2_A | PTE2_V)) {
3454		pmap_pte1_p_failures++;
3455		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3456		    __func__, va, pmap);
3457		return;
3458	}
3459	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3460		pmap_pte1_p_failures++;
3461		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3462		    __func__, va, pmap);
3463		return;
3464	}
3465	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3466		/*
3467		 * When page is not modified, PTE2_RO can be set without
3468		 * a TLB invalidation.
3469		 */
3470		fpte2 |= PTE2_RO;
3471		pte2_store(fpte2p, fpte2);
3472	}
3473
3474	/*
3475	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3476	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3477	 * characteristics to the first PTE2.
3478	 */
3479	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3480	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3481	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3482		pte2 = pte2_load(pte2p);
3483		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3484			pmap_pte1_p_failures++;
3485			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3486			    __func__, va, pmap);
3487			return;
3488		}
3489		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3490			/*
3491			 * When page is not modified, PTE2_RO can be set
3492			 * without a TLB invalidation. See note above.
3493			 */
3494			pte2 |= PTE2_RO;
3495			pte2_store(pte2p, pte2);
3496			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3497			    PTE2_FRAME);
3498			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3499			    __func__, pteva, pmap);
3500		}
3501		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3502			pmap_pte1_p_failures++;
3503			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3504			    __func__, va, pmap);
3505			return;
3506		}
3507
3508		fpte2_fav -= PTE2_SIZE;
3509	}
3510	/*
3511	 * The page table page in its current state will stay in PT2TAB
3512	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3513	 * or destroyed by pmap_remove_pte1().
3514	 *
3515	 * Note that L2 page table size is not equal to PAGE_SIZE.
3516	 */
3517	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3518	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3519	    ("%s: PT2 page is out of range", __func__));
3520	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3521	    ("%s: PT2 page's pindex is wrong", __func__));
3522
3523	/*
3524	 * Get pte1 from pte2 format.
3525	 */
3526	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3527
3528	/*
3529	 * Promote the pv entries.
3530	 */
3531	if (pte2_is_managed(fpte2))
3532		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3533
3534	/*
3535	 * Promote the mappings.
3536	 */
3537	pmap_change_pte1(pmap, pte1p, va, npte1);
3538
3539	pmap_pte1_promotions++;
3540	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3541	    __func__, va, pmap);
3542
3543	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3544	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3545}
3546#endif /* VM_NRESERVLEVEL > 0 */
3547
3548/*
3549 *  Zero L2 page table page.
3550 */
3551static __inline void
3552pmap_clear_pt2(pt2_entry_t *fpte2p)
3553{
3554	pt2_entry_t *pte2p;
3555
3556	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3557		pte2_clear(pte2p);
3558
3559}
3560
3561/*
3562 *  Removes a 1MB page mapping from the kernel pmap.
3563 */
3564static void
3565pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3566{
3567	vm_page_t m;
3568	uint32_t pte1_idx;
3569	pt2_entry_t *fpte2p;
3570	vm_paddr_t pt2_pa;
3571
3572	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3573	m = pmap_pt2_page(pmap, va);
3574	if (m == NULL)
3575		/*
3576		 * QQQ: Is this function called only on promoted pte1?
3577		 *      We certainly do section mappings directly
3578		 *      (without promotion) in kernel !!!
3579		 */
3580		panic("%s: missing pt2 page", __func__);
3581
3582	pte1_idx = pte1_index(va);
3583
3584	/*
3585	 * Initialize the L2 page table.
3586	 */
3587	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3588	pmap_clear_pt2(fpte2p);
3589
3590	/*
3591	 * Remove the mapping.
3592	 */
3593	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3594	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3595
3596	/*
3597	 * QQQ: We do not need to invalidate PT2MAP mapping
3598	 * as we did not change it. I.e. the L2 page table page
3599	 * was and still is mapped the same way.
3600	 */
3601}
3602
3603/*
3604 *  Do the things to unmap a section in a process
3605 */
3606static void
3607pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3608    struct spglist *free)
3609{
3610	pt1_entry_t opte1;
3611	struct md_page *pvh;
3612	vm_offset_t eva, va;
3613	vm_page_t m;
3614
3615	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3616	    pte1_load(pte1p), pte1p));
3617
3618	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3619	KASSERT((sva & PTE1_OFFSET) == 0,
3620	    ("%s: sva is not 1mpage aligned", __func__));
3621
3622	/*
3623	 * Clear and invalidate the mapping. It should occupy one and only TLB
3624	 * entry. So, pmap_tlb_flush() called with aligned address should be
3625	 * sufficient.
3626	 */
3627	opte1 = pte1_load_clear(pte1p);
3628	pmap_tlb_flush(pmap, sva);
3629
3630	if (pte1_is_wired(opte1))
3631		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3632	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3633	if (pte1_is_managed(opte1)) {
3634		pvh = pa_to_pvh(pte1_pa(opte1));
3635		pmap_pvh_free(pvh, pmap, sva);
3636		eva = sva + PTE1_SIZE;
3637		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3638		    va < eva; va += PAGE_SIZE, m++) {
3639			if (pte1_is_dirty(opte1))
3640				vm_page_dirty(m);
3641			if (opte1 & PTE1_A)
3642				vm_page_aflag_set(m, PGA_REFERENCED);
3643			if (TAILQ_EMPTY(&m->md.pv_list) &&
3644			    TAILQ_EMPTY(&pvh->pv_list))
3645				vm_page_aflag_clear(m, PGA_WRITEABLE);
3646		}
3647	}
3648	if (pmap == kernel_pmap) {
3649		/*
3650		 * L2 page table(s) can't be removed from kernel map as
3651		 * kernel counts on it (stuff around pmap_growkernel()).
3652		 */
3653		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3654	} else {
3655		/*
3656		 * Get associated L2 page table page.
3657		 * It's possible that the page was never allocated.
3658		 */
3659		m = pmap_pt2_page(pmap, sva);
3660		if (m != NULL)
3661			pmap_unwire_pt2_all(pmap, sva, m, free);
3662	}
3663}
3664
3665/*
3666 *  Fills L2 page table page with mappings to consecutive physical pages.
3667 */
3668static __inline void
3669pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3670{
3671	pt2_entry_t *pte2p;
3672
3673	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3674		pte2_store(pte2p, npte2);
3675		npte2 += PTE2_SIZE;
3676	}
3677}
3678
3679/*
3680 *  Tries to demote a 1MB page mapping. If demotion fails, the
3681 *  1MB page mapping is invalidated.
3682 */
3683static boolean_t
3684pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3685{
3686	pt1_entry_t opte1, npte1;
3687	pt2_entry_t *fpte2p, npte2;
3688	vm_paddr_t pt2pg_pa, pt2_pa;
3689	vm_page_t m;
3690	struct spglist free;
3691	uint32_t pte1_idx, isnew = 0;
3692
3693	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3694	    pmap, va, pte1_load(pte1p), pte1p));
3695
3696	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3697
3698	opte1 = pte1_load(pte1p);
3699	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3700
3701	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3702		KASSERT(!pte1_is_wired(opte1),
3703		    ("%s: PT2 page for a wired mapping is missing", __func__));
3704
3705		/*
3706		 * Invalidate the 1MB page mapping and return
3707		 * "failure" if the mapping was never accessed or the
3708		 * allocation of the new page table page fails.
3709		 */
3710		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3711		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3712		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3713			SLIST_INIT(&free);
3714			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3715			pmap_free_zero_pages(&free);
3716			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3717			    __func__, va, pmap);
3718			return (FALSE);
3719		}
3720		if (va < VM_MAXUSER_ADDRESS)
3721			pmap->pm_stats.resident_count++;
3722
3723		isnew = 1;
3724
3725		/*
3726		 * We init all L2 page tables in the page even if
3727		 * we are going to change everything for one L2 page
3728		 * table in a while.
3729		 */
3730		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3731	} else {
3732		if (va < VM_MAXUSER_ADDRESS) {
3733			if (pt2_is_empty(m, va))
3734				isnew = 1; /* Demoting section w/o promotion. */
3735#ifdef INVARIANTS
3736			else
3737				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3738				    " count %u", __func__,
3739				    pt2_wirecount_get(m, pte1_index(va))));
3740#endif
3741		}
3742	}
3743
3744	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3745	pte1_idx = pte1_index(va);
3746	/*
3747	 * If the pmap is current, then the PT2MAP can provide access to
3748	 * the page table page (promoted L2 page tables are not unmapped).
3749	 * Otherwise, temporarily map the L2 page table page (m) into
3750	 * the kernel's address space at either PADDR1 or PADDR2.
3751	 *
3752	 * Note that L2 page table size is not equal to PAGE_SIZE.
3753	 */
3754	if (pmap_is_current(pmap))
3755		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3756	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3757		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3758			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3759#ifdef SMP
3760			PMAP1cpu = PCPU_GET(cpuid);
3761#endif
3762			tlb_flush_local((vm_offset_t)PADDR1);
3763			PMAP1changed++;
3764		} else
3765#ifdef SMP
3766		if (PMAP1cpu != PCPU_GET(cpuid)) {
3767			PMAP1cpu = PCPU_GET(cpuid);
3768			tlb_flush_local((vm_offset_t)PADDR1);
3769			PMAP1changedcpu++;
3770		} else
3771#endif
3772			PMAP1unchanged++;
3773		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3774	} else {
3775		mtx_lock(&PMAP2mutex);
3776		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3777			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3778			tlb_flush((vm_offset_t)PADDR2);
3779		}
3780		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3781	}
3782	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3783	npte1 = PTE1_LINK(pt2_pa);
3784
3785	KASSERT((opte1 & PTE1_A) != 0,
3786	    ("%s: opte1 is missing PTE1_A", __func__));
3787	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3788	    ("%s: opte1 has PTE1_NM", __func__));
3789
3790	/*
3791	 *  Get pte2 from pte1 format.
3792	*/
3793	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3794
3795	/*
3796	 * If the L2 page table page is new, initialize it. If the mapping
3797	 * has changed attributes, update the page table entries.
3798	 */
3799	if (isnew != 0) {
3800		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3801		pmap_fill_pt2(fpte2p, npte2);
3802	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3803		    (npte2 & PTE2_PROMOTE))
3804		pmap_fill_pt2(fpte2p, npte2);
3805
3806	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3807	    ("%s: fpte2p and npte2 map different physical addresses",
3808	    __func__));
3809
3810	if (fpte2p == PADDR2)
3811		mtx_unlock(&PMAP2mutex);
3812
3813	/*
3814	 * Demote the mapping. This pmap is locked. The old PTE1 has
3815	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3816	 * has not PTE1_NM set. Thus, there is no danger of a race with
3817	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3818	 * between the read above and the store below.
3819	 */
3820	pmap_change_pte1(pmap, pte1p, va, npte1);
3821
3822	/*
3823	 * Demote the pv entry. This depends on the earlier demotion
3824	 * of the mapping. Specifically, the (re)creation of a per-
3825	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3826	 * which might reclaim a newly (re)created per-page pv entry
3827	 * and destroy the associated mapping. In order to destroy
3828	 * the mapping, the PTE1 must have already changed from mapping
3829	 * the 1mpage to referencing the page table page.
3830	 */
3831	if (pte1_is_managed(opte1))
3832		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3833
3834	pmap_pte1_demotions++;
3835	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3836	    __func__, va, pmap);
3837
3838	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3839	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3840	return (TRUE);
3841}
3842
3843/*
3844 *	Insert the given physical page (p) at
3845 *	the specified virtual address (v) in the
3846 *	target physical map with the protection requested.
3847 *
3848 *	If specified, the page will be wired down, meaning
3849 *	that the related pte can not be reclaimed.
3850 *
3851 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3852 *	or lose information.  That is, this routine must actually
3853 *	insert this page into the given map NOW.
3854 */
3855int
3856pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3857    u_int flags, int8_t psind)
3858{
3859	pt1_entry_t *pte1p;
3860	pt2_entry_t *pte2p;
3861	pt2_entry_t npte2, opte2;
3862	pv_entry_t pv;
3863	vm_paddr_t opa, pa;
3864	vm_page_t mpte2, om;
3865	boolean_t wired;
3866
3867	va = trunc_page(va);
3868	mpte2 = NULL;
3869	wired = (flags & PMAP_ENTER_WIRED) != 0;
3870
3871	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3872	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3873	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3874	    va));
3875	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3876		VM_OBJECT_ASSERT_LOCKED(m->object);
3877
3878	rw_wlock(&pvh_global_lock);
3879	PMAP_LOCK(pmap);
3880	sched_pin();
3881
3882	/*
3883	 * In the case that a page table page is not
3884	 * resident, we are creating it here.
3885	 */
3886	if (va < VM_MAXUSER_ADDRESS) {
3887		mpte2 = pmap_allocpte2(pmap, va, flags);
3888		if (mpte2 == NULL) {
3889			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3890			    ("pmap_allocpte2 failed with sleep allowed"));
3891			sched_unpin();
3892			rw_wunlock(&pvh_global_lock);
3893			PMAP_UNLOCK(pmap);
3894			return (KERN_RESOURCE_SHORTAGE);
3895		}
3896	}
3897	pte1p = pmap_pte1(pmap, va);
3898	if (pte1_is_section(pte1_load(pte1p)))
3899		panic("%s: attempted on 1MB page", __func__);
3900	pte2p = pmap_pte2_quick(pmap, va);
3901	if (pte2p == NULL)
3902		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3903
3904	om = NULL;
3905	pa = VM_PAGE_TO_PHYS(m);
3906	opte2 = pte2_load(pte2p);
3907	opa = pte2_pa(opte2);
3908	/*
3909	 * Mapping has not changed, must be protection or wiring change.
3910	 */
3911	if (pte2_is_valid(opte2) && (opa == pa)) {
3912		/*
3913		 * Wiring change, just update stats. We don't worry about
3914		 * wiring PT2 pages as they remain resident as long as there
3915		 * are valid mappings in them. Hence, if a user page is wired,
3916		 * the PT2 page will be also.
3917		 */
3918		if (wired && !pte2_is_wired(opte2))
3919			pmap->pm_stats.wired_count++;
3920		else if (!wired && pte2_is_wired(opte2))
3921			pmap->pm_stats.wired_count--;
3922
3923		/*
3924		 * Remove extra pte2 reference
3925		 */
3926		if (mpte2)
3927			pt2_wirecount_dec(mpte2, pte1_index(va));
3928		if (pte2_is_managed(opte2))
3929			om = m;
3930		goto validate;
3931	}
3932
3933	/*
3934	 * QQQ: We think that changing physical address on writeable mapping
3935	 *      is not safe. Well, maybe on kernel address space with correct
3936	 *      locking, it can make a sense. However, we have no idea why
3937	 *      anyone should do that on user address space. Are we wrong?
3938	 */
3939	KASSERT((opa == 0) || (opa == pa) ||
3940	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3941	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3942	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3943
3944	pv = NULL;
3945
3946	/*
3947	 * Mapping has changed, invalidate old range and fall through to
3948	 * handle validating new mapping.
3949	 */
3950	if (opa) {
3951		if (pte2_is_wired(opte2))
3952			pmap->pm_stats.wired_count--;
3953		if (pte2_is_managed(opte2)) {
3954			om = PHYS_TO_VM_PAGE(opa);
3955			pv = pmap_pvh_remove(&om->md, pmap, va);
3956		}
3957		/*
3958		 * Remove extra pte2 reference
3959		 */
3960		if (mpte2 != NULL)
3961			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3962	} else
3963		pmap->pm_stats.resident_count++;
3964
3965	/*
3966	 * Enter on the PV list if part of our managed memory.
3967	 */
3968	if ((m->oflags & VPO_UNMANAGED) == 0) {
3969		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3970		    ("%s: managed mapping within the clean submap", __func__));
3971		if (pv == NULL)
3972			pv = get_pv_entry(pmap, FALSE);
3973		pv->pv_va = va;
3974		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3975	} else if (pv != NULL)
3976		free_pv_entry(pmap, pv);
3977
3978	/*
3979	 * Increment counters
3980	 */
3981	if (wired)
3982		pmap->pm_stats.wired_count++;
3983
3984validate:
3985	/*
3986	 * Now validate mapping with desired protection/wiring.
3987	 */
3988	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3989	if (prot & VM_PROT_WRITE) {
3990		if (pte2_is_managed(npte2))
3991			vm_page_aflag_set(m, PGA_WRITEABLE);
3992	}
3993	else
3994		npte2 |= PTE2_RO;
3995	if ((prot & VM_PROT_EXECUTE) == 0)
3996		npte2 |= PTE2_NX;
3997	if (wired)
3998		npte2 |= PTE2_W;
3999	if (va < VM_MAXUSER_ADDRESS)
4000		npte2 |= PTE2_U;
4001	if (pmap != kernel_pmap)
4002		npte2 |= PTE2_NG;
4003
4004	/*
4005	 * If the mapping or permission bits are different, we need
4006	 * to update the pte2.
4007	 *
4008	 * QQQ: Think again and again what to do
4009	 *      if the mapping is going to be changed!
4010	 */
4011	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4012		/*
4013		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4014		 * is set. Do it now, before the mapping is stored and made
4015		 * valid for hardware table walk. If done later, there is a race
4016		 * for other threads of current process in lazy loading case.
4017		 * Don't do it for kernel memory which is mapped with exec
4018		 * permission even if the memory isn't going to hold executable
4019		 * code. The only time when icache sync is needed is after
4020		 * kernel module is loaded and the relocation info is processed.
4021		 * And it's done in elf_cpu_load_file().
4022		 *
4023		 * QQQ: (1) Does it exist any better way where
4024		 *          or how to sync icache?
4025		 *      (2) Now, we do it on a page basis.
4026		 */
4027		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4028		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4029		    (opa != pa || (opte2 & PTE2_NX)))
4030			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4031
4032		npte2 |= PTE2_A;
4033		if (flags & VM_PROT_WRITE)
4034			npte2 &= ~PTE2_NM;
4035		if (opte2 & PTE2_V) {
4036			/* Change mapping with break-before-make approach. */
4037			opte2 = pte2_load_clear(pte2p);
4038			pmap_tlb_flush(pmap, va);
4039			pte2_store(pte2p, npte2);
4040			if (opte2 & PTE2_A) {
4041				if (pte2_is_managed(opte2))
4042					vm_page_aflag_set(om, PGA_REFERENCED);
4043			}
4044			if (pte2_is_dirty(opte2)) {
4045				if (pte2_is_managed(opte2))
4046					vm_page_dirty(om);
4047			}
4048			if (pte2_is_managed(opte2) &&
4049			    TAILQ_EMPTY(&om->md.pv_list) &&
4050			    ((om->flags & PG_FICTITIOUS) != 0 ||
4051			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4052				vm_page_aflag_clear(om, PGA_WRITEABLE);
4053		} else
4054			pte2_store(pte2p, npte2);
4055	}
4056#if 0
4057	else {
4058		/*
4059		 * QQQ: In time when both access and not mofified bits are
4060		 *      emulated by software, this should not happen. Some
4061		 *      analysis is need, if this really happen. Missing
4062		 *      tlb flush somewhere could be the reason.
4063		 */
4064		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4065		    va, opte2, npte2);
4066	}
4067#endif
4068
4069#if VM_NRESERVLEVEL > 0
4070	/*
4071	 * If both the L2 page table page and the reservation are fully
4072	 * populated, then attempt promotion.
4073	 */
4074	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4075	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4076	    vm_reserv_level_iffullpop(m) == 0)
4077		pmap_promote_pte1(pmap, pte1p, va);
4078#endif
4079	sched_unpin();
4080	rw_wunlock(&pvh_global_lock);
4081	PMAP_UNLOCK(pmap);
4082	return (KERN_SUCCESS);
4083}
4084
4085/*
4086 *  Do the things to unmap a page in a process.
4087 */
4088static int
4089pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4090    struct spglist *free)
4091{
4092	pt2_entry_t opte2;
4093	vm_page_t m;
4094
4095	rw_assert(&pvh_global_lock, RA_WLOCKED);
4096	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4097
4098	/* Clear and invalidate the mapping. */
4099	opte2 = pte2_load_clear(pte2p);
4100	pmap_tlb_flush(pmap, va);
4101
4102	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4103	    __func__, pmap, va, opte2));
4104
4105	if (opte2 & PTE2_W)
4106		pmap->pm_stats.wired_count -= 1;
4107	pmap->pm_stats.resident_count -= 1;
4108	if (pte2_is_managed(opte2)) {
4109		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4110		if (pte2_is_dirty(opte2))
4111			vm_page_dirty(m);
4112		if (opte2 & PTE2_A)
4113			vm_page_aflag_set(m, PGA_REFERENCED);
4114		pmap_remove_entry(pmap, m, va);
4115	}
4116	return (pmap_unuse_pt2(pmap, va, free));
4117}
4118
4119/*
4120 *  Remove a single page from a process address space.
4121 */
4122static void
4123pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4124{
4125	pt2_entry_t *pte2p;
4126
4127	rw_assert(&pvh_global_lock, RA_WLOCKED);
4128	KASSERT(curthread->td_pinned > 0,
4129	    ("%s: curthread not pinned", __func__));
4130	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4131	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4132	    !pte2_is_valid(pte2_load(pte2p)))
4133		return;
4134	pmap_remove_pte2(pmap, pte2p, va, free);
4135}
4136
4137/*
4138 *  Remove the given range of addresses from the specified map.
4139 *
4140 *  It is assumed that the start and end are properly
4141 *  rounded to the page size.
4142 */
4143void
4144pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4145{
4146	vm_offset_t nextva;
4147	pt1_entry_t *pte1p, pte1;
4148	pt2_entry_t *pte2p, pte2;
4149	struct spglist free;
4150
4151	/*
4152	 * Perform an unsynchronized read. This is, however, safe.
4153	 */
4154	if (pmap->pm_stats.resident_count == 0)
4155		return;
4156
4157	SLIST_INIT(&free);
4158
4159	rw_wlock(&pvh_global_lock);
4160	sched_pin();
4161	PMAP_LOCK(pmap);
4162
4163	/*
4164	 * Special handling of removing one page. A very common
4165	 * operation and easy to short circuit some code.
4166	 */
4167	if (sva + PAGE_SIZE == eva) {
4168		pte1 = pte1_load(pmap_pte1(pmap, sva));
4169		if (pte1_is_link(pte1)) {
4170			pmap_remove_page(pmap, sva, &free);
4171			goto out;
4172		}
4173	}
4174
4175	for (; sva < eva; sva = nextva) {
4176		/*
4177		 * Calculate address for next L2 page table.
4178		 */
4179		nextva = pte1_trunc(sva + PTE1_SIZE);
4180		if (nextva < sva)
4181			nextva = eva;
4182		if (pmap->pm_stats.resident_count == 0)
4183			break;
4184
4185		pte1p = pmap_pte1(pmap, sva);
4186		pte1 = pte1_load(pte1p);
4187
4188		/*
4189		 * Weed out invalid mappings. Note: we assume that the L1 page
4190		 * table is always allocated, and in kernel virtual.
4191		 */
4192		if (pte1 == 0)
4193			continue;
4194
4195		if (pte1_is_section(pte1)) {
4196			/*
4197			 * Are we removing the entire large page?  If not,
4198			 * demote the mapping and fall through.
4199			 */
4200			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4201				pmap_remove_pte1(pmap, pte1p, sva, &free);
4202				continue;
4203			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4204				/* The large page mapping was destroyed. */
4205				continue;
4206			}
4207#ifdef INVARIANTS
4208			else {
4209				/* Update pte1 after demotion. */
4210				pte1 = pte1_load(pte1p);
4211			}
4212#endif
4213		}
4214
4215		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4216		    " is not link", __func__, pmap, sva, pte1, pte1p));
4217
4218		/*
4219		 * Limit our scan to either the end of the va represented
4220		 * by the current L2 page table page, or to the end of the
4221		 * range being removed.
4222		 */
4223		if (nextva > eva)
4224			nextva = eva;
4225
4226		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4227		    pte2p++, sva += PAGE_SIZE) {
4228			pte2 = pte2_load(pte2p);
4229			if (!pte2_is_valid(pte2))
4230				continue;
4231			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4232				break;
4233		}
4234	}
4235out:
4236	sched_unpin();
4237	rw_wunlock(&pvh_global_lock);
4238	PMAP_UNLOCK(pmap);
4239	pmap_free_zero_pages(&free);
4240}
4241
4242/*
4243 *	Routine:	pmap_remove_all
4244 *	Function:
4245 *		Removes this physical page from
4246 *		all physical maps in which it resides.
4247 *		Reflects back modify bits to the pager.
4248 *
4249 *	Notes:
4250 *		Original versions of this routine were very
4251 *		inefficient because they iteratively called
4252 *		pmap_remove (slow...)
4253 */
4254
4255void
4256pmap_remove_all(vm_page_t m)
4257{
4258	struct md_page *pvh;
4259	pv_entry_t pv;
4260	pmap_t pmap;
4261	pt2_entry_t *pte2p, opte2;
4262	pt1_entry_t *pte1p;
4263	vm_offset_t va;
4264	struct spglist free;
4265
4266	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4267	    ("%s: page %p is not managed", __func__, m));
4268	SLIST_INIT(&free);
4269	rw_wlock(&pvh_global_lock);
4270	sched_pin();
4271	if ((m->flags & PG_FICTITIOUS) != 0)
4272		goto small_mappings;
4273	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4274	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4275		va = pv->pv_va;
4276		pmap = PV_PMAP(pv);
4277		PMAP_LOCK(pmap);
4278		pte1p = pmap_pte1(pmap, va);
4279		(void)pmap_demote_pte1(pmap, pte1p, va);
4280		PMAP_UNLOCK(pmap);
4281	}
4282small_mappings:
4283	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4284		pmap = PV_PMAP(pv);
4285		PMAP_LOCK(pmap);
4286		pmap->pm_stats.resident_count--;
4287		pte1p = pmap_pte1(pmap, pv->pv_va);
4288		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4289		    "a 1mpage in page %p's pv list", __func__, m));
4290		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4291		opte2 = pte2_load_clear(pte2p);
4292		pmap_tlb_flush(pmap, pv->pv_va);
4293		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4294		    __func__, pmap, pv->pv_va));
4295		if (pte2_is_wired(opte2))
4296			pmap->pm_stats.wired_count--;
4297		if (opte2 & PTE2_A)
4298			vm_page_aflag_set(m, PGA_REFERENCED);
4299
4300		/*
4301		 * Update the vm_page_t clean and reference bits.
4302		 */
4303		if (pte2_is_dirty(opte2))
4304			vm_page_dirty(m);
4305		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4306		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4307		free_pv_entry(pmap, pv);
4308		PMAP_UNLOCK(pmap);
4309	}
4310	vm_page_aflag_clear(m, PGA_WRITEABLE);
4311	sched_unpin();
4312	rw_wunlock(&pvh_global_lock);
4313	pmap_free_zero_pages(&free);
4314}
4315
4316/*
4317 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4318 *  good coding style, a.k.a. 80 character line width limit hell.
4319 */
4320static __inline void
4321pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4322    struct spglist *free)
4323{
4324	vm_paddr_t pa;
4325	vm_page_t m, mt, mpt2pg;
4326	struct md_page *pvh;
4327
4328	pa = pte1_pa(pte1);
4329	m = PHYS_TO_VM_PAGE(pa);
4330
4331	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4332	    __func__, m, m->phys_addr, pa));
4333	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4334	    m < &vm_page_array[vm_page_array_size],
4335	    ("%s: bad pte1 %#x", __func__, pte1));
4336
4337	if (pte1_is_dirty(pte1)) {
4338		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4339			vm_page_dirty(mt);
4340	}
4341
4342	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4343	pvh = pa_to_pvh(pa);
4344	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4345	if (TAILQ_EMPTY(&pvh->pv_list)) {
4346		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4347			if (TAILQ_EMPTY(&mt->md.pv_list))
4348				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4349	}
4350	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4351	if (mpt2pg != NULL)
4352		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4353}
4354
4355/*
4356 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4357 *  good coding style, a.k.a. 80 character line width limit hell.
4358 */
4359static __inline void
4360pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4361    struct spglist *free)
4362{
4363	vm_paddr_t pa;
4364	vm_page_t m;
4365	struct md_page *pvh;
4366
4367	pa = pte2_pa(pte2);
4368	m = PHYS_TO_VM_PAGE(pa);
4369
4370	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4371	    __func__, m, m->phys_addr, pa));
4372	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4373	    m < &vm_page_array[vm_page_array_size],
4374	    ("%s: bad pte2 %#x", __func__, pte2));
4375
4376	if (pte2_is_dirty(pte2))
4377		vm_page_dirty(m);
4378
4379	pmap->pm_stats.resident_count--;
4380	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4381	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4382		pvh = pa_to_pvh(pa);
4383		if (TAILQ_EMPTY(&pvh->pv_list))
4384			vm_page_aflag_clear(m, PGA_WRITEABLE);
4385	}
4386	pmap_unuse_pt2(pmap, pv->pv_va, free);
4387}
4388
4389/*
4390 *  Remove all pages from specified address space this aids process
4391 *  exit speeds. Also, this code is special cased for current process
4392 *  only, but can have the more generic (and slightly slower) mode enabled.
4393 *  This is much faster than pmap_remove in the case of running down
4394 *  an entire address space.
4395 */
4396void
4397pmap_remove_pages(pmap_t pmap)
4398{
4399	pt1_entry_t *pte1p, pte1;
4400	pt2_entry_t *pte2p, pte2;
4401	pv_entry_t pv;
4402	struct pv_chunk *pc, *npc;
4403	struct spglist free;
4404	int field, idx;
4405	int32_t bit;
4406	uint32_t inuse, bitmask;
4407	boolean_t allfree;
4408
4409	/*
4410	 * Assert that the given pmap is only active on the current
4411	 * CPU.  Unfortunately, we cannot block another CPU from
4412	 * activating the pmap while this function is executing.
4413	 */
4414	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4415	    ("%s: non-current pmap %p", __func__, pmap));
4416#if defined(SMP) && defined(INVARIANTS)
4417	{
4418		cpuset_t other_cpus;
4419
4420		sched_pin();
4421		other_cpus = pmap->pm_active;
4422		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4423		sched_unpin();
4424		KASSERT(CPU_EMPTY(&other_cpus),
4425		    ("%s: pmap %p active on other cpus", __func__, pmap));
4426	}
4427#endif
4428	SLIST_INIT(&free);
4429	rw_wlock(&pvh_global_lock);
4430	PMAP_LOCK(pmap);
4431	sched_pin();
4432	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4433		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4434		    __func__, pmap, pc->pc_pmap));
4435		allfree = TRUE;
4436		for (field = 0; field < _NPCM; field++) {
4437			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4438			while (inuse != 0) {
4439				bit = ffs(inuse) - 1;
4440				bitmask = 1UL << bit;
4441				idx = field * 32 + bit;
4442				pv = &pc->pc_pventry[idx];
4443				inuse &= ~bitmask;
4444
4445				/*
4446				 * Note that we cannot remove wired pages
4447				 * from a process' mapping at this time
4448				 */
4449				pte1p = pmap_pte1(pmap, pv->pv_va);
4450				pte1 = pte1_load(pte1p);
4451				if (pte1_is_section(pte1)) {
4452					if (pte1_is_wired(pte1))  {
4453						allfree = FALSE;
4454						continue;
4455					}
4456					pte1_clear(pte1p);
4457					pmap_remove_pte1_quick(pmap, pte1, pv,
4458					    &free);
4459				}
4460				else if (pte1_is_link(pte1)) {
4461					pte2p = pt2map_entry(pv->pv_va);
4462					pte2 = pte2_load(pte2p);
4463
4464					if (!pte2_is_valid(pte2)) {
4465						printf("%s: pmap %p va %#x "
4466						    "pte2 %#x\n", __func__,
4467						    pmap, pv->pv_va, pte2);
4468						panic("bad pte2");
4469					}
4470
4471					if (pte2_is_wired(pte2))   {
4472						allfree = FALSE;
4473						continue;
4474					}
4475					pte2_clear(pte2p);
4476					pmap_remove_pte2_quick(pmap, pte2, pv,
4477					    &free);
4478				} else {
4479					printf("%s: pmap %p va %#x pte1 %#x\n",
4480					    __func__, pmap, pv->pv_va, pte1);
4481					panic("bad pte1");
4482				}
4483
4484				/* Mark free */
4485				PV_STAT(pv_entry_frees++);
4486				PV_STAT(pv_entry_spare++);
4487				pv_entry_count--;
4488				pc->pc_map[field] |= bitmask;
4489			}
4490		}
4491		if (allfree) {
4492			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4493			free_pv_chunk(pc);
4494		}
4495	}
4496	tlb_flush_all_ng_local();
4497	sched_unpin();
4498	rw_wunlock(&pvh_global_lock);
4499	PMAP_UNLOCK(pmap);
4500	pmap_free_zero_pages(&free);
4501}
4502
4503/*
4504 *  This code makes some *MAJOR* assumptions:
4505 *  1. Current pmap & pmap exists.
4506 *  2. Not wired.
4507 *  3. Read access.
4508 *  4. No L2 page table pages.
4509 *  but is *MUCH* faster than pmap_enter...
4510 */
4511static vm_page_t
4512pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4513    vm_prot_t prot, vm_page_t mpt2pg)
4514{
4515	pt2_entry_t *pte2p, pte2;
4516	vm_paddr_t pa;
4517	struct spglist free;
4518	uint32_t l2prot;
4519
4520	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4521	    (m->oflags & VPO_UNMANAGED) != 0,
4522	    ("%s: managed mapping within the clean submap", __func__));
4523	rw_assert(&pvh_global_lock, RA_WLOCKED);
4524	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4525
4526	/*
4527	 * In the case that a L2 page table page is not
4528	 * resident, we are creating it here.
4529	 */
4530	if (va < VM_MAXUSER_ADDRESS) {
4531		u_int pte1_idx;
4532		pt1_entry_t pte1, *pte1p;
4533		vm_paddr_t pt2_pa;
4534
4535		/*
4536		 * Get L1 page table things.
4537		 */
4538		pte1_idx = pte1_index(va);
4539		pte1p = pmap_pte1(pmap, va);
4540		pte1 = pte1_load(pte1p);
4541
4542		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4543			/*
4544			 * Each of NPT2_IN_PG L2 page tables on the page can
4545			 * come here. Make sure that associated L1 page table
4546			 * link is established.
4547			 *
4548			 * QQQ: It comes that we don't establish all links to
4549			 *      L2 page tables for newly allocated L2 page
4550			 *      tables page.
4551			 */
4552			KASSERT(!pte1_is_section(pte1),
4553			    ("%s: pte1 %#x is section", __func__, pte1));
4554			if (!pte1_is_link(pte1)) {
4555				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4556				    pte1_idx);
4557				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4558			}
4559			pt2_wirecount_inc(mpt2pg, pte1_idx);
4560		} else {
4561			/*
4562			 * If the L2 page table page is mapped, we just
4563			 * increment the hold count, and activate it.
4564			 */
4565			if (pte1_is_section(pte1)) {
4566				return (NULL);
4567			} else if (pte1_is_link(pte1)) {
4568				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4569				pt2_wirecount_inc(mpt2pg, pte1_idx);
4570			} else {
4571				mpt2pg = _pmap_allocpte2(pmap, va,
4572				    PMAP_ENTER_NOSLEEP);
4573				if (mpt2pg == NULL)
4574					return (NULL);
4575			}
4576		}
4577	} else {
4578		mpt2pg = NULL;
4579	}
4580
4581	/*
4582	 * This call to pt2map_entry() makes the assumption that we are
4583	 * entering the page into the current pmap.  In order to support
4584	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4585	 * But that isn't as quick as pt2map_entry().
4586	 */
4587	pte2p = pt2map_entry(va);
4588	pte2 = pte2_load(pte2p);
4589	if (pte2_is_valid(pte2)) {
4590		if (mpt2pg != NULL) {
4591			/*
4592			 * Remove extra pte2 reference
4593			 */
4594			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4595			mpt2pg = NULL;
4596		}
4597		return (NULL);
4598	}
4599
4600	/*
4601	 * Enter on the PV list if part of our managed memory.
4602	 */
4603	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4604	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4605		if (mpt2pg != NULL) {
4606			SLIST_INIT(&free);
4607			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4608				pmap_tlb_flush(pmap, va);
4609				pmap_free_zero_pages(&free);
4610			}
4611
4612			mpt2pg = NULL;
4613		}
4614		return (NULL);
4615	}
4616
4617	/*
4618	 * Increment counters
4619	 */
4620	pmap->pm_stats.resident_count++;
4621
4622	/*
4623	 * Now validate mapping with RO protection
4624	 */
4625	pa = VM_PAGE_TO_PHYS(m);
4626	l2prot = PTE2_RO | PTE2_NM;
4627	if (va < VM_MAXUSER_ADDRESS)
4628		l2prot |= PTE2_U | PTE2_NG;
4629	if ((prot & VM_PROT_EXECUTE) == 0)
4630		l2prot |= PTE2_NX;
4631	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4632		/*
4633		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4634		 * is set. QQQ: For more info, see comments in pmap_enter().
4635		 */
4636		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4637	}
4638	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4639
4640	return (mpt2pg);
4641}
4642
4643void
4644pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4645{
4646
4647	rw_wlock(&pvh_global_lock);
4648	PMAP_LOCK(pmap);
4649	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4650	rw_wunlock(&pvh_global_lock);
4651	PMAP_UNLOCK(pmap);
4652}
4653
4654/*
4655 *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4656 *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4657 *  blocking, (2) a mapping already exists at the specified virtual address, or
4658 *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4659 */
4660static boolean_t
4661pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4662{
4663	pt1_entry_t *pte1p;
4664	vm_paddr_t pa;
4665	uint32_t l1prot;
4666
4667	rw_assert(&pvh_global_lock, RA_WLOCKED);
4668	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4669	pte1p = pmap_pte1(pmap, va);
4670	if (pte1_is_valid(pte1_load(pte1p))) {
4671		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4672		    va, pmap);
4673		return (FALSE);
4674	}
4675	if ((m->oflags & VPO_UNMANAGED) == 0) {
4676		/*
4677		 * Abort this mapping if its PV entry could not be created.
4678		 */
4679		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4680			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4681			    __func__, va, pmap);
4682			return (FALSE);
4683		}
4684	}
4685	/*
4686	 * Increment counters.
4687	 */
4688	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4689
4690	/*
4691	 * Map the section.
4692	 *
4693	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4694	 *      made readonly?
4695	 */
4696	pa = VM_PAGE_TO_PHYS(m);
4697	l1prot = PTE1_RO | PTE1_NM;
4698	if (va < VM_MAXUSER_ADDRESS)
4699		l1prot |= PTE1_U | PTE1_NG;
4700	if ((prot & VM_PROT_EXECUTE) == 0)
4701		l1prot |= PTE1_NX;
4702	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4703		/*
4704		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4705		 * is set. QQQ: For more info, see comments in pmap_enter().
4706		 */
4707		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4708	}
4709	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4710
4711	pmap_pte1_mappings++;
4712	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4713	    pmap);
4714	return (TRUE);
4715}
4716
4717/*
4718 *  Maps a sequence of resident pages belonging to the same object.
4719 *  The sequence begins with the given page m_start.  This page is
4720 *  mapped at the given virtual address start.  Each subsequent page is
4721 *  mapped at a virtual address that is offset from start by the same
4722 *  amount as the page is offset from m_start within the object.  The
4723 *  last page in the sequence is the page with the largest offset from
4724 *  m_start that can be mapped at a virtual address less than the given
4725 *  virtual address end.  Not every virtual page between start and end
4726 *  is mapped; only those for which a resident page exists with the
4727 *  corresponding offset from m_start are mapped.
4728 */
4729void
4730pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4731    vm_page_t m_start, vm_prot_t prot)
4732{
4733	vm_offset_t va;
4734	vm_page_t m, mpt2pg;
4735	vm_pindex_t diff, psize;
4736
4737	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4738	    __func__, pmap, start, end, m_start, prot));
4739
4740	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4741	psize = atop(end - start);
4742	mpt2pg = NULL;
4743	m = m_start;
4744	rw_wlock(&pvh_global_lock);
4745	PMAP_LOCK(pmap);
4746	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4747		va = start + ptoa(diff);
4748		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4749		    m->psind == 1 && sp_enabled &&
4750		    pmap_enter_pte1(pmap, va, m, prot))
4751			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4752		else
4753			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4754			    mpt2pg);
4755		m = TAILQ_NEXT(m, listq);
4756	}
4757	rw_wunlock(&pvh_global_lock);
4758	PMAP_UNLOCK(pmap);
4759}
4760
4761/*
4762 *  This code maps large physical mmap regions into the
4763 *  processor address space.  Note that some shortcuts
4764 *  are taken, but the code works.
4765 */
4766void
4767pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4768    vm_pindex_t pindex, vm_size_t size)
4769{
4770	pt1_entry_t *pte1p;
4771	vm_paddr_t pa, pte2_pa;
4772	vm_page_t p;
4773	vm_memattr_t pat_mode;
4774	u_int l1attr, l1prot;
4775
4776	VM_OBJECT_ASSERT_WLOCKED(object);
4777	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4778	    ("%s: non-device object", __func__));
4779	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4780		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4781			return;
4782		p = vm_page_lookup(object, pindex);
4783		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4784		    ("%s: invalid page %p", __func__, p));
4785		pat_mode = p->md.pat_mode;
4786
4787		/*
4788		 * Abort the mapping if the first page is not physically
4789		 * aligned to a 1MB page boundary.
4790		 */
4791		pte2_pa = VM_PAGE_TO_PHYS(p);
4792		if (pte2_pa & PTE1_OFFSET)
4793			return;
4794
4795		/*
4796		 * Skip the first page. Abort the mapping if the rest of
4797		 * the pages are not physically contiguous or have differing
4798		 * memory attributes.
4799		 */
4800		p = TAILQ_NEXT(p, listq);
4801		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4802		    pa += PAGE_SIZE) {
4803			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4804			    ("%s: invalid page %p", __func__, p));
4805			if (pa != VM_PAGE_TO_PHYS(p) ||
4806			    pat_mode != p->md.pat_mode)
4807				return;
4808			p = TAILQ_NEXT(p, listq);
4809		}
4810
4811		/*
4812		 * Map using 1MB pages.
4813		 *
4814		 * QQQ: Well, we are mapping a section, so same condition must
4815		 * be hold like during promotion. It looks that only RW mapping
4816		 * is done here, so readonly mapping must be done elsewhere.
4817		 */
4818		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4819		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4820		PMAP_LOCK(pmap);
4821		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4822			pte1p = pmap_pte1(pmap, addr);
4823			if (!pte1_is_valid(pte1_load(pte1p))) {
4824				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4825				pmap->pm_stats.resident_count += PTE1_SIZE /
4826				    PAGE_SIZE;
4827				pmap_pte1_mappings++;
4828			}
4829			/* Else continue on if the PTE1 is already valid. */
4830			addr += PTE1_SIZE;
4831		}
4832		PMAP_UNLOCK(pmap);
4833	}
4834}
4835
4836/*
4837 *  Do the things to protect a 1mpage in a process.
4838 */
4839static void
4840pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4841    vm_prot_t prot)
4842{
4843	pt1_entry_t npte1, opte1;
4844	vm_offset_t eva, va;
4845	vm_page_t m;
4846
4847	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4848	KASSERT((sva & PTE1_OFFSET) == 0,
4849	    ("%s: sva is not 1mpage aligned", __func__));
4850
4851	opte1 = npte1 = pte1_load(pte1p);
4852	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4853		eva = sva + PTE1_SIZE;
4854		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4855		    va < eva; va += PAGE_SIZE, m++)
4856			vm_page_dirty(m);
4857	}
4858	if ((prot & VM_PROT_WRITE) == 0)
4859		npte1 |= PTE1_RO | PTE1_NM;
4860	if ((prot & VM_PROT_EXECUTE) == 0)
4861		npte1 |= PTE1_NX;
4862
4863	/*
4864	 * QQQ: Herein, execute permission is never set.
4865	 *      It only can be cleared. So, no icache
4866	 *      syncing is needed.
4867	 */
4868
4869	if (npte1 != opte1) {
4870		pte1_store(pte1p, npte1);
4871		pmap_tlb_flush(pmap, sva);
4872	}
4873}
4874
4875/*
4876 *	Set the physical protection on the
4877 *	specified range of this map as requested.
4878 */
4879void
4880pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4881{
4882	boolean_t pv_lists_locked;
4883	vm_offset_t nextva;
4884	pt1_entry_t *pte1p, pte1;
4885	pt2_entry_t *pte2p, opte2, npte2;
4886
4887	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4888	if (prot == VM_PROT_NONE) {
4889		pmap_remove(pmap, sva, eva);
4890		return;
4891	}
4892
4893	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4894	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4895		return;
4896
4897	if (pmap_is_current(pmap))
4898		pv_lists_locked = FALSE;
4899	else {
4900		pv_lists_locked = TRUE;
4901resume:
4902		rw_wlock(&pvh_global_lock);
4903		sched_pin();
4904	}
4905
4906	PMAP_LOCK(pmap);
4907	for (; sva < eva; sva = nextva) {
4908		/*
4909		 * Calculate address for next L2 page table.
4910		 */
4911		nextva = pte1_trunc(sva + PTE1_SIZE);
4912		if (nextva < sva)
4913			nextva = eva;
4914
4915		pte1p = pmap_pte1(pmap, sva);
4916		pte1 = pte1_load(pte1p);
4917
4918		/*
4919		 * Weed out invalid mappings. Note: we assume that L1 page
4920		 * page table is always allocated, and in kernel virtual.
4921		 */
4922		if (pte1 == 0)
4923			continue;
4924
4925		if (pte1_is_section(pte1)) {
4926			/*
4927			 * Are we protecting the entire large page?  If not,
4928			 * demote the mapping and fall through.
4929			 */
4930			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4931				pmap_protect_pte1(pmap, pte1p, sva, prot);
4932				continue;
4933			} else {
4934				if (!pv_lists_locked) {
4935					pv_lists_locked = TRUE;
4936					if (!rw_try_wlock(&pvh_global_lock)) {
4937						PMAP_UNLOCK(pmap);
4938						goto resume;
4939					}
4940					sched_pin();
4941				}
4942				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4943					/*
4944					 * The large page mapping
4945					 * was destroyed.
4946					 */
4947					continue;
4948				}
4949#ifdef INVARIANTS
4950				else {
4951					/* Update pte1 after demotion */
4952					pte1 = pte1_load(pte1p);
4953				}
4954#endif
4955			}
4956		}
4957
4958		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4959		    " is not link", __func__, pmap, sva, pte1, pte1p));
4960
4961		/*
4962		 * Limit our scan to either the end of the va represented
4963		 * by the current L2 page table page, or to the end of the
4964		 * range being protected.
4965		 */
4966		if (nextva > eva)
4967			nextva = eva;
4968
4969		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4970		    sva += PAGE_SIZE) {
4971			vm_page_t m;
4972
4973			opte2 = npte2 = pte2_load(pte2p);
4974			if (!pte2_is_valid(opte2))
4975				continue;
4976
4977			if ((prot & VM_PROT_WRITE) == 0) {
4978				if (pte2_is_managed(opte2) &&
4979				    pte2_is_dirty(opte2)) {
4980					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4981					vm_page_dirty(m);
4982				}
4983				npte2 |= PTE2_RO | PTE2_NM;
4984			}
4985
4986			if ((prot & VM_PROT_EXECUTE) == 0)
4987				npte2 |= PTE2_NX;
4988
4989			/*
4990			 * QQQ: Herein, execute permission is never set.
4991			 *      It only can be cleared. So, no icache
4992			 *      syncing is needed.
4993			 */
4994
4995			if (npte2 != opte2) {
4996				pte2_store(pte2p, npte2);
4997				pmap_tlb_flush(pmap, sva);
4998			}
4999		}
5000	}
5001	if (pv_lists_locked) {
5002		sched_unpin();
5003		rw_wunlock(&pvh_global_lock);
5004	}
5005	PMAP_UNLOCK(pmap);
5006}
5007
5008/*
5009 *	pmap_pvh_wired_mappings:
5010 *
5011 *	Return the updated number "count" of managed mappings that are wired.
5012 */
5013static int
5014pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5015{
5016	pmap_t pmap;
5017	pt1_entry_t pte1;
5018	pt2_entry_t pte2;
5019	pv_entry_t pv;
5020
5021	rw_assert(&pvh_global_lock, RA_WLOCKED);
5022	sched_pin();
5023	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5024		pmap = PV_PMAP(pv);
5025		PMAP_LOCK(pmap);
5026		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5027		if (pte1_is_section(pte1)) {
5028			if (pte1_is_wired(pte1))
5029				count++;
5030		} else {
5031			KASSERT(pte1_is_link(pte1),
5032			    ("%s: pte1 %#x is not link", __func__, pte1));
5033			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5034			if (pte2_is_wired(pte2))
5035				count++;
5036		}
5037		PMAP_UNLOCK(pmap);
5038	}
5039	sched_unpin();
5040	return (count);
5041}
5042
5043/*
5044 *	pmap_page_wired_mappings:
5045 *
5046 *	Return the number of managed mappings to the given physical page
5047 *	that are wired.
5048 */
5049int
5050pmap_page_wired_mappings(vm_page_t m)
5051{
5052	int count;
5053
5054	count = 0;
5055	if ((m->oflags & VPO_UNMANAGED) != 0)
5056		return (count);
5057	rw_wlock(&pvh_global_lock);
5058	count = pmap_pvh_wired_mappings(&m->md, count);
5059	if ((m->flags & PG_FICTITIOUS) == 0) {
5060		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5061		    count);
5062	}
5063	rw_wunlock(&pvh_global_lock);
5064	return (count);
5065}
5066
5067/*
5068 *  Returns TRUE if any of the given mappings were used to modify
5069 *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5070 *  mappings are supported.
5071 */
5072static boolean_t
5073pmap_is_modified_pvh(struct md_page *pvh)
5074{
5075	pv_entry_t pv;
5076	pt1_entry_t pte1;
5077	pt2_entry_t pte2;
5078	pmap_t pmap;
5079	boolean_t rv;
5080
5081	rw_assert(&pvh_global_lock, RA_WLOCKED);
5082	rv = FALSE;
5083	sched_pin();
5084	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5085		pmap = PV_PMAP(pv);
5086		PMAP_LOCK(pmap);
5087		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5088		if (pte1_is_section(pte1)) {
5089			rv = pte1_is_dirty(pte1);
5090		} else {
5091			KASSERT(pte1_is_link(pte1),
5092			    ("%s: pte1 %#x is not link", __func__, pte1));
5093			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5094			rv = pte2_is_dirty(pte2);
5095		}
5096		PMAP_UNLOCK(pmap);
5097		if (rv)
5098			break;
5099	}
5100	sched_unpin();
5101	return (rv);
5102}
5103
5104/*
5105 *	pmap_is_modified:
5106 *
5107 *	Return whether or not the specified physical page was modified
5108 *	in any physical maps.
5109 */
5110boolean_t
5111pmap_is_modified(vm_page_t m)
5112{
5113	boolean_t rv;
5114
5115	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5116	    ("%s: page %p is not managed", __func__, m));
5117
5118	/*
5119	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5120	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5121	 * is clear, no PTE2s can have PG_M set.
5122	 */
5123	VM_OBJECT_ASSERT_WLOCKED(m->object);
5124	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5125		return (FALSE);
5126	rw_wlock(&pvh_global_lock);
5127	rv = pmap_is_modified_pvh(&m->md) ||
5128	    ((m->flags & PG_FICTITIOUS) == 0 &&
5129	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5130	rw_wunlock(&pvh_global_lock);
5131	return (rv);
5132}
5133
5134/*
5135 *	pmap_is_prefaultable:
5136 *
5137 *	Return whether or not the specified virtual address is eligible
5138 *	for prefault.
5139 */
5140boolean_t
5141pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5142{
5143	pt1_entry_t pte1;
5144	pt2_entry_t pte2;
5145	boolean_t rv;
5146
5147	rv = FALSE;
5148	PMAP_LOCK(pmap);
5149	pte1 = pte1_load(pmap_pte1(pmap, addr));
5150	if (pte1_is_link(pte1)) {
5151		pte2 = pte2_load(pt2map_entry(addr));
5152		rv = !pte2_is_valid(pte2) ;
5153	}
5154	PMAP_UNLOCK(pmap);
5155	return (rv);
5156}
5157
5158/*
5159 *  Returns TRUE if any of the given mappings were referenced and FALSE
5160 *  otherwise. Both page and 1mpage mappings are supported.
5161 */
5162static boolean_t
5163pmap_is_referenced_pvh(struct md_page *pvh)
5164{
5165
5166	pv_entry_t pv;
5167	pt1_entry_t pte1;
5168	pt2_entry_t pte2;
5169	pmap_t pmap;
5170	boolean_t rv;
5171
5172	rw_assert(&pvh_global_lock, RA_WLOCKED);
5173	rv = FALSE;
5174	sched_pin();
5175	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5176		pmap = PV_PMAP(pv);
5177		PMAP_LOCK(pmap);
5178		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5179		if (pte1_is_section(pte1)) {
5180			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5181		} else {
5182			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5183			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5184		}
5185		PMAP_UNLOCK(pmap);
5186		if (rv)
5187			break;
5188	}
5189	sched_unpin();
5190	return (rv);
5191}
5192
5193/*
5194 *	pmap_is_referenced:
5195 *
5196 *	Return whether or not the specified physical page was referenced
5197 *	in any physical maps.
5198 */
5199boolean_t
5200pmap_is_referenced(vm_page_t m)
5201{
5202	boolean_t rv;
5203
5204	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5205	    ("%s: page %p is not managed", __func__, m));
5206	rw_wlock(&pvh_global_lock);
5207	rv = pmap_is_referenced_pvh(&m->md) ||
5208	    ((m->flags & PG_FICTITIOUS) == 0 &&
5209	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5210	rw_wunlock(&pvh_global_lock);
5211	return (rv);
5212}
5213
5214/*
5215 *	pmap_ts_referenced:
5216 *
5217 *	Return a count of reference bits for a page, clearing those bits.
5218 *	It is not necessary for every reference bit to be cleared, but it
5219 *	is necessary that 0 only be returned when there are truly no
5220 *	reference bits set.
5221 *
5222 *	As an optimization, update the page's dirty field if a modified bit is
5223 *	found while counting reference bits.  This opportunistic update can be
5224 *	performed at low cost and can eliminate the need for some future calls
5225 *	to pmap_is_modified().  However, since this function stops after
5226 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5227 *	dirty pages.  Those dirty pages will only be detected by a future call
5228 *	to pmap_is_modified().
5229 */
5230int
5231pmap_ts_referenced(vm_page_t m)
5232{
5233	struct md_page *pvh;
5234	pv_entry_t pv, pvf;
5235	pmap_t pmap;
5236	pt1_entry_t  *pte1p, opte1;
5237	pt2_entry_t *pte2p, opte2;
5238	vm_paddr_t pa;
5239	int rtval = 0;
5240
5241	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5242	    ("%s: page %p is not managed", __func__, m));
5243	pa = VM_PAGE_TO_PHYS(m);
5244	pvh = pa_to_pvh(pa);
5245	rw_wlock(&pvh_global_lock);
5246	sched_pin();
5247	if ((m->flags & PG_FICTITIOUS) != 0 ||
5248	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5249		goto small_mappings;
5250	pv = pvf;
5251	do {
5252		pmap = PV_PMAP(pv);
5253		PMAP_LOCK(pmap);
5254		pte1p = pmap_pte1(pmap, pv->pv_va);
5255		opte1 = pte1_load(pte1p);
5256		if (pte1_is_dirty(opte1)) {
5257			/*
5258			 * Although "opte1" is mapping a 1MB page, because
5259			 * this function is called at a 4KB page granularity,
5260			 * we only update the 4KB page under test.
5261			 */
5262			vm_page_dirty(m);
5263		}
5264		if ((opte1 & PTE1_A) != 0) {
5265			/*
5266			 * Since this reference bit is shared by 256 4KB pages,
5267			 * it should not be cleared every time it is tested.
5268			 * Apply a simple "hash" function on the physical page
5269			 * number, the virtual section number, and the pmap
5270			 * address to select one 4KB page out of the 256
5271			 * on which testing the reference bit will result
5272			 * in clearing that bit. This function is designed
5273			 * to avoid the selection of the same 4KB page
5274			 * for every 1MB page mapping.
5275			 *
5276			 * On demotion, a mapping that hasn't been referenced
5277			 * is simply destroyed.  To avoid the possibility of a
5278			 * subsequent page fault on a demoted wired mapping,
5279			 * always leave its reference bit set.  Moreover,
5280			 * since the section is wired, the current state of
5281			 * its reference bit won't affect page replacement.
5282			 */
5283			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5284			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5285			    !pte1_is_wired(opte1)) {
5286				pte1_clear_bit(pte1p, PTE1_A);
5287				pmap_tlb_flush(pmap, pv->pv_va);
5288			}
5289			rtval++;
5290		}
5291		PMAP_UNLOCK(pmap);
5292		/* Rotate the PV list if it has more than one entry. */
5293		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5294			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5295			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5296		}
5297		if (rtval >= PMAP_TS_REFERENCED_MAX)
5298			goto out;
5299	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5300small_mappings:
5301	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5302		goto out;
5303	pv = pvf;
5304	do {
5305		pmap = PV_PMAP(pv);
5306		PMAP_LOCK(pmap);
5307		pte1p = pmap_pte1(pmap, pv->pv_va);
5308		KASSERT(pte1_is_link(pte1_load(pte1p)),
5309		    ("%s: not found a link in page %p's pv list", __func__, m));
5310
5311		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5312		opte2 = pte2_load(pte2p);
5313		if (pte2_is_dirty(opte2))
5314			vm_page_dirty(m);
5315		if ((opte2 & PTE2_A) != 0) {
5316			pte2_clear_bit(pte2p, PTE2_A);
5317			pmap_tlb_flush(pmap, pv->pv_va);
5318			rtval++;
5319		}
5320		PMAP_UNLOCK(pmap);
5321		/* Rotate the PV list if it has more than one entry. */
5322		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5323			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5324			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5325		}
5326	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5327	    PMAP_TS_REFERENCED_MAX);
5328out:
5329	sched_unpin();
5330	rw_wunlock(&pvh_global_lock);
5331	return (rtval);
5332}
5333
5334/*
5335 *	Clear the wired attribute from the mappings for the specified range of
5336 *	addresses in the given pmap.  Every valid mapping within that range
5337 *	must have the wired attribute set.  In contrast, invalid mappings
5338 *	cannot have the wired attribute set, so they are ignored.
5339 *
5340 *	The wired attribute of the page table entry is not a hardware feature,
5341 *	so there is no need to invalidate any TLB entries.
5342 */
5343void
5344pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5345{
5346	vm_offset_t nextva;
5347	pt1_entry_t *pte1p, pte1;
5348	pt2_entry_t *pte2p, pte2;
5349	boolean_t pv_lists_locked;
5350
5351	if (pmap_is_current(pmap))
5352		pv_lists_locked = FALSE;
5353	else {
5354		pv_lists_locked = TRUE;
5355resume:
5356		rw_wlock(&pvh_global_lock);
5357		sched_pin();
5358	}
5359	PMAP_LOCK(pmap);
5360	for (; sva < eva; sva = nextva) {
5361		nextva = pte1_trunc(sva + PTE1_SIZE);
5362		if (nextva < sva)
5363			nextva = eva;
5364
5365		pte1p = pmap_pte1(pmap, sva);
5366		pte1 = pte1_load(pte1p);
5367
5368		/*
5369		 * Weed out invalid mappings. Note: we assume that L1 page
5370		 * page table is always allocated, and in kernel virtual.
5371		 */
5372		if (pte1 == 0)
5373			continue;
5374
5375		if (pte1_is_section(pte1)) {
5376			if (!pte1_is_wired(pte1))
5377				panic("%s: pte1 %#x not wired", __func__, pte1);
5378
5379			/*
5380			 * Are we unwiring the entire large page?  If not,
5381			 * demote the mapping and fall through.
5382			 */
5383			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5384				pte1_clear_bit(pte1p, PTE1_W);
5385				pmap->pm_stats.wired_count -= PTE1_SIZE /
5386				    PAGE_SIZE;
5387				continue;
5388			} else {
5389				if (!pv_lists_locked) {
5390					pv_lists_locked = TRUE;
5391					if (!rw_try_wlock(&pvh_global_lock)) {
5392						PMAP_UNLOCK(pmap);
5393						/* Repeat sva. */
5394						goto resume;
5395					}
5396					sched_pin();
5397				}
5398				if (!pmap_demote_pte1(pmap, pte1p, sva))
5399					panic("%s: demotion failed", __func__);
5400#ifdef INVARIANTS
5401				else {
5402					/* Update pte1 after demotion */
5403					pte1 = pte1_load(pte1p);
5404				}
5405#endif
5406			}
5407		}
5408
5409		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5410		    " is not link", __func__, pmap, sva, pte1, pte1p));
5411
5412		/*
5413		 * Limit our scan to either the end of the va represented
5414		 * by the current L2 page table page, or to the end of the
5415		 * range being protected.
5416		 */
5417		if (nextva > eva)
5418			nextva = eva;
5419
5420		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5421		    sva += PAGE_SIZE) {
5422			pte2 = pte2_load(pte2p);
5423			if (!pte2_is_valid(pte2))
5424				continue;
5425			if (!pte2_is_wired(pte2))
5426				panic("%s: pte2 %#x is missing PTE2_W",
5427				    __func__, pte2);
5428
5429			/*
5430			 * PTE2_W must be cleared atomically. Although the pmap
5431			 * lock synchronizes access to PTE2_W, another processor
5432			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5433			 */
5434			pte2_clear_bit(pte2p, PTE2_W);
5435			pmap->pm_stats.wired_count--;
5436		}
5437	}
5438	if (pv_lists_locked) {
5439		sched_unpin();
5440		rw_wunlock(&pvh_global_lock);
5441	}
5442	PMAP_UNLOCK(pmap);
5443}
5444
5445/*
5446 *  Clear the write and modified bits in each of the given page's mappings.
5447 */
5448void
5449pmap_remove_write(vm_page_t m)
5450{
5451	struct md_page *pvh;
5452	pv_entry_t next_pv, pv;
5453	pmap_t pmap;
5454	pt1_entry_t *pte1p;
5455	pt2_entry_t *pte2p, opte2;
5456	vm_offset_t va;
5457
5458	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5459	    ("%s: page %p is not managed", __func__, m));
5460
5461	/*
5462	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5463	 * set by another thread while the object is locked.  Thus,
5464	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5465	 */
5466	VM_OBJECT_ASSERT_WLOCKED(m->object);
5467	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5468		return;
5469	rw_wlock(&pvh_global_lock);
5470	sched_pin();
5471	if ((m->flags & PG_FICTITIOUS) != 0)
5472		goto small_mappings;
5473	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5474	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5475		va = pv->pv_va;
5476		pmap = PV_PMAP(pv);
5477		PMAP_LOCK(pmap);
5478		pte1p = pmap_pte1(pmap, va);
5479		if (!(pte1_load(pte1p) & PTE1_RO))
5480			(void)pmap_demote_pte1(pmap, pte1p, va);
5481		PMAP_UNLOCK(pmap);
5482	}
5483small_mappings:
5484	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5485		pmap = PV_PMAP(pv);
5486		PMAP_LOCK(pmap);
5487		pte1p = pmap_pte1(pmap, pv->pv_va);
5488		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5489		    " a section in page %p's pv list", __func__, m));
5490		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5491		opte2 = pte2_load(pte2p);
5492		if (!(opte2 & PTE2_RO)) {
5493			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5494			if (pte2_is_dirty(opte2))
5495				vm_page_dirty(m);
5496			pmap_tlb_flush(pmap, pv->pv_va);
5497		}
5498		PMAP_UNLOCK(pmap);
5499	}
5500	vm_page_aflag_clear(m, PGA_WRITEABLE);
5501	sched_unpin();
5502	rw_wunlock(&pvh_global_lock);
5503}
5504
5505/*
5506 *	Apply the given advice to the specified range of addresses within the
5507 *	given pmap.  Depending on the advice, clear the referenced and/or
5508 *	modified flags in each mapping and set the mapped page's dirty field.
5509 */
5510void
5511pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5512{
5513	pt1_entry_t *pte1p, opte1;
5514	pt2_entry_t *pte2p, pte2;
5515	vm_offset_t pdnxt;
5516	vm_page_t m;
5517	boolean_t pv_lists_locked;
5518
5519	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5520		return;
5521	if (pmap_is_current(pmap))
5522		pv_lists_locked = FALSE;
5523	else {
5524		pv_lists_locked = TRUE;
5525resume:
5526		rw_wlock(&pvh_global_lock);
5527		sched_pin();
5528	}
5529	PMAP_LOCK(pmap);
5530	for (; sva < eva; sva = pdnxt) {
5531		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5532		if (pdnxt < sva)
5533			pdnxt = eva;
5534		pte1p = pmap_pte1(pmap, sva);
5535		opte1 = pte1_load(pte1p);
5536		if (!pte1_is_valid(opte1)) /* XXX */
5537			continue;
5538		else if (pte1_is_section(opte1)) {
5539			if (!pte1_is_managed(opte1))
5540				continue;
5541			if (!pv_lists_locked) {
5542				pv_lists_locked = TRUE;
5543				if (!rw_try_wlock(&pvh_global_lock)) {
5544					PMAP_UNLOCK(pmap);
5545					goto resume;
5546				}
5547				sched_pin();
5548			}
5549			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5550				/*
5551				 * The large page mapping was destroyed.
5552				 */
5553				continue;
5554			}
5555
5556			/*
5557			 * Unless the page mappings are wired, remove the
5558			 * mapping to a single page so that a subsequent
5559			 * access may repromote.  Since the underlying L2 page
5560			 * table is fully populated, this removal never
5561			 * frees a L2 page table page.
5562			 */
5563			if (!pte1_is_wired(opte1)) {
5564				pte2p = pmap_pte2_quick(pmap, sva);
5565				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5566				    ("%s: invalid PTE2", __func__));
5567				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5568			}
5569		}
5570		if (pdnxt > eva)
5571			pdnxt = eva;
5572		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5573		    sva += PAGE_SIZE) {
5574			pte2 = pte2_load(pte2p);
5575			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5576				continue;
5577			else if (pte2_is_dirty(pte2)) {
5578				if (advice == MADV_DONTNEED) {
5579					/*
5580					 * Future calls to pmap_is_modified()
5581					 * can be avoided by making the page
5582					 * dirty now.
5583					 */
5584					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5585					vm_page_dirty(m);
5586				}
5587				pte2_set_bit(pte2p, PTE2_NM);
5588				pte2_clear_bit(pte2p, PTE2_A);
5589			} else if ((pte2 & PTE2_A) != 0)
5590				pte2_clear_bit(pte2p, PTE2_A);
5591			else
5592				continue;
5593			pmap_tlb_flush(pmap, sva);
5594		}
5595	}
5596	if (pv_lists_locked) {
5597		sched_unpin();
5598		rw_wunlock(&pvh_global_lock);
5599	}
5600	PMAP_UNLOCK(pmap);
5601}
5602
5603/*
5604 *	Clear the modify bits on the specified physical page.
5605 */
5606void
5607pmap_clear_modify(vm_page_t m)
5608{
5609	struct md_page *pvh;
5610	pv_entry_t next_pv, pv;
5611	pmap_t pmap;
5612	pt1_entry_t *pte1p, opte1;
5613	pt2_entry_t *pte2p, opte2;
5614	vm_offset_t va;
5615
5616	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5617	    ("%s: page %p is not managed", __func__, m));
5618	VM_OBJECT_ASSERT_WLOCKED(m->object);
5619	KASSERT(!vm_page_xbusied(m),
5620	    ("%s: page %p is exclusive busy", __func__, m));
5621
5622	/*
5623	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5624	 * cleared. If the object containing the page is locked and the page
5625	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5626	 * set.
5627	 */
5628	if ((m->flags & PGA_WRITEABLE) == 0)
5629		return;
5630	rw_wlock(&pvh_global_lock);
5631	sched_pin();
5632	if ((m->flags & PG_FICTITIOUS) != 0)
5633		goto small_mappings;
5634	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5635	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5636		va = pv->pv_va;
5637		pmap = PV_PMAP(pv);
5638		PMAP_LOCK(pmap);
5639		pte1p = pmap_pte1(pmap, va);
5640		opte1 = pte1_load(pte1p);
5641		if (!(opte1 & PTE1_RO)) {
5642			if (pmap_demote_pte1(pmap, pte1p, va) &&
5643			    !pte1_is_wired(opte1)) {
5644				/*
5645				 * Write protect the mapping to a
5646				 * single page so that a subsequent
5647				 * write access may repromote.
5648				 */
5649				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5650				pte2p = pmap_pte2_quick(pmap, va);
5651				opte2 = pte2_load(pte2p);
5652				if ((opte2 & PTE2_V)) {
5653					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5654					vm_page_dirty(m);
5655					pmap_tlb_flush(pmap, va);
5656				}
5657			}
5658		}
5659		PMAP_UNLOCK(pmap);
5660	}
5661small_mappings:
5662	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5663		pmap = PV_PMAP(pv);
5664		PMAP_LOCK(pmap);
5665		pte1p = pmap_pte1(pmap, pv->pv_va);
5666		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5667		    " a section in page %p's pv list", __func__, m));
5668		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5669		if (pte2_is_dirty(pte2_load(pte2p))) {
5670			pte2_set_bit(pte2p, PTE2_NM);
5671			pmap_tlb_flush(pmap, pv->pv_va);
5672		}
5673		PMAP_UNLOCK(pmap);
5674	}
5675	sched_unpin();
5676	rw_wunlock(&pvh_global_lock);
5677}
5678
5679
5680/*
5681 *  Sets the memory attribute for the specified page.
5682 */
5683void
5684pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5685{
5686	pt2_entry_t *cmap2_pte2p;
5687	vm_memattr_t oma;
5688	vm_paddr_t pa;
5689	struct pcpu *pc;
5690
5691	oma = m->md.pat_mode;
5692	m->md.pat_mode = ma;
5693
5694	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5695	    VM_PAGE_TO_PHYS(m), oma, ma);
5696	if ((m->flags & PG_FICTITIOUS) != 0)
5697		return;
5698#if 0
5699	/*
5700	 * If "m" is a normal page, flush it from the cache.
5701	 *
5702	 * First, try to find an existing mapping of the page by sf
5703	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5704	 * flushes the cache.
5705	 */
5706	if (sf_buf_invalidate_cache(m, oma))
5707		return;
5708#endif
5709	/*
5710	 * If page is not mapped by sf buffer, map the page
5711	 * transient and do invalidation.
5712	 */
5713	if (ma != oma) {
5714		pa = VM_PAGE_TO_PHYS(m);
5715		sched_pin();
5716		pc = get_pcpu();
5717		cmap2_pte2p = pc->pc_cmap2_pte2p;
5718		mtx_lock(&pc->pc_cmap_lock);
5719		if (pte2_load(cmap2_pte2p) != 0)
5720			panic("%s: CMAP2 busy", __func__);
5721		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5722		    vm_memattr_to_pte2(ma)));
5723		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5724		pte2_clear(cmap2_pte2p);
5725		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5726		sched_unpin();
5727		mtx_unlock(&pc->pc_cmap_lock);
5728	}
5729}
5730
5731/*
5732 *  Miscellaneous support routines follow
5733 */
5734
5735/*
5736 *  Returns TRUE if the given page is mapped individually or as part of
5737 *  a 1mpage.  Otherwise, returns FALSE.
5738 */
5739boolean_t
5740pmap_page_is_mapped(vm_page_t m)
5741{
5742	boolean_t rv;
5743
5744	if ((m->oflags & VPO_UNMANAGED) != 0)
5745		return (FALSE);
5746	rw_wlock(&pvh_global_lock);
5747	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5748	    ((m->flags & PG_FICTITIOUS) == 0 &&
5749	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5750	rw_wunlock(&pvh_global_lock);
5751	return (rv);
5752}
5753
5754/*
5755 *  Returns true if the pmap's pv is one of the first
5756 *  16 pvs linked to from this page.  This count may
5757 *  be changed upwards or downwards in the future; it
5758 *  is only necessary that true be returned for a small
5759 *  subset of pmaps for proper page aging.
5760 */
5761boolean_t
5762pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5763{
5764	struct md_page *pvh;
5765	pv_entry_t pv;
5766	int loops = 0;
5767	boolean_t rv;
5768
5769	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5770	    ("%s: page %p is not managed", __func__, m));
5771	rv = FALSE;
5772	rw_wlock(&pvh_global_lock);
5773	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5774		if (PV_PMAP(pv) == pmap) {
5775			rv = TRUE;
5776			break;
5777		}
5778		loops++;
5779		if (loops >= 16)
5780			break;
5781	}
5782	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5783		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5784		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5785			if (PV_PMAP(pv) == pmap) {
5786				rv = TRUE;
5787				break;
5788			}
5789			loops++;
5790			if (loops >= 16)
5791				break;
5792		}
5793	}
5794	rw_wunlock(&pvh_global_lock);
5795	return (rv);
5796}
5797
5798/*
5799 *	pmap_zero_page zeros the specified hardware page by mapping
5800 *	the page into KVM and using bzero to clear its contents.
5801 */
5802void
5803pmap_zero_page(vm_page_t m)
5804{
5805	pt2_entry_t *cmap2_pte2p;
5806	struct pcpu *pc;
5807
5808	sched_pin();
5809	pc = get_pcpu();
5810	cmap2_pte2p = pc->pc_cmap2_pte2p;
5811	mtx_lock(&pc->pc_cmap_lock);
5812	if (pte2_load(cmap2_pte2p) != 0)
5813		panic("%s: CMAP2 busy", __func__);
5814	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5815	    vm_page_pte2_attr(m)));
5816	pagezero(pc->pc_cmap2_addr);
5817	pte2_clear(cmap2_pte2p);
5818	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5819	sched_unpin();
5820	mtx_unlock(&pc->pc_cmap_lock);
5821}
5822
5823/*
5824 *	pmap_zero_page_area zeros the specified hardware page by mapping
5825 *	the page into KVM and using bzero to clear its contents.
5826 *
5827 *	off and size may not cover an area beyond a single hardware page.
5828 */
5829void
5830pmap_zero_page_area(vm_page_t m, int off, int size)
5831{
5832	pt2_entry_t *cmap2_pte2p;
5833	struct pcpu *pc;
5834
5835	sched_pin();
5836	pc = get_pcpu();
5837	cmap2_pte2p = pc->pc_cmap2_pte2p;
5838	mtx_lock(&pc->pc_cmap_lock);
5839	if (pte2_load(cmap2_pte2p) != 0)
5840		panic("%s: CMAP2 busy", __func__);
5841	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5842	    vm_page_pte2_attr(m)));
5843	if (off == 0 && size == PAGE_SIZE)
5844		pagezero(pc->pc_cmap2_addr);
5845	else
5846		bzero(pc->pc_cmap2_addr + off, size);
5847	pte2_clear(cmap2_pte2p);
5848	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5849	sched_unpin();
5850	mtx_unlock(&pc->pc_cmap_lock);
5851}
5852
5853/*
5854 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5855 *	the page into KVM and using bzero to clear its contents.  This
5856 *	is intended to be called from the vm_pagezero process only and
5857 *	outside of Giant.
5858 */
5859void
5860pmap_zero_page_idle(vm_page_t m)
5861{
5862
5863	if (pte2_load(CMAP3) != 0)
5864		panic("%s: CMAP3 busy", __func__);
5865	sched_pin();
5866	pte2_store(CMAP3, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5867	    vm_page_pte2_attr(m)));
5868	pagezero(CADDR3);
5869	pte2_clear(CMAP3);
5870	tlb_flush((vm_offset_t)CADDR3);
5871	sched_unpin();
5872}
5873
5874/*
5875 *	pmap_copy_page copies the specified (machine independent)
5876 *	page by mapping the page into virtual memory and using
5877 *	bcopy to copy the page, one machine dependent page at a
5878 *	time.
5879 */
5880void
5881pmap_copy_page(vm_page_t src, vm_page_t dst)
5882{
5883	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5884	struct pcpu *pc;
5885
5886	sched_pin();
5887	pc = get_pcpu();
5888	cmap1_pte2p = pc->pc_cmap1_pte2p;
5889	cmap2_pte2p = pc->pc_cmap2_pte2p;
5890	mtx_lock(&pc->pc_cmap_lock);
5891	if (pte2_load(cmap1_pte2p) != 0)
5892		panic("%s: CMAP1 busy", __func__);
5893	if (pte2_load(cmap2_pte2p) != 0)
5894		panic("%s: CMAP2 busy", __func__);
5895	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5896	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5897	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5898	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5899	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5900	pte2_clear(cmap1_pte2p);
5901	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5902	pte2_clear(cmap2_pte2p);
5903	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5904	sched_unpin();
5905	mtx_unlock(&pc->pc_cmap_lock);
5906}
5907
5908int unmapped_buf_allowed = 1;
5909
5910void
5911pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5912    vm_offset_t b_offset, int xfersize)
5913{
5914	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5915	vm_page_t a_pg, b_pg;
5916	char *a_cp, *b_cp;
5917	vm_offset_t a_pg_offset, b_pg_offset;
5918	struct pcpu *pc;
5919	int cnt;
5920
5921	sched_pin();
5922	pc = get_pcpu();
5923	cmap1_pte2p = pc->pc_cmap1_pte2p;
5924	cmap2_pte2p = pc->pc_cmap2_pte2p;
5925	mtx_lock(&pc->pc_cmap_lock);
5926	if (pte2_load(cmap1_pte2p) != 0)
5927		panic("pmap_copy_pages: CMAP1 busy");
5928	if (pte2_load(cmap2_pte2p) != 0)
5929		panic("pmap_copy_pages: CMAP2 busy");
5930	while (xfersize > 0) {
5931		a_pg = ma[a_offset >> PAGE_SHIFT];
5932		a_pg_offset = a_offset & PAGE_MASK;
5933		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5934		b_pg = mb[b_offset >> PAGE_SHIFT];
5935		b_pg_offset = b_offset & PAGE_MASK;
5936		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5937		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5938		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5939		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5940		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5941		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5942		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5943		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5944		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5945		bcopy(a_cp, b_cp, cnt);
5946		a_offset += cnt;
5947		b_offset += cnt;
5948		xfersize -= cnt;
5949	}
5950	pte2_clear(cmap1_pte2p);
5951	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5952	pte2_clear(cmap2_pte2p);
5953	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5954	sched_unpin();
5955	mtx_unlock(&pc->pc_cmap_lock);
5956}
5957
5958vm_offset_t
5959pmap_quick_enter_page(vm_page_t m)
5960{
5961	struct pcpu *pc;
5962	pt2_entry_t *pte2p;
5963
5964	critical_enter();
5965	pc = get_pcpu();
5966	pte2p = pc->pc_qmap_pte2p;
5967
5968	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5969
5970	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5971	    vm_page_pte2_attr(m)));
5972	return (pc->pc_qmap_addr);
5973}
5974
5975void
5976pmap_quick_remove_page(vm_offset_t addr)
5977{
5978	struct pcpu *pc;
5979	pt2_entry_t *pte2p;
5980
5981	pc = get_pcpu();
5982	pte2p = pc->pc_qmap_pte2p;
5983
5984	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5985	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5986
5987	pte2_clear(pte2p);
5988	tlb_flush(pc->pc_qmap_addr);
5989	critical_exit();
5990}
5991
5992/*
5993 *	Copy the range specified by src_addr/len
5994 *	from the source map to the range dst_addr/len
5995 *	in the destination map.
5996 *
5997 *	This routine is only advisory and need not do anything.
5998 */
5999void
6000pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6001    vm_offset_t src_addr)
6002{
6003	struct spglist free;
6004	vm_offset_t addr;
6005	vm_offset_t end_addr = src_addr + len;
6006	vm_offset_t nextva;
6007
6008	if (dst_addr != src_addr)
6009		return;
6010
6011	if (!pmap_is_current(src_pmap))
6012		return;
6013
6014	rw_wlock(&pvh_global_lock);
6015	if (dst_pmap < src_pmap) {
6016		PMAP_LOCK(dst_pmap);
6017		PMAP_LOCK(src_pmap);
6018	} else {
6019		PMAP_LOCK(src_pmap);
6020		PMAP_LOCK(dst_pmap);
6021	}
6022	sched_pin();
6023	for (addr = src_addr; addr < end_addr; addr = nextva) {
6024		pt2_entry_t *src_pte2p, *dst_pte2p;
6025		vm_page_t dst_mpt2pg, src_mpt2pg;
6026		pt1_entry_t src_pte1;
6027		u_int pte1_idx;
6028
6029		KASSERT(addr < VM_MAXUSER_ADDRESS,
6030		    ("%s: invalid to pmap_copy page tables", __func__));
6031
6032		nextva = pte1_trunc(addr + PTE1_SIZE);
6033		if (nextva < addr)
6034			nextva = end_addr;
6035
6036		pte1_idx = pte1_index(addr);
6037		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6038		if (pte1_is_section(src_pte1)) {
6039			if ((addr & PTE1_OFFSET) != 0 ||
6040			    (addr + PTE1_SIZE) > end_addr)
6041				continue;
6042			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6043			    (!pte1_is_managed(src_pte1) ||
6044			    pmap_pv_insert_pte1(dst_pmap, addr,
6045			    pte1_pa(src_pte1)))) {
6046				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6047				    ~PTE1_W;
6048				dst_pmap->pm_stats.resident_count +=
6049				    PTE1_SIZE / PAGE_SIZE;
6050				pmap_pte1_mappings++;
6051			}
6052			continue;
6053		} else if (!pte1_is_link(src_pte1))
6054			continue;
6055
6056		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6057
6058		/*
6059		 * We leave PT2s to be linked from PT1 even if they are not
6060		 * referenced until all PT2s in a page are without reference.
6061		 *
6062		 * QQQ: It could be changed ...
6063		 */
6064#if 0 /* single_pt2_link_is_cleared */
6065		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6066		    ("%s: source page table page is unused", __func__));
6067#else
6068		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6069			continue;
6070#endif
6071		if (nextva > end_addr)
6072			nextva = end_addr;
6073
6074		src_pte2p = pt2map_entry(addr);
6075		while (addr < nextva) {
6076			pt2_entry_t temp_pte2;
6077			temp_pte2 = pte2_load(src_pte2p);
6078			/*
6079			 * we only virtual copy managed pages
6080			 */
6081			if (pte2_is_managed(temp_pte2)) {
6082				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6083				    PMAP_ENTER_NOSLEEP);
6084				if (dst_mpt2pg == NULL)
6085					goto out;
6086				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6087				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6088				    pmap_try_insert_pv_entry(dst_pmap, addr,
6089				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6090					/*
6091					 * Clear the wired, modified, and
6092					 * accessed (referenced) bits
6093					 * during the copy.
6094					 */
6095					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6096					temp_pte2 |= PTE2_NM;
6097					pte2_store(dst_pte2p, temp_pte2);
6098					dst_pmap->pm_stats.resident_count++;
6099				} else {
6100					SLIST_INIT(&free);
6101					if (pmap_unwire_pt2(dst_pmap, addr,
6102					    dst_mpt2pg, &free)) {
6103						pmap_tlb_flush(dst_pmap, addr);
6104						pmap_free_zero_pages(&free);
6105					}
6106					goto out;
6107				}
6108				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6109				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6110					break;
6111			}
6112			addr += PAGE_SIZE;
6113			src_pte2p++;
6114		}
6115	}
6116out:
6117	sched_unpin();
6118	rw_wunlock(&pvh_global_lock);
6119	PMAP_UNLOCK(src_pmap);
6120	PMAP_UNLOCK(dst_pmap);
6121}
6122
6123/*
6124 *	Increase the starting virtual address of the given mapping if a
6125 *	different alignment might result in more section mappings.
6126 */
6127void
6128pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6129    vm_offset_t *addr, vm_size_t size)
6130{
6131	vm_offset_t pte1_offset;
6132
6133	if (size < PTE1_SIZE)
6134		return;
6135	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6136		offset += ptoa(object->pg_color);
6137	pte1_offset = offset & PTE1_OFFSET;
6138	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6139	    (*addr & PTE1_OFFSET) == pte1_offset)
6140		return;
6141	if ((*addr & PTE1_OFFSET) < pte1_offset)
6142		*addr = pte1_trunc(*addr) + pte1_offset;
6143	else
6144		*addr = pte1_roundup(*addr) + pte1_offset;
6145}
6146
6147void
6148pmap_activate(struct thread *td)
6149{
6150	pmap_t pmap, oldpmap;
6151	u_int cpuid, ttb;
6152
6153	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6154
6155	critical_enter();
6156	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6157	oldpmap = PCPU_GET(curpmap);
6158	cpuid = PCPU_GET(cpuid);
6159
6160#if defined(SMP)
6161	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6162	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6163#else
6164	CPU_CLR(cpuid, &oldpmap->pm_active);
6165	CPU_SET(cpuid, &pmap->pm_active);
6166#endif
6167
6168	ttb = pmap_ttb_get(pmap);
6169
6170	/*
6171	 * pmap_activate is for the current thread on the current cpu
6172	 */
6173	td->td_pcb->pcb_pagedir = ttb;
6174	cp15_ttbr_set(ttb);
6175	PCPU_SET(curpmap, pmap);
6176	critical_exit();
6177}
6178
6179/*
6180 *  Perform the pmap work for mincore.
6181 */
6182int
6183pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6184{
6185	pt1_entry_t *pte1p, pte1;
6186	pt2_entry_t *pte2p, pte2;
6187	vm_paddr_t pa;
6188	bool managed;
6189	int val;
6190
6191	PMAP_LOCK(pmap);
6192retry:
6193	pte1p = pmap_pte1(pmap, addr);
6194	pte1 = pte1_load(pte1p);
6195	if (pte1_is_section(pte1)) {
6196		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6197		managed = pte1_is_managed(pte1);
6198		val = MINCORE_SUPER | MINCORE_INCORE;
6199		if (pte1_is_dirty(pte1))
6200			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6201		if (pte1 & PTE1_A)
6202			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6203	} else if (pte1_is_link(pte1)) {
6204		pte2p = pmap_pte2(pmap, addr);
6205		pte2 = pte2_load(pte2p);
6206		pmap_pte2_release(pte2p);
6207		pa = pte2_pa(pte2);
6208		managed = pte2_is_managed(pte2);
6209		val = MINCORE_INCORE;
6210		if (pte2_is_dirty(pte2))
6211			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6212		if (pte2 & PTE2_A)
6213			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6214	} else {
6215		managed = false;
6216		val = 0;
6217	}
6218	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6219	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6220		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6221		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6222			goto retry;
6223	} else
6224		PA_UNLOCK_COND(*locked_pa);
6225	PMAP_UNLOCK(pmap);
6226	return (val);
6227}
6228
6229void
6230pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6231{
6232	vm_offset_t sva;
6233	uint32_t l2attr;
6234
6235	KASSERT((size & PAGE_MASK) == 0,
6236	    ("%s: device mapping not page-sized", __func__));
6237
6238	sva = va;
6239	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6240	while (size != 0) {
6241		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6242		va += PAGE_SIZE;
6243		pa += PAGE_SIZE;
6244		size -= PAGE_SIZE;
6245	}
6246	tlb_flush_range(sva, va - sva);
6247}
6248
6249void
6250pmap_kremove_device(vm_offset_t va, vm_size_t size)
6251{
6252	vm_offset_t sva;
6253
6254	KASSERT((size & PAGE_MASK) == 0,
6255	    ("%s: device mapping not page-sized", __func__));
6256
6257	sva = va;
6258	while (size != 0) {
6259		pmap_kremove(va);
6260		va += PAGE_SIZE;
6261		size -= PAGE_SIZE;
6262	}
6263	tlb_flush_range(sva, va - sva);
6264}
6265
6266void
6267pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6268{
6269
6270	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6271}
6272
6273
6274/*
6275 *  Clean L1 data cache range by physical address.
6276 *  The range must be within a single page.
6277 */
6278static void
6279pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6280{
6281	pt2_entry_t *cmap2_pte2p;
6282	struct pcpu *pc;
6283
6284	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6285	    ("%s: not on single page", __func__));
6286
6287	sched_pin();
6288	pc = get_pcpu();
6289	cmap2_pte2p = pc->pc_cmap2_pte2p;
6290	mtx_lock(&pc->pc_cmap_lock);
6291	if (pte2_load(cmap2_pte2p) != 0)
6292		panic("%s: CMAP2 busy", __func__);
6293	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6294	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6295	pte2_clear(cmap2_pte2p);
6296	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6297	sched_unpin();
6298	mtx_unlock(&pc->pc_cmap_lock);
6299}
6300
6301/*
6302 *  Sync instruction cache range which is not mapped yet.
6303 */
6304void
6305cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6306{
6307	uint32_t len, offset;
6308	vm_page_t m;
6309
6310	/* Write back d-cache on given address range. */
6311	offset = pa & PAGE_MASK;
6312	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6313		len = min(PAGE_SIZE - offset, size);
6314		m = PHYS_TO_VM_PAGE(pa);
6315		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6316		  __func__, pa));
6317		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6318	}
6319	/*
6320	 * I-cache is VIPT. Only way how to flush all virtual mappings
6321	 * on given physical address is to invalidate all i-cache.
6322	 */
6323	icache_inv_all();
6324}
6325
6326void
6327pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6328{
6329
6330	/* Write back d-cache on given address range. */
6331	if (va >= VM_MIN_KERNEL_ADDRESS) {
6332		dcache_wb_pou(va, size);
6333	} else {
6334		uint32_t len, offset;
6335		vm_paddr_t pa;
6336		vm_page_t m;
6337
6338		offset = va & PAGE_MASK;
6339		for ( ; size != 0; size -= len, va += len, offset = 0) {
6340			pa = pmap_extract(pmap, va); /* offset is preserved */
6341			len = min(PAGE_SIZE - offset, size);
6342			m = PHYS_TO_VM_PAGE(pa);
6343			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6344				__func__, pa));
6345			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6346		}
6347	}
6348	/*
6349	 * I-cache is VIPT. Only way how to flush all virtual mappings
6350	 * on given physical address is to invalidate all i-cache.
6351	 */
6352	icache_inv_all();
6353}
6354
6355/*
6356 *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6357 *  depends on the fact that given range size is a power of 2.
6358 */
6359CTASSERT(powerof2(NB_IN_PT1));
6360CTASSERT(powerof2(PT2MAP_SIZE));
6361
6362#define IN_RANGE2(addr, start, size)	\
6363    ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6364
6365/*
6366 *  Handle access and R/W emulation faults.
6367 */
6368int
6369pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6370{
6371	pt1_entry_t *pte1p, pte1;
6372	pt2_entry_t *pte2p, pte2;
6373
6374	if (pmap == NULL)
6375		pmap = kernel_pmap;
6376
6377	/*
6378	 * In kernel, we should never get abort with FAR which is in range of
6379	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6380	 * and print out a useful abort message and even get to the debugger
6381	 * otherwise it likely ends with never ending loop of aborts.
6382	 */
6383	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6384		/*
6385		 * All L1 tables should always be mapped and present.
6386		 * However, we check only current one herein. For user mode,
6387		 * only permission abort from malicious user is not fatal.
6388		 * And alignment abort as it may have higher priority.
6389		 */
6390		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6391			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6392			    __func__, pmap, pmap->pm_pt1, far);
6393			panic("%s: pm_pt1 abort", __func__);
6394		}
6395		return (KERN_INVALID_ADDRESS);
6396	}
6397	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6398		/*
6399		 * PT2MAP should be always mapped and present in current
6400		 * L1 table. However, only existing L2 tables are mapped
6401		 * in PT2MAP. For user mode, only L2 translation abort and
6402		 * permission abort from malicious user is not fatal.
6403		 * And alignment abort as it may have higher priority.
6404		 */
6405		if (!usermode || (idx != FAULT_ALIGN &&
6406		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6407			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6408			    __func__, pmap, PT2MAP, far);
6409			panic("%s: PT2MAP abort", __func__);
6410		}
6411		return (KERN_INVALID_ADDRESS);
6412	}
6413
6414	/*
6415	 * A pmap lock is used below for handling of access and R/W emulation
6416	 * aborts. They were handled by atomic operations before so some
6417	 * analysis of new situation is needed to answer the following question:
6418	 * Is it safe to use the lock even for these aborts?
6419	 *
6420	 * There may happen two cases in general:
6421	 *
6422	 * (1) Aborts while the pmap lock is locked already - this should not
6423	 * happen as pmap lock is not recursive. However, under pmap lock only
6424	 * internal kernel data should be accessed and such data should be
6425	 * mapped with A bit set and NM bit cleared. If double abort happens,
6426	 * then a mapping of data which has caused it must be fixed. Further,
6427	 * all new mappings are always made with A bit set and the bit can be
6428	 * cleared only on managed mappings.
6429	 *
6430	 * (2) Aborts while another lock(s) is/are locked - this already can
6431	 * happen. However, there is no difference here if it's either access or
6432	 * R/W emulation abort, or if it's some other abort.
6433	 */
6434
6435	PMAP_LOCK(pmap);
6436#ifdef SMP
6437	/*
6438	 * Special treatment is due to break-before-make approach done when
6439	 * pte1 is updated for userland mapping during section promotion or
6440	 * demotion. If not caught here, pmap_enter() can find a section
6441	 * mapping on faulting address. That is not allowed.
6442	 */
6443	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6444		PMAP_UNLOCK(pmap);
6445		return (KERN_SUCCESS);
6446	}
6447#endif
6448	/*
6449	 * Accesss bits for page and section. Note that the entry
6450	 * is not in TLB yet, so TLB flush is not necessary.
6451	 *
6452	 * QQQ: This is hardware emulation, we do not call userret()
6453	 *      for aborts from user mode.
6454	 */
6455	if (idx == FAULT_ACCESS_L2) {
6456		pte2p = pt2map_entry(far);
6457		pte2 = pte2_load(pte2p);
6458		if (pte2_is_valid(pte2)) {
6459			pte2_store(pte2p, pte2 | PTE2_A);
6460			PMAP_UNLOCK(pmap);
6461			return (KERN_SUCCESS);
6462		}
6463	}
6464	if (idx == FAULT_ACCESS_L1) {
6465		pte1p = pmap_pte1(pmap, far);
6466		pte1 = pte1_load(pte1p);
6467		if (pte1_is_section(pte1)) {
6468			pte1_store(pte1p, pte1 | PTE1_A);
6469			PMAP_UNLOCK(pmap);
6470			return (KERN_SUCCESS);
6471		}
6472	}
6473
6474	/*
6475	 * Handle modify bits for page and section. Note that the modify
6476	 * bit is emulated by software. So PTEx_RO is software read only
6477	 * bit and PTEx_NM flag is real hardware read only bit.
6478	 *
6479	 * QQQ: This is hardware emulation, we do not call userret()
6480	 *      for aborts from user mode.
6481	 */
6482	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6483		pte2p = pt2map_entry(far);
6484		pte2 = pte2_load(pte2p);
6485		if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6486		    (pte2 & PTE2_NM)) {
6487			pte2_store(pte2p, pte2 & ~PTE2_NM);
6488			tlb_flush(trunc_page(far));
6489			PMAP_UNLOCK(pmap);
6490			return (KERN_SUCCESS);
6491		}
6492	}
6493	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6494		pte1p = pmap_pte1(pmap, far);
6495		pte1 = pte1_load(pte1p);
6496		if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
6497		    (pte1 & PTE1_NM)) {
6498			pte1_store(pte1p, pte1 & ~PTE1_NM);
6499			tlb_flush(pte1_trunc(far));
6500			PMAP_UNLOCK(pmap);
6501			return (KERN_SUCCESS);
6502		}
6503	}
6504
6505	/*
6506	 * QQQ: The previous code, mainly fast handling of access and
6507	 *      modify bits aborts, could be moved to ASM. Now we are
6508	 *      starting to deal with not fast aborts.
6509	 */
6510
6511#ifdef INVARIANTS
6512	/*
6513	 * Read an entry in PT2TAB associated with both pmap and far.
6514	 * It's safe because PT2TAB is always mapped.
6515	 */
6516	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6517	if (pte2_is_valid(pte2)) {
6518		/*
6519		 * Now, when we know that L2 page table is allocated,
6520		 * we can use PT2MAP to get L2 page table entry.
6521		 */
6522		pte2 = pte2_load(pt2map_entry(far));
6523		if (pte2_is_valid(pte2)) {
6524			/*
6525			 * If L2 page table entry is valid, make sure that
6526			 * L1 page table entry is valid too.  Note that we
6527			 * leave L2 page entries untouched when promoted.
6528			 */
6529			pte1 = pte1_load(pmap_pte1(pmap, far));
6530			if (!pte1_is_valid(pte1)) {
6531				panic("%s: missing L1 page entry (%p, %#x)",
6532				    __func__, pmap, far);
6533			}
6534		}
6535	}
6536#endif
6537	PMAP_UNLOCK(pmap);
6538	return (KERN_FAILURE);
6539}
6540
6541#if defined(PMAP_DEBUG)
6542/*
6543 *  Reusing of KVA used in pmap_zero_page function !!!
6544 */
6545static void
6546pmap_zero_page_check(vm_page_t m)
6547{
6548	pt2_entry_t *cmap2_pte2p;
6549	uint32_t *p, *end;
6550	struct pcpu *pc;
6551
6552	sched_pin();
6553	pc = get_pcpu();
6554	cmap2_pte2p = pc->pc_cmap2_pte2p;
6555	mtx_lock(&pc->pc_cmap_lock);
6556	if (pte2_load(cmap2_pte2p) != 0)
6557		panic("%s: CMAP2 busy", __func__);
6558	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6559	    vm_page_pte2_attr(m)));
6560	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6561	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6562		if (*p != 0)
6563			panic("%s: page %p not zero, va: %p", __func__, m,
6564			    pc->pc_cmap2_addr);
6565	pte2_clear(cmap2_pte2p);
6566	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6567	sched_unpin();
6568	mtx_unlock(&pc->pc_cmap_lock);
6569}
6570
6571int
6572pmap_pid_dump(int pid)
6573{
6574	pmap_t pmap;
6575	struct proc *p;
6576	int npte2 = 0;
6577	int i, j, index;
6578
6579	sx_slock(&allproc_lock);
6580	FOREACH_PROC_IN_SYSTEM(p) {
6581		if (p->p_pid != pid || p->p_vmspace == NULL)
6582			continue;
6583		index = 0;
6584		pmap = vmspace_pmap(p->p_vmspace);
6585		for (i = 0; i < NPTE1_IN_PT1; i++) {
6586			pt1_entry_t pte1;
6587			pt2_entry_t *pte2p, pte2;
6588			vm_offset_t base, va;
6589			vm_paddr_t pa;
6590			vm_page_t m;
6591
6592			base = i << PTE1_SHIFT;
6593			pte1 = pte1_load(&pmap->pm_pt1[i]);
6594
6595			if (pte1_is_section(pte1)) {
6596				/*
6597				 * QQQ: Do something here!
6598				 */
6599			} else if (pte1_is_link(pte1)) {
6600				for (j = 0; j < NPTE2_IN_PT2; j++) {
6601					va = base + (j << PAGE_SHIFT);
6602					if (va >= VM_MIN_KERNEL_ADDRESS) {
6603						if (index) {
6604							index = 0;
6605							printf("\n");
6606						}
6607						sx_sunlock(&allproc_lock);
6608						return (npte2);
6609					}
6610					pte2p = pmap_pte2(pmap, va);
6611					pte2 = pte2_load(pte2p);
6612					pmap_pte2_release(pte2p);
6613					if (!pte2_is_valid(pte2))
6614						continue;
6615
6616					pa = pte2_pa(pte2);
6617					m = PHYS_TO_VM_PAGE(pa);
6618					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6619					    " %d, f: 0x%x", va, pa,
6620					    m->hold_count, m->wire_count,
6621					    m->flags);
6622					npte2++;
6623					index++;
6624					if (index >= 2) {
6625						index = 0;
6626						printf("\n");
6627					} else {
6628						printf(" ");
6629					}
6630				}
6631			}
6632		}
6633	}
6634	sx_sunlock(&allproc_lock);
6635	return (npte2);
6636}
6637
6638#endif
6639
6640#ifdef DDB
6641static pt2_entry_t *
6642pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6643{
6644	pt1_entry_t pte1;
6645	vm_paddr_t pt2pg_pa;
6646
6647	pte1 = pte1_load(pmap_pte1(pmap, va));
6648	if (!pte1_is_link(pte1))
6649		return (NULL);
6650
6651	if (pmap_is_current(pmap))
6652		return (pt2map_entry(va));
6653
6654	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6655	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6656	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6657		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6658#ifdef SMP
6659		PMAP3cpu = PCPU_GET(cpuid);
6660#endif
6661		tlb_flush_local((vm_offset_t)PADDR3);
6662	}
6663#ifdef SMP
6664	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6665		PMAP3cpu = PCPU_GET(cpuid);
6666		tlb_flush_local((vm_offset_t)PADDR3);
6667	}
6668#endif
6669	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6670}
6671
6672static void
6673dump_pmap(pmap_t pmap)
6674{
6675
6676	printf("pmap %p\n", pmap);
6677	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6678	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6679	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6680}
6681
6682DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6683{
6684
6685	pmap_t pmap;
6686	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6687		dump_pmap(pmap);
6688	}
6689}
6690
6691static int
6692pte2_class(pt2_entry_t pte2)
6693{
6694	int cls;
6695
6696	cls = (pte2 >> 2) & 0x03;
6697	cls |= (pte2 >> 4) & 0x04;
6698	return (cls);
6699}
6700
6701static void
6702dump_section(pmap_t pmap, uint32_t pte1_idx)
6703{
6704}
6705
6706static void
6707dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6708{
6709	uint32_t i;
6710	vm_offset_t va;
6711	pt2_entry_t *pte2p, pte2;
6712	vm_page_t m;
6713
6714	va = pte1_idx << PTE1_SHIFT;
6715	pte2p = pmap_pte2_ddb(pmap, va);
6716	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6717		pte2 = pte2_load(pte2p);
6718		if (pte2 == 0)
6719			continue;
6720		if (!pte2_is_valid(pte2)) {
6721			printf(" 0x%08X: 0x%08X", va, pte2);
6722			if (!invalid_ok)
6723				printf(" - not valid !!!");
6724			printf("\n");
6725			continue;
6726		}
6727		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6728		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6729		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6730		if (m != NULL) {
6731			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6732			    m->hold_count, m->wire_count, m->flags);
6733		} else {
6734			printf("\n");
6735		}
6736	}
6737}
6738
6739static __inline boolean_t
6740is_pv_chunk_space(vm_offset_t va)
6741{
6742
6743	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6744	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6745		return (TRUE);
6746	return (FALSE);
6747}
6748
6749DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6750{
6751	/* XXX convert args. */
6752	pmap_t pmap = (pmap_t)addr;
6753	pt1_entry_t pte1;
6754	pt2_entry_t pte2;
6755	vm_offset_t va, eva;
6756	vm_page_t m;
6757	uint32_t i;
6758	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6759
6760	if (have_addr) {
6761		pmap_t pm;
6762
6763		LIST_FOREACH(pm, &allpmaps, pm_list)
6764			if (pm == pmap) break;
6765		if (pm == NULL) {
6766			printf("given pmap %p is not in allpmaps list\n", pmap);
6767			return;
6768		}
6769	} else
6770		pmap = PCPU_GET(curpmap);
6771
6772	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6773	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6774
6775	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6776	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6777	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6778
6779	for(i = 0; i < NPTE1_IN_PT1; i++) {
6780		pte1 = pte1_load(&pmap->pm_pt1[i]);
6781		if (pte1 == 0)
6782			continue;
6783		va = i << PTE1_SHIFT;
6784		if (va >= eva)
6785			break;
6786
6787		if (pte1_is_section(pte1)) {
6788			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6789			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6790			dump_section(pmap, i);
6791		} else if (pte1_is_link(pte1)) {
6792			dump_link_ok = TRUE;
6793			invalid_ok = FALSE;
6794			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6795			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6796			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6797			    va, pte1, pte2, m);
6798			if (is_pv_chunk_space(va)) {
6799				printf(" - pv_chunk space");
6800				if (dump_pv_chunk)
6801					invalid_ok = TRUE;
6802				else
6803					dump_link_ok = FALSE;
6804			}
6805			else if (m != NULL)
6806				printf(" w:%d w2:%u", m->wire_count,
6807				    pt2_wirecount_get(m, pte1_index(va)));
6808			if (pte2 == 0)
6809				printf(" !!! pt2tab entry is ZERO");
6810			else if (pte2_pa(pte1) != pte2_pa(pte2))
6811				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6812				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6813			printf("\n");
6814			if (dump_link_ok)
6815				dump_link(pmap, i, invalid_ok);
6816		} else
6817			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6818	}
6819}
6820
6821static void
6822dump_pt2tab(pmap_t pmap)
6823{
6824	uint32_t i;
6825	pt2_entry_t pte2;
6826	vm_offset_t va;
6827	vm_paddr_t pa;
6828	vm_page_t m;
6829
6830	printf("PT2TAB:\n");
6831	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6832		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6833		if (!pte2_is_valid(pte2))
6834			continue;
6835		va = i << PT2TAB_SHIFT;
6836		pa = pte2_pa(pte2);
6837		m = PHYS_TO_VM_PAGE(pa);
6838		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6839		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6840		if (m != NULL)
6841			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6842			    m->hold_count, m->wire_count, m->flags, m->pindex);
6843		printf("\n");
6844	}
6845}
6846
6847DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6848{
6849	/* XXX convert args. */
6850	pmap_t pmap = (pmap_t)addr;
6851	pt1_entry_t pte1;
6852	pt2_entry_t pte2;
6853	vm_offset_t va;
6854	uint32_t i, start;
6855
6856	if (have_addr) {
6857		printf("supported only on current pmap\n");
6858		return;
6859	}
6860
6861	pmap = PCPU_GET(curpmap);
6862	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6863	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6864	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6865
6866	start = pte1_index((vm_offset_t)PT2MAP);
6867	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6868		pte1 = pte1_load(&pmap->pm_pt1[i]);
6869		if (pte1 == 0)
6870			continue;
6871		va = i << PTE1_SHIFT;
6872		if (pte1_is_section(pte1)) {
6873			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6874			    !!(pte1 & PTE1_S));
6875			dump_section(pmap, i);
6876		} else if (pte1_is_link(pte1)) {
6877			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6878			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6879			    pte1, pte2);
6880			if (pte2 == 0)
6881				printf("  !!! pt2tab entry is ZERO\n");
6882		} else
6883			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6884	}
6885	dump_pt2tab(pmap);
6886}
6887#endif
6888