pmap-v6.c revision 318742
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
6 * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
7 * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department and William Jolitz of UUNET Technologies Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
39 */
40/*-
41 * Copyright (c) 2003 Networks Associates Technology, Inc.
42 * All rights reserved.
43 *
44 * This software was developed for the FreeBSD Project by Jake Burkholder,
45 * Safeport Network Services, and Network Associates Laboratories, the
46 * Security Research Division of Network Associates, Inc. under
47 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48 * CHATS research program.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 *    notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 *    notice, this list of conditions and the following disclaimer in the
57 *    documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72#include <sys/cdefs.h>
73__FBSDID("$FreeBSD: stable/11/sys/arm/arm/pmap-v6.c 318742 2017-05-23 12:03:59Z mmel $");
74
75/*
76 *	Manages physical address maps.
77 *
78 *	Since the information managed by this module is
79 *	also stored by the logical address mapping module,
80 *	this module may throw away valid virtual-to-physical
81 *	mappings at almost any time.  However, invalidations
82 *	of virtual-to-physical mappings must be done as
83 *	requested.
84 *
85 *	In order to cope with hardware architectures which
86 *	make virtual-to-physical map invalidates expensive,
87 *	this module may delay invalidate or reduced protection
88 *	operations until such time as they are actually
89 *	necessary.  This module is given full information as
90 *	to which processors are currently using which maps,
91 *	and to when physical maps must be made correct.
92 */
93
94#include "opt_vm.h"
95#include "opt_pmap.h"
96#include "opt_ddb.h"
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#include <sys/kernel.h>
101#include <sys/ktr.h>
102#include <sys/lock.h>
103#include <sys/proc.h>
104#include <sys/rwlock.h>
105#include <sys/malloc.h>
106#include <sys/vmmeter.h>
107#include <sys/malloc.h>
108#include <sys/mman.h>
109#include <sys/sf_buf.h>
110#include <sys/smp.h>
111#include <sys/sched.h>
112#include <sys/sysctl.h>
113
114#ifdef DDB
115#include <ddb/ddb.h>
116#endif
117
118#include <machine/physmem.h>
119
120#include <vm/vm.h>
121#include <vm/uma.h>
122#include <vm/pmap.h>
123#include <vm/vm_param.h>
124#include <vm/vm_kern.h>
125#include <vm/vm_object.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/vm_pageout.h>
129#include <vm/vm_phys.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_reserv.h>
132#include <sys/lock.h>
133#include <sys/mutex.h>
134
135#include <machine/md_var.h>
136#include <machine/pmap_var.h>
137#include <machine/cpu.h>
138#include <machine/pcb.h>
139#include <machine/sf_buf.h>
140#ifdef SMP
141#include <machine/smp.h>
142#endif
143
144#ifndef PMAP_SHPGPERPROC
145#define PMAP_SHPGPERPROC 200
146#endif
147
148#ifndef DIAGNOSTIC
149#define PMAP_INLINE	__inline
150#else
151#define PMAP_INLINE
152#endif
153
154#ifdef PMAP_DEBUG
155static void pmap_zero_page_check(vm_page_t m);
156void pmap_debug(int level);
157int pmap_pid_dump(int pid);
158
159#define PDEBUG(_lev_,_stat_) \
160	if (pmap_debug_level >= (_lev_)) \
161		((_stat_))
162#define dprintf printf
163int pmap_debug_level = 1;
164#else   /* PMAP_DEBUG */
165#define PDEBUG(_lev_,_stat_) /* Nothing */
166#define dprintf(x, arg...)
167#endif  /* PMAP_DEBUG */
168
169/*
170 *  Level 2 page tables map definion ('max' is excluded).
171 */
172
173#define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
174#define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
175
176#define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
177#define UPT2V_MAX_ADDRESS \
178    ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
179
180/*
181 *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
182 *  4KB (PTE2) page mappings have identical settings for the following fields:
183 */
184#define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
185			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
186			 PTE2_ATTR_MASK)
187
188#define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
189			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
190			 PTE1_ATTR_MASK)
191
192#define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
193				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
194				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
195				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
196				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
197				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
198				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
199				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
200				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
201				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
202				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
203
204#define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
205				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
206				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
207				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
208				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
209				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
210				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
211				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
212				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
213				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
214				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
215
216/*
217 *  PTE2 descriptors creation macros.
218 */
219#define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
220#define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
221
222#define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223#define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224
225#define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
226#define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
227
228#define PV_STATS
229#ifdef PV_STATS
230#define PV_STAT(x)	do { x ; } while (0)
231#else
232#define PV_STAT(x)	do { } while (0)
233#endif
234
235/*
236 *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
237 *  We can init many things with no memory allocation thanks to its static
238 *  allocation and this brings two main advantages:
239 *  (1) other cores can be started very simply,
240 *  (2) various boot loaders can be supported as its arguments can be processed
241 *      in virtual address space and can be moved to safe location before
242 *      first allocation happened.
243 *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
244 *  However, the table is uninitialized and so lays in bss. Therefore kernel
245 *  image size is not influenced.
246 *
247 *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
248 *       CPU suspend/resume game.
249 */
250extern pt1_entry_t boot_pt1[];
251
252vm_paddr_t base_pt1;
253pt1_entry_t *kern_pt1;
254pt2_entry_t *kern_pt2tab;
255pt2_entry_t *PT2MAP;
256
257static uint32_t ttb_flags;
258static vm_memattr_t pt_memattr;
259ttb_entry_t pmap_kern_ttb;
260
261struct pmap kernel_pmap_store;
262LIST_HEAD(pmaplist, pmap);
263static struct pmaplist allpmaps;
264static struct mtx allpmaps_lock;
265
266vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
267vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
268
269static vm_offset_t kernel_vm_end_new;
270vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
271vm_offset_t vm_max_kernel_address;
272vm_paddr_t kernel_l1pa;
273
274static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
275
276/*
277 *  Data for the pv entry allocation mechanism
278 */
279static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
281static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
282static int shpgperproc = PMAP_SHPGPERPROC;
283
284struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
285int pv_maxchunks;			/* How many chunks we have KVA for */
286vm_offset_t pv_vafree;			/* freelist stored in the PTE */
287
288vm_paddr_t first_managed_pa;
289#define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
290
291/*
292 *  All those kernel PT submaps that BSD is so fond of
293 */
294static pt2_entry_t *CMAP3;
295static caddr_t CADDR3;
296caddr_t _tmppt = 0;
297
298struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
299
300/*
301 *  Crashdump maps.
302 */
303static caddr_t crashdumpmap;
304
305static pt2_entry_t *PMAP1 = NULL, *PMAP2;
306static pt2_entry_t *PADDR1 = NULL, *PADDR2;
307#ifdef DDB
308static pt2_entry_t *PMAP3;
309static pt2_entry_t *PADDR3;
310static int PMAP3cpu __unused; /* for SMP only */
311#endif
312#ifdef SMP
313static int PMAP1cpu;
314static int PMAP1changedcpu;
315SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
316    &PMAP1changedcpu, 0,
317    "Number of times pmap_pte2_quick changed CPU with same PMAP1");
318#endif
319static int PMAP1changed;
320SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
321    &PMAP1changed, 0,
322    "Number of times pmap_pte2_quick changed PMAP1");
323static int PMAP1unchanged;
324SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
325    &PMAP1unchanged, 0,
326    "Number of times pmap_pte2_quick didn't change PMAP1");
327static struct mtx PMAP2mutex;
328
329static __inline void pt2_wirecount_init(vm_page_t m);
330static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
331    vm_offset_t va);
332void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
333
334/*
335 *  Function to set the debug level of the pmap code.
336 */
337#ifdef PMAP_DEBUG
338void
339pmap_debug(int level)
340{
341
342	pmap_debug_level = level;
343	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
344}
345#endif /* PMAP_DEBUG */
346
347/*
348 *  This table must corespond with memory attribute configuration in vm.h.
349 *  First entry is used for normal system mapping.
350 *
351 *  Device memory is always marked as shared.
352 *  Normal memory is shared only in SMP .
353 *  Not outer shareable bits are not used yet.
354 *  Class 6 cannot be used on ARM11.
355 */
356#define TEXDEF_TYPE_SHIFT	0
357#define TEXDEF_TYPE_MASK	0x3
358#define TEXDEF_INNER_SHIFT	2
359#define TEXDEF_INNER_MASK	0x3
360#define TEXDEF_OUTER_SHIFT	4
361#define TEXDEF_OUTER_MASK	0x3
362#define TEXDEF_NOS_SHIFT	6
363#define TEXDEF_NOS_MASK		0x1
364
365#define TEX(t, i, o, s) 			\
366		((t) << TEXDEF_TYPE_SHIFT) |	\
367		((i) << TEXDEF_INNER_SHIFT) |	\
368		((o) << TEXDEF_OUTER_SHIFT | 	\
369		((s) << TEXDEF_NOS_SHIFT))
370
371static uint32_t tex_class[8] = {
372/*	    type      inner cache outer cache */
373	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
374	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
375	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
376	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
377	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
378	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
379	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
380	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
381};
382#undef TEX
383
384static uint32_t pte2_attr_tab[8] = {
385	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
386	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
387	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
388	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
389	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
390	0,			/* 5 - NOT USED YET */
391	0,			/* 6 - NOT USED YET */
392	0			/* 7 - NOT USED YET */
393};
394CTASSERT(VM_MEMATTR_WB_WA == 0);
395CTASSERT(VM_MEMATTR_NOCACHE == 1);
396CTASSERT(VM_MEMATTR_DEVICE == 2);
397CTASSERT(VM_MEMATTR_SO == 3);
398CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
399
400static inline uint32_t
401vm_memattr_to_pte2(vm_memattr_t ma)
402{
403
404	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
405	return (pte2_attr_tab[(u_int)ma]);
406}
407
408static inline uint32_t
409vm_page_pte2_attr(vm_page_t m)
410{
411
412	return (vm_memattr_to_pte2(m->md.pat_mode));
413}
414
415/*
416 * Convert TEX definition entry to TTB flags.
417 */
418static uint32_t
419encode_ttb_flags(int idx)
420{
421	uint32_t inner, outer, nos, reg;
422
423	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
424		TEXDEF_INNER_MASK;
425	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
426		TEXDEF_OUTER_MASK;
427	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
428		TEXDEF_NOS_MASK;
429
430	reg = nos << 5;
431	reg |= outer << 3;
432	if (cpuinfo.coherent_walk)
433		reg |= (inner & 0x1) << 6;
434	reg |= (inner & 0x2) >> 1;
435#ifdef SMP
436	reg |= 1 << 1;
437#endif
438	return reg;
439}
440
441/*
442 *  Set TEX remapping registers in current CPU.
443 */
444void
445pmap_set_tex(void)
446{
447	uint32_t prrr, nmrr;
448	uint32_t type, inner, outer, nos;
449	int i;
450
451#ifdef PMAP_PTE_NOCACHE
452	/* XXX fixme */
453	if (cpuinfo.coherent_walk) {
454		pt_memattr = VM_MEMATTR_WB_WA;
455		ttb_flags = encode_ttb_flags(0);
456	}
457	else {
458		pt_memattr = VM_MEMATTR_NOCACHE;
459		ttb_flags = encode_ttb_flags(1);
460	}
461#else
462	pt_memattr = VM_MEMATTR_WB_WA;
463	ttb_flags = encode_ttb_flags(0);
464#endif
465
466	prrr = 0;
467	nmrr = 0;
468
469	/* Build remapping register from TEX classes. */
470	for (i = 0; i < 8; i++) {
471		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
472			TEXDEF_TYPE_MASK;
473		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
474			TEXDEF_INNER_MASK;
475		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
476			TEXDEF_OUTER_MASK;
477		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
478			TEXDEF_NOS_MASK;
479
480		prrr |= type  << (i * 2);
481		prrr |= nos   << (i + 24);
482		nmrr |= inner << (i * 2);
483		nmrr |= outer << (i * 2 + 16);
484	}
485	/* Add shareable bits for device memory. */
486	prrr |= PRRR_DS0 | PRRR_DS1;
487
488	/* Add shareable bits for normal memory in SMP case. */
489#ifdef SMP
490	prrr |= PRRR_NS1;
491#endif
492	cp15_prrr_set(prrr);
493	cp15_nmrr_set(nmrr);
494
495	/* Caches are disabled, so full TLB flush should be enough. */
496	tlb_flush_all_local();
497}
498
499/*
500 * Remap one vm_meattr class to another one. This can be useful as
501 * workaround for SOC errata, e.g. if devices must be accessed using
502 * SO memory class.
503 *
504 * !!! Please note that this function is absolutely last resort thing.
505 * It should not be used under normal circumstances. !!!
506 *
507 * Usage rules:
508 * - it shall be called after pmap_bootstrap_prepare() and before
509 *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
510 *   to be called from platform_attach() or platform_late_init().
511 *
512 * - if remapping doesn't change caching mode, or until uncached class
513 *   is remapped to any kind of cached one, then no other restriction exists.
514 *
515 * - if pmap_remap_vm_attr() changes caching mode, but both (original and
516 *   remapped) remain cached, then caller is resposible for calling
517 *   of dcache_wbinv_poc_all().
518 *
519 * - remapping of any kind of cached class to uncached is not permitted.
520 */
521void
522pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
523{
524	int old_idx, new_idx;
525
526	/* Map VM memattrs to indexes to tex_class table. */
527	old_idx = pte2_attr_tab[(int)old_attr];
528	new_idx = pte2_attr_tab[(int)new_attr];
529
530	/* Replace TEX attribute and apply it. */
531	tex_class[old_idx] = tex_class[new_idx];
532	pmap_set_tex();
533}
534
535/*
536 * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
537 * KERNBASE is mapped by first L2 page table in L2 page table page. It
538 * meets same constrain due to PT2MAP being placed just under KERNBASE.
539 */
540CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
541CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
542
543/*
544 *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
545 *  For now, anyhow, the following check must be fulfilled.
546 */
547CTASSERT(PAGE_SIZE == PTE2_SIZE);
548/*
549 *  We don't want to mess up MI code with all MMU and PMAP definitions,
550 *  so some things, which depend on other ones, are defined independently.
551 *  Now, it is time to check that we don't screw up something.
552 */
553CTASSERT(PDRSHIFT == PTE1_SHIFT);
554/*
555 *  Check L1 and L2 page table entries definitions consistency.
556 */
557CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
558CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
559/*
560 *  Check L2 page tables page consistency.
561 */
562CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
563CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
564/*
565 *  Check PT2TAB consistency.
566 *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
567 *  This should be done without remainder.
568 */
569CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
570
571/*
572 *	A PT2MAP magic.
573 *
574 *  All level 2 page tables (PT2s) are mapped continuously and accordingly
575 *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
576 *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
577 *  must be used together, but not necessary at once. The first PT2 in a page
578 *  must map things on correctly aligned address and the others must follow
579 *  in right order.
580 */
581#define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
582#define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
583#define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
584
585/*
586 *  Check PT2TAB consistency.
587 *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
588 *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
589 *  The both should be done without remainder.
590 */
591CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
592CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
593/*
594 *  The implementation was made general, however, with the assumption
595 *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
596 *  the code should be once more rechecked.
597 */
598CTASSERT(NPG_IN_PT2TAB == 1);
599
600/*
601 *  Get offset of PT2 in a page
602 *  associated with given PT1 index.
603 */
604static __inline u_int
605page_pt2off(u_int pt1_idx)
606{
607
608	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
609}
610
611/*
612 *  Get physical address of PT2
613 *  associated with given PT2s page and PT1 index.
614 */
615static __inline vm_paddr_t
616page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
617{
618
619	return (pgpa + page_pt2off(pt1_idx));
620}
621
622/*
623 *  Get first entry of PT2
624 *  associated with given PT2s page and PT1 index.
625 */
626static __inline pt2_entry_t *
627page_pt2(vm_offset_t pgva, u_int pt1_idx)
628{
629
630	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
631}
632
633/*
634 *  Get virtual address of PT2s page (mapped in PT2MAP)
635 *  which holds PT2 which holds entry which maps given virtual address.
636 */
637static __inline vm_offset_t
638pt2map_pt2pg(vm_offset_t va)
639{
640
641	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
642	return ((vm_offset_t)pt2map_entry(va));
643}
644
645/*****************************************************************************
646 *
647 *     THREE pmap initialization milestones exist:
648 *
649 *  locore.S
650 *    -> fundamental init (including MMU) in ASM
651 *
652 *  initarm()
653 *    -> fundamental init continues in C
654 *    -> first available physical address is known
655 *
656 *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
657 *      -> basic (safe) interface for physical address allocation is made
658 *      -> basic (safe) interface for virtual mapping is made
659 *      -> limited not SMP coherent work is possible
660 *
661 *    -> more fundamental init continues in C
662 *    -> locks and some more things are available
663 *    -> all fundamental allocations and mappings are done
664 *
665 *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
666 *      -> phys_avail[] and virtual_avail is set
667 *      -> control is passed to vm subsystem
668 *      -> physical and virtual address allocation are off limit
669 *      -> low level mapping functions, some SMP coherent,
670 *         are available, which cannot be used before vm subsystem
671 *         is being inited
672 *
673 *  mi_startup()
674 *    -> vm subsystem is being inited
675 *
676 *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
677 *        -> pmap is fully inited
678 *
679 *****************************************************************************/
680
681/*****************************************************************************
682 *
683 *	PMAP first stage initialization and utility functions
684 *	for pre-bootstrap epoch.
685 *
686 *  After pmap_bootstrap_prepare() is called, the following functions
687 *  can be used:
688 *
689 *  (1) strictly only for this stage functions for physical page allocations,
690 *      virtual space allocations, and mappings:
691 *
692 *  vm_paddr_t pmap_preboot_get_pages(u_int num);
693 *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
694 *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
695 *  vm_offset_t pmap_preboot_get_vpages(u_int num);
696 *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
697 *      vm_prot_t prot, vm_memattr_t attr);
698 *
699 *  (2) for all stages:
700 *
701 *  vm_paddr_t pmap_kextract(vm_offset_t va);
702 *
703 *  NOTE: This is not SMP coherent stage.
704 *
705 *****************************************************************************/
706
707#define KERNEL_P2V(pa) \
708    ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
709#define KERNEL_V2P(va) \
710    ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
711
712static vm_paddr_t last_paddr;
713
714/*
715 *  Pre-bootstrap epoch page allocator.
716 */
717vm_paddr_t
718pmap_preboot_get_pages(u_int num)
719{
720	vm_paddr_t ret;
721
722	ret = last_paddr;
723	last_paddr += num * PAGE_SIZE;
724
725	return (ret);
726}
727
728/*
729 *	The fundamental initialization of PMAP stuff.
730 *
731 *  Some things already happened in locore.S and some things could happen
732 *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
733 *  1. Caches are disabled.
734 *  2. We are running on virtual addresses already with 'boot_pt1'
735 *     as L1 page table.
736 *  3. So far, all virtual addresses can be converted to physical ones and
737 *     vice versa by the following macros:
738 *       KERNEL_P2V(pa) .... physical to virtual ones,
739 *       KERNEL_V2P(va) .... virtual to physical ones.
740 *
741 *  What is done herein:
742 *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
743 *  2. PT2MAP magic is brought to live.
744 *  3. Basic preboot functions for page allocations and mappings can be used.
745 *  4. Everything is prepared for L1 cache enabling.
746 *
747 *  Variations:
748 *  1. To use second TTB register, so kernel and users page tables will be
749 *     separated. This way process forking - pmap_pinit() - could be faster,
750 *     it saves physical pages and KVA per a process, and it's simple change.
751 *     However, it will lead, due to hardware matter, to the following:
752 *     (a) 2G space for kernel and 2G space for users.
753 *     (b) 1G space for kernel in low addresses and 3G for users above it.
754 *     A question is: Is the case (b) really an option? Note that case (b)
755 *     does save neither physical memory and KVA.
756 */
757void
758pmap_bootstrap_prepare(vm_paddr_t last)
759{
760	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
761	vm_offset_t pt2pg_va;
762	pt1_entry_t *pte1p;
763	pt2_entry_t *pte2p;
764	u_int i;
765	uint32_t actlr_mask, actlr_set, l1_attr;
766
767	/*
768	 * Now, we are going to make real kernel mapping. Note that we are
769	 * already running on some mapping made in locore.S and we expect
770	 * that it's large enough to ensure nofault access to physical memory
771	 * allocated herein before switch.
772	 *
773	 * As kernel image and everything needed before are and will be mapped
774	 * by section mappings, we align last physical address to PTE1_SIZE.
775	 */
776	last_paddr = pte1_roundup(last);
777
778	/*
779	 * Allocate and zero page(s) for kernel L1 page table.
780	 *
781	 * Note that it's first allocation on space which was PTE1_SIZE
782	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
783	 */
784	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
785	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
786	bzero((void*)kern_pt1, NB_IN_PT1);
787	pte1_sync_range(kern_pt1, NB_IN_PT1);
788
789	/* Allocate and zero page(s) for kernel PT2TAB. */
790	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
791	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
792	bzero(kern_pt2tab, NB_IN_PT2TAB);
793	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
794
795	/* Allocate and zero page(s) for kernel L2 page tables. */
796	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
797	pt2pg_va = KERNEL_P2V(pt2pg_pa);
798	size = NKPT2PG * PAGE_SIZE;
799	bzero((void*)pt2pg_va, size);
800	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
801
802	/*
803	 * Add a physical memory segment (vm_phys_seg) corresponding to the
804	 * preallocated pages for kernel L2 page tables so that vm_page
805	 * structures representing these pages will be created. The vm_page
806	 * structures are required for promotion of the corresponding kernel
807	 * virtual addresses to section mappings.
808	 */
809	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
810
811	/*
812	 * Insert allocated L2 page table pages to PT2TAB and make
813	 * link to all PT2s in L1 page table. See how kernel_vm_end
814	 * is initialized.
815	 *
816	 * We play simple and safe. So every KVA will have underlaying
817	 * L2 page table, even kernel image mapped by sections.
818	 */
819	pte2p = kern_pt2tab_entry(KERNBASE);
820	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
821		pt2tab_store(pte2p++, PTE2_KPT(pa));
822
823	pte1p = kern_pte1(KERNBASE);
824	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
825		pte1_store(pte1p++, PTE1_LINK(pa));
826
827	/* Make section mappings for kernel. */
828	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
829	pte1p = kern_pte1(KERNBASE);
830	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
831		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
832
833	/*
834	 * Get free and aligned space for PT2MAP and make L1 page table links
835	 * to L2 page tables held in PT2TAB.
836	 *
837	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
838	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
839	 * each entry in PT2TAB maps all PT2s in a page. This implies that
840	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
841	 */
842	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
843	pte1p = kern_pte1((vm_offset_t)PT2MAP);
844	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
845		pte1_store(pte1p++, PTE1_LINK(pa));
846	}
847
848	/*
849	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
850	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
851	 */
852	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
853	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
854		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
855	}
856
857	/*
858	 * Choose correct L2 page table and make mappings for allocations
859	 * made herein which replaces temporary locore.S mappings after a while.
860	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
861	 *
862	 * Note, that these allocations started aligned on 1M section and
863	 * kernel PT1 was allocated first. Making of mappings must follow
864	 * order of physical allocations as we've used KERNEL_P2V() macro
865	 * for virtual addresses resolution.
866	 */
867	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
868	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
869
870	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
871
872	/* Make mapping for kernel L1 page table. */
873	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
874		pte2_store(pte2p++, PTE2_KPT(pa));
875
876	/* Make mapping for kernel PT2TAB. */
877	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
878		pte2_store(pte2p++, PTE2_KPT(pa));
879
880	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
881	pmap_kern_ttb = base_pt1 | ttb_flags;
882	cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
883	reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
884	/*
885	 * Initialize the first available KVA. As kernel image is mapped by
886	 * sections, we are leaving some gap behind.
887	 */
888	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
889}
890
891/*
892 *  Setup L2 page table page for given KVA.
893 *  Used in pre-bootstrap epoch.
894 *
895 *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
896 *  and used them for mapping KVA starting from KERNBASE. However, this is not
897 *  enough. Vectors and devices need L2 page tables too. Note that they are
898 *  even above VM_MAX_KERNEL_ADDRESS.
899 */
900static __inline vm_paddr_t
901pmap_preboot_pt2pg_setup(vm_offset_t va)
902{
903	pt2_entry_t *pte2p, pte2;
904	vm_paddr_t pt2pg_pa;
905
906	/* Get associated entry in PT2TAB. */
907	pte2p = kern_pt2tab_entry(va);
908
909	/* Just return, if PT2s page exists already. */
910	pte2 = pt2tab_load(pte2p);
911	if (pte2_is_valid(pte2))
912		return (pte2_pa(pte2));
913
914	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
915	    ("%s: NKPT2PG too small", __func__));
916
917	/*
918	 * Allocate page for PT2s and insert it to PT2TAB.
919	 * In other words, map it into PT2MAP space.
920	 */
921	pt2pg_pa = pmap_preboot_get_pages(1);
922	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
923
924	/* Zero all PT2s in allocated page. */
925	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
926	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
927
928	return (pt2pg_pa);
929}
930
931/*
932 *  Setup L2 page table for given KVA.
933 *  Used in pre-bootstrap epoch.
934 */
935static void
936pmap_preboot_pt2_setup(vm_offset_t va)
937{
938	pt1_entry_t *pte1p;
939	vm_paddr_t pt2pg_pa, pt2_pa;
940
941	/* Setup PT2's page. */
942	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
943	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
944
945	/* Insert PT2 to PT1. */
946	pte1p = kern_pte1(va);
947	pte1_store(pte1p, PTE1_LINK(pt2_pa));
948}
949
950/*
951 *  Get L2 page entry associated with given KVA.
952 *  Used in pre-bootstrap epoch.
953 */
954static __inline pt2_entry_t*
955pmap_preboot_vtopte2(vm_offset_t va)
956{
957	pt1_entry_t *pte1p;
958
959	/* Setup PT2 if needed. */
960	pte1p = kern_pte1(va);
961	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
962		pmap_preboot_pt2_setup(va);
963
964	return (pt2map_entry(va));
965}
966
967/*
968 *  Pre-bootstrap epoch page(s) mapping(s).
969 */
970void
971pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
972{
973	u_int i;
974	pt2_entry_t *pte2p;
975
976	/* Map all the pages. */
977	for (i = 0; i < num; i++) {
978		pte2p = pmap_preboot_vtopte2(va);
979		pte2_store(pte2p, PTE2_KRW(pa));
980		va += PAGE_SIZE;
981		pa += PAGE_SIZE;
982	}
983}
984
985/*
986 *  Pre-bootstrap epoch virtual space alocator.
987 */
988vm_offset_t
989pmap_preboot_reserve_pages(u_int num)
990{
991	u_int i;
992	vm_offset_t start, va;
993	pt2_entry_t *pte2p;
994
995	/* Allocate virtual space. */
996	start = va = virtual_avail;
997	virtual_avail += num * PAGE_SIZE;
998
999	/* Zero the mapping. */
1000	for (i = 0; i < num; i++) {
1001		pte2p = pmap_preboot_vtopte2(va);
1002		pte2_store(pte2p, 0);
1003		va += PAGE_SIZE;
1004	}
1005
1006	return (start);
1007}
1008
1009/*
1010 *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1011 */
1012vm_offset_t
1013pmap_preboot_get_vpages(u_int num)
1014{
1015	vm_paddr_t  pa;
1016	vm_offset_t va;
1017
1018	/* Allocate physical page(s). */
1019	pa = pmap_preboot_get_pages(num);
1020
1021	/* Allocate virtual space. */
1022	va = virtual_avail;
1023	virtual_avail += num * PAGE_SIZE;
1024
1025	/* Map and zero all. */
1026	pmap_preboot_map_pages(pa, va, num);
1027	bzero((void *)va, num * PAGE_SIZE);
1028
1029	return (va);
1030}
1031
1032/*
1033 *  Pre-bootstrap epoch page mapping(s) with attributes.
1034 */
1035void
1036pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1037    vm_prot_t prot, vm_memattr_t attr)
1038{
1039	u_int num;
1040	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1041	pt1_entry_t *pte1p;
1042	pt2_entry_t *pte2p;
1043
1044	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1045	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1046	l2_attr = vm_memattr_to_pte2(attr);
1047	l1_prot = ATTR_TO_L1(l2_prot);
1048	l1_attr = ATTR_TO_L1(l2_attr);
1049
1050	/* Map all the pages. */
1051	num = round_page(size);
1052	while (num > 0) {
1053		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1054			pte1p = kern_pte1(va);
1055			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1056			va += PTE1_SIZE;
1057			pa += PTE1_SIZE;
1058			num -= PTE1_SIZE;
1059		} else {
1060			pte2p = pmap_preboot_vtopte2(va);
1061			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1062			va += PAGE_SIZE;
1063			pa += PAGE_SIZE;
1064			num -= PAGE_SIZE;
1065		}
1066	}
1067}
1068
1069/*
1070 *  Extract from the kernel page table the physical address
1071 *  that is mapped by the given virtual address "va".
1072 */
1073vm_paddr_t
1074pmap_kextract(vm_offset_t va)
1075{
1076	vm_paddr_t pa;
1077	pt1_entry_t pte1;
1078	pt2_entry_t pte2;
1079
1080	pte1 = pte1_load(kern_pte1(va));
1081	if (pte1_is_section(pte1)) {
1082		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1083	} else if (pte1_is_link(pte1)) {
1084		/*
1085		 * We should beware of concurrent promotion that changes
1086		 * pte1 at this point. However, it's not a problem as PT2
1087		 * page is preserved by promotion in PT2TAB. So even if
1088		 * it happens, using of PT2MAP is still safe.
1089		 *
1090		 * QQQ: However, concurrent removing is a problem which
1091		 *      ends in abort on PT2MAP space. Locking must be used
1092		 *      to deal with this.
1093		 */
1094		pte2 = pte2_load(pt2map_entry(va));
1095		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1096	}
1097	else {
1098		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1099	}
1100	return (pa);
1101}
1102
1103/*
1104 *  Extract from the kernel page table the physical address
1105 *  that is mapped by the given virtual address "va". Also
1106 *  return L2 page table entry which maps the address.
1107 *
1108 *  This is only intended to be used for panic dumps.
1109 */
1110vm_paddr_t
1111pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1112{
1113	vm_paddr_t pa;
1114	pt1_entry_t pte1;
1115	pt2_entry_t pte2;
1116
1117	pte1 = pte1_load(kern_pte1(va));
1118	if (pte1_is_section(pte1)) {
1119		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1120		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1121	} else if (pte1_is_link(pte1)) {
1122		pte2 = pte2_load(pt2map_entry(va));
1123		pa = pte2_pa(pte2);
1124	} else {
1125		pte2 = 0;
1126		pa = 0;
1127	}
1128	if (pte2p != NULL)
1129		*pte2p = pte2;
1130	return (pa);
1131}
1132
1133/*****************************************************************************
1134 *
1135 *	PMAP second stage initialization and utility functions
1136 *	for bootstrap epoch.
1137 *
1138 *  After pmap_bootstrap() is called, the following functions for
1139 *  mappings can be used:
1140 *
1141 *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1142 *  void pmap_kremove(vm_offset_t va);
1143 *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1144 *      int prot);
1145 *
1146 *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1147 *        allowed during this stage.
1148 *
1149 *****************************************************************************/
1150
1151/*
1152 *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1153 *  reserve various virtual spaces for temporary mappings.
1154 */
1155void
1156pmap_bootstrap(vm_offset_t firstaddr)
1157{
1158	pt2_entry_t *unused __unused;
1159	struct pcpu *pc;
1160
1161	/*
1162	 * Initialize the kernel pmap (which is statically allocated).
1163	 */
1164	PMAP_LOCK_INIT(kernel_pmap);
1165	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1166	kernel_pmap->pm_pt1 = kern_pt1;
1167	kernel_pmap->pm_pt2tab = kern_pt2tab;
1168	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1169	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1170
1171	/*
1172	 * Initialize the global pv list lock.
1173	 */
1174	rw_init(&pvh_global_lock, "pmap pv global");
1175
1176	LIST_INIT(&allpmaps);
1177
1178	/*
1179	 * Request a spin mutex so that changes to allpmaps cannot be
1180	 * preempted by smp_rendezvous_cpus().
1181	 */
1182	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1183	mtx_lock_spin(&allpmaps_lock);
1184	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1185	mtx_unlock_spin(&allpmaps_lock);
1186
1187	/*
1188	 * Reserve some special page table entries/VA space for temporary
1189	 * mapping of pages.
1190	 */
1191#define	SYSMAP(c, p, v, n)  do {		\
1192	v = (c)pmap_preboot_reserve_pages(n);	\
1193	p = pt2map_entry((vm_offset_t)v);	\
1194	} while (0)
1195
1196	/*
1197	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1198	 * Local CMAP2 is also used for data cache cleaning.
1199	 * Global CMAP3 is used for the idle process page zeroing.
1200	 */
1201	pc = get_pcpu();
1202	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1203	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1204	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1205	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1206	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
1207
1208	/*
1209	 * Crashdump maps.
1210	 */
1211	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1212
1213	/*
1214	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1215	 */
1216	SYSMAP(caddr_t, unused, _tmppt, 1);
1217
1218	/*
1219	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1220	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1221	 */
1222	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1223	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1224#ifdef DDB
1225	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1226#endif
1227	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1228
1229	/*
1230	 * Note that in very short time in initarm(), we are going to
1231	 * initialize phys_avail[] array and no further page allocation
1232	 * can happen after that until vm subsystem will be initialized.
1233	 */
1234	kernel_vm_end_new = kernel_vm_end;
1235	virtual_end = vm_max_kernel_address;
1236}
1237
1238static void
1239pmap_init_reserved_pages(void)
1240{
1241	struct pcpu *pc;
1242	vm_offset_t pages;
1243	int i;
1244
1245	CPU_FOREACH(i) {
1246		pc = pcpu_find(i);
1247		/*
1248		 * Skip if the mapping has already been initialized,
1249		 * i.e. this is the BSP.
1250		 */
1251		if (pc->pc_cmap1_addr != 0)
1252			continue;
1253		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1254		pages = kva_alloc(PAGE_SIZE * 3);
1255		if (pages == 0)
1256			panic("%s: unable to allocate KVA", __func__);
1257		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1258		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1259		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1260		pc->pc_cmap1_addr = (caddr_t)pages;
1261		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1262		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1263	}
1264}
1265SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1266
1267/*
1268 *  The function can already be use in second initialization stage.
1269 *  As such, the function DOES NOT call pmap_growkernel() where PT2
1270 *  allocation can happen. So if used, be sure that PT2 for given
1271 *  virtual address is allocated already!
1272 *
1273 *  Add a wired page to the kva.
1274 *  Note: not SMP coherent.
1275 */
1276static __inline void
1277pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1278    uint32_t attr)
1279{
1280	pt1_entry_t *pte1p;
1281	pt2_entry_t *pte2p;
1282
1283	pte1p = kern_pte1(va);
1284	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1285		/*
1286		 * This is a very low level function, so PT2 and particularly
1287		 * PT2PG associated with given virtual address must be already
1288		 * allocated. It's a pain mainly during pmap initialization
1289		 * stage. However, called after pmap initialization with
1290		 * virtual address not under kernel_vm_end will lead to
1291		 * the same misery.
1292		 */
1293		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1294			panic("%s: kernel PT2 not allocated!", __func__);
1295	}
1296
1297	pte2p = pt2map_entry(va);
1298	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1299}
1300
1301PMAP_INLINE void
1302pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1303{
1304
1305	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1306}
1307
1308/*
1309 *  Remove a page from the kernel pagetables.
1310 *  Note: not SMP coherent.
1311 */
1312PMAP_INLINE void
1313pmap_kremove(vm_offset_t va)
1314{
1315	pt2_entry_t *pte2p;
1316
1317	pte2p = pt2map_entry(va);
1318	pte2_clear(pte2p);
1319}
1320
1321/*
1322 *  Share new kernel PT2PG with all pmaps.
1323 *  The caller is responsible for maintaining TLB consistency.
1324 */
1325static void
1326pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1327{
1328	pmap_t pmap;
1329	pt2_entry_t *pte2p;
1330
1331	mtx_lock_spin(&allpmaps_lock);
1332	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1333		pte2p = pmap_pt2tab_entry(pmap, va);
1334		pt2tab_store(pte2p, npte2);
1335	}
1336	mtx_unlock_spin(&allpmaps_lock);
1337}
1338
1339/*
1340 *  Share new kernel PTE1 with all pmaps.
1341 *  The caller is responsible for maintaining TLB consistency.
1342 */
1343static void
1344pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1345{
1346	pmap_t pmap;
1347	pt1_entry_t *pte1p;
1348
1349	mtx_lock_spin(&allpmaps_lock);
1350	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1351		pte1p = pmap_pte1(pmap, va);
1352		pte1_store(pte1p, npte1);
1353	}
1354	mtx_unlock_spin(&allpmaps_lock);
1355}
1356
1357/*
1358 *  Used to map a range of physical addresses into kernel
1359 *  virtual address space.
1360 *
1361 *  The value passed in '*virt' is a suggested virtual address for
1362 *  the mapping. Architectures which can support a direct-mapped
1363 *  physical to virtual region can return the appropriate address
1364 *  within that region, leaving '*virt' unchanged. Other
1365 *  architectures should map the pages starting at '*virt' and
1366 *  update '*virt' with the first usable address after the mapped
1367 *  region.
1368 *
1369 *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1370 *        the function is used herein!
1371 */
1372vm_offset_t
1373pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1374{
1375	vm_offset_t va, sva;
1376	vm_paddr_t pte1_offset;
1377	pt1_entry_t npte1;
1378	uint32_t l1prot, l2prot;
1379	uint32_t l1attr, l2attr;
1380
1381	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1382	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1383
1384	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1385	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1386	l1prot = ATTR_TO_L1(l2prot);
1387
1388	l2attr = PTE2_ATTR_DEFAULT;
1389	l1attr = ATTR_TO_L1(l2attr);
1390
1391	va = *virt;
1392	/*
1393	 * Does the physical address range's size and alignment permit at
1394	 * least one section mapping to be created?
1395	 */
1396	pte1_offset = start & PTE1_OFFSET;
1397	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1398	    PTE1_SIZE) {
1399		/*
1400		 * Increase the starting virtual address so that its alignment
1401		 * does not preclude the use of section mappings.
1402		 */
1403		if ((va & PTE1_OFFSET) < pte1_offset)
1404			va = pte1_trunc(va) + pte1_offset;
1405		else if ((va & PTE1_OFFSET) > pte1_offset)
1406			va = pte1_roundup(va) + pte1_offset;
1407	}
1408	sva = va;
1409	while (start < end) {
1410		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1411			KASSERT((va & PTE1_OFFSET) == 0,
1412			    ("%s: misaligned va %#x", __func__, va));
1413			npte1 = PTE1_KERN(start, l1prot, l1attr);
1414			pmap_kenter_pte1(va, npte1);
1415			va += PTE1_SIZE;
1416			start += PTE1_SIZE;
1417		} else {
1418			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1419			va += PAGE_SIZE;
1420			start += PAGE_SIZE;
1421		}
1422	}
1423	tlb_flush_range(sva, va - sva);
1424	*virt = va;
1425	return (sva);
1426}
1427
1428/*
1429 *  Make a temporary mapping for a physical address.
1430 *  This is only intended to be used for panic dumps.
1431 */
1432void *
1433pmap_kenter_temporary(vm_paddr_t pa, int i)
1434{
1435	vm_offset_t va;
1436
1437	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1438
1439	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1440	pmap_kenter(va, pa);
1441	tlb_flush_local(va);
1442	return ((void *)crashdumpmap);
1443}
1444
1445
1446/*************************************
1447 *
1448 *  TLB & cache maintenance routines.
1449 *
1450 *************************************/
1451
1452/*
1453 *  We inline these within pmap.c for speed.
1454 */
1455PMAP_INLINE void
1456pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1457{
1458
1459	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1460		tlb_flush(va);
1461}
1462
1463PMAP_INLINE void
1464pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1465{
1466
1467	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1468		tlb_flush_range(sva, size);
1469}
1470
1471/*
1472 *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1473 *  Requirements:
1474 *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1475 *     are ever set, PTE2_V in particular.
1476 *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1477 *   - Assumes nothing will ever test these addresses for 0 to indicate
1478 *     no mapping instead of correctly checking PTE2_V.
1479 *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1480 *  Because PTE2_V is never set, there can be no mappings to invalidate.
1481 */
1482static vm_offset_t
1483pmap_pte2list_alloc(vm_offset_t *head)
1484{
1485	pt2_entry_t *pte2p;
1486	vm_offset_t va;
1487
1488	va = *head;
1489	if (va == 0)
1490		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1491	pte2p = pt2map_entry(va);
1492	*head = *pte2p;
1493	if (*head & PTE2_V)
1494		panic("%s: va with PTE2_V set!", __func__);
1495	*pte2p = 0;
1496	return (va);
1497}
1498
1499static void
1500pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1501{
1502	pt2_entry_t *pte2p;
1503
1504	if (va & PTE2_V)
1505		panic("%s: freeing va with PTE2_V set!", __func__);
1506	pte2p = pt2map_entry(va);
1507	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1508	*head = va;
1509}
1510
1511static void
1512pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1513{
1514	int i;
1515	vm_offset_t va;
1516
1517	*head = 0;
1518	for (i = npages - 1; i >= 0; i--) {
1519		va = (vm_offset_t)base + i * PAGE_SIZE;
1520		pmap_pte2list_free(head, va);
1521	}
1522}
1523
1524/*****************************************************************************
1525 *
1526 *	PMAP third and final stage initialization.
1527 *
1528 *  After pmap_init() is called, PMAP subsystem is fully initialized.
1529 *
1530 *****************************************************************************/
1531
1532SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1533
1534SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1535    "Max number of PV entries");
1536SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1537    "Page share factor per proc");
1538
1539static u_long nkpt2pg = NKPT2PG;
1540SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1541    &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1542
1543static int sp_enabled = 1;
1544SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1545    &sp_enabled, 0, "Are large page mappings enabled?");
1546
1547static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1548    "1MB page mapping counters");
1549
1550static u_long pmap_pte1_demotions;
1551SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1552    &pmap_pte1_demotions, 0, "1MB page demotions");
1553
1554static u_long pmap_pte1_mappings;
1555SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1556    &pmap_pte1_mappings, 0, "1MB page mappings");
1557
1558static u_long pmap_pte1_p_failures;
1559SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1560    &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1561
1562static u_long pmap_pte1_promotions;
1563SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1564    &pmap_pte1_promotions, 0, "1MB page promotions");
1565
1566static u_long pmap_pte1_kern_demotions;
1567SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1568    &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1569
1570static u_long pmap_pte1_kern_promotions;
1571SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1572    &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1573
1574static __inline ttb_entry_t
1575pmap_ttb_get(pmap_t pmap)
1576{
1577
1578	return (vtophys(pmap->pm_pt1) | ttb_flags);
1579}
1580
1581/*
1582 *  Initialize a vm_page's machine-dependent fields.
1583 *
1584 *  Variations:
1585 *  1. Pages for L2 page tables are always not managed. So, pv_list and
1586 *     pt2_wirecount can share same physical space. However, proper
1587 *     initialization on a page alloc for page tables and reinitialization
1588 *     on the page free must be ensured.
1589 */
1590void
1591pmap_page_init(vm_page_t m)
1592{
1593
1594	TAILQ_INIT(&m->md.pv_list);
1595	pt2_wirecount_init(m);
1596	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1597}
1598
1599/*
1600 *  Virtualization for faster way how to zero whole page.
1601 */
1602static __inline void
1603pagezero(void *page)
1604{
1605
1606	bzero(page, PAGE_SIZE);
1607}
1608
1609/*
1610 *  Zero L2 page table page.
1611 *  Use same KVA as in pmap_zero_page().
1612 */
1613static __inline vm_paddr_t
1614pmap_pt2pg_zero(vm_page_t m)
1615{
1616	pt2_entry_t *cmap2_pte2p;
1617	vm_paddr_t pa;
1618	struct pcpu *pc;
1619
1620	pa = VM_PAGE_TO_PHYS(m);
1621
1622	/*
1623	 * XXX: For now, we map whole page even if it's already zero,
1624	 *      to sync it even if the sync is only DSB.
1625	 */
1626	sched_pin();
1627	pc = get_pcpu();
1628	cmap2_pte2p = pc->pc_cmap2_pte2p;
1629	mtx_lock(&pc->pc_cmap_lock);
1630	if (pte2_load(cmap2_pte2p) != 0)
1631		panic("%s: CMAP2 busy", __func__);
1632	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1633	    vm_page_pte2_attr(m)));
1634	/*  Even VM_ALLOC_ZERO request is only advisory. */
1635	if ((m->flags & PG_ZERO) == 0)
1636		pagezero(pc->pc_cmap2_addr);
1637	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1638	pte2_clear(cmap2_pte2p);
1639	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1640
1641	/*
1642	 * Unpin the thread before releasing the lock.  Otherwise the thread
1643	 * could be rescheduled while still bound to the current CPU, only
1644	 * to unpin itself immediately upon resuming execution.
1645	 */
1646	sched_unpin();
1647	mtx_unlock(&pc->pc_cmap_lock);
1648
1649	return (pa);
1650}
1651
1652/*
1653 *  Init just allocated page as L2 page table(s) holder
1654 *  and return its physical address.
1655 */
1656static __inline vm_paddr_t
1657pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1658{
1659	vm_paddr_t pa;
1660	pt2_entry_t *pte2p;
1661
1662	/* Check page attributes. */
1663	if (m->md.pat_mode != pt_memattr)
1664		pmap_page_set_memattr(m, pt_memattr);
1665
1666	/* Zero page and init wire counts. */
1667	pa = pmap_pt2pg_zero(m);
1668	pt2_wirecount_init(m);
1669
1670	/*
1671	 * Map page to PT2MAP address space for given pmap.
1672	 * Note that PT2MAP space is shared with all pmaps.
1673	 */
1674	if (pmap == kernel_pmap)
1675		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1676	else {
1677		pte2p = pmap_pt2tab_entry(pmap, va);
1678		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1679	}
1680
1681	return (pa);
1682}
1683
1684/*
1685 *  Initialize the pmap module.
1686 *  Called by vm_init, to initialize any structures that the pmap
1687 *  system needs to map virtual memory.
1688 */
1689void
1690pmap_init(void)
1691{
1692	vm_size_t s;
1693	pt2_entry_t *pte2p, pte2;
1694	u_int i, pte1_idx, pv_npg;
1695
1696	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1697
1698	/*
1699	 * Initialize the vm page array entries for kernel pmap's
1700	 * L2 page table pages allocated in advance.
1701	 */
1702	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1703	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1704	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1705		vm_paddr_t pa;
1706		vm_page_t m;
1707
1708		pte2 = pte2_load(pte2p);
1709		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1710
1711		pa = pte2_pa(pte2);
1712		m = PHYS_TO_VM_PAGE(pa);
1713		KASSERT(m >= vm_page_array &&
1714		    m < &vm_page_array[vm_page_array_size],
1715		    ("%s: L2 page table page is out of range", __func__));
1716
1717		m->pindex = pte1_idx;
1718		m->phys_addr = pa;
1719		pte1_idx += NPT2_IN_PG;
1720	}
1721
1722	/*
1723	 * Initialize the address space (zone) for the pv entries.  Set a
1724	 * high water mark so that the system can recover from excessive
1725	 * numbers of pv entries.
1726	 */
1727	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1728	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1729	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1730	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1731	pv_entry_high_water = 9 * (pv_entry_max / 10);
1732
1733	/*
1734	 * Are large page mappings enabled?
1735	 */
1736	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1737	if (sp_enabled) {
1738		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1739		    ("%s: can't assign to pagesizes[1]", __func__));
1740		pagesizes[1] = PTE1_SIZE;
1741	}
1742
1743	/*
1744	 * Calculate the size of the pv head table for sections.
1745	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1746	 * Note that the table is only for sections which could be promoted.
1747	 */
1748	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1749	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1750	    - first_managed_pa) / PTE1_SIZE + 1;
1751
1752	/*
1753	 * Allocate memory for the pv head table for sections.
1754	 */
1755	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1756	s = round_page(s);
1757	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1758	    M_WAITOK | M_ZERO);
1759	for (i = 0; i < pv_npg; i++)
1760		TAILQ_INIT(&pv_table[i].pv_list);
1761
1762	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1763	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1764	if (pv_chunkbase == NULL)
1765		panic("%s: not enough kvm for pv chunks", __func__);
1766	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1767}
1768
1769/*
1770 *  Add a list of wired pages to the kva
1771 *  this routine is only used for temporary
1772 *  kernel mappings that do not need to have
1773 *  page modification or references recorded.
1774 *  Note that old mappings are simply written
1775 *  over.  The page *must* be wired.
1776 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1777 */
1778void
1779pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1780{
1781	u_int anychanged;
1782	pt2_entry_t *epte2p, *pte2p, pte2;
1783	vm_page_t m;
1784	vm_paddr_t pa;
1785
1786	anychanged = 0;
1787	pte2p = pt2map_entry(sva);
1788	epte2p = pte2p + count;
1789	while (pte2p < epte2p) {
1790		m = *ma++;
1791		pa = VM_PAGE_TO_PHYS(m);
1792		pte2 = pte2_load(pte2p);
1793		if ((pte2_pa(pte2) != pa) ||
1794		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1795			anychanged++;
1796			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1797			    vm_page_pte2_attr(m)));
1798		}
1799		pte2p++;
1800	}
1801	if (__predict_false(anychanged))
1802		tlb_flush_range(sva, count * PAGE_SIZE);
1803}
1804
1805/*
1806 *  This routine tears out page mappings from the
1807 *  kernel -- it is meant only for temporary mappings.
1808 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1809 */
1810void
1811pmap_qremove(vm_offset_t sva, int count)
1812{
1813	vm_offset_t va;
1814
1815	va = sva;
1816	while (count-- > 0) {
1817		pmap_kremove(va);
1818		va += PAGE_SIZE;
1819	}
1820	tlb_flush_range(sva, va - sva);
1821}
1822
1823/*
1824 *  Are we current address space or kernel?
1825 */
1826static __inline int
1827pmap_is_current(pmap_t pmap)
1828{
1829
1830	return (pmap == kernel_pmap ||
1831		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1832}
1833
1834/*
1835 *  If the given pmap is not the current or kernel pmap, the returned
1836 *  pte2 must be released by passing it to pmap_pte2_release().
1837 */
1838static pt2_entry_t *
1839pmap_pte2(pmap_t pmap, vm_offset_t va)
1840{
1841	pt1_entry_t pte1;
1842	vm_paddr_t pt2pg_pa;
1843
1844	pte1 = pte1_load(pmap_pte1(pmap, va));
1845	if (pte1_is_section(pte1))
1846		panic("%s: attempt to map PTE1", __func__);
1847	if (pte1_is_link(pte1)) {
1848		/* Are we current address space or kernel? */
1849		if (pmap_is_current(pmap))
1850			return (pt2map_entry(va));
1851		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1852		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1853		mtx_lock(&PMAP2mutex);
1854		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1855			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1856			tlb_flush((vm_offset_t)PADDR2);
1857		}
1858		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1859	}
1860	return (NULL);
1861}
1862
1863/*
1864 *  Releases a pte2 that was obtained from pmap_pte2().
1865 *  Be prepared for the pte2p being NULL.
1866 */
1867static __inline void
1868pmap_pte2_release(pt2_entry_t *pte2p)
1869{
1870
1871	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1872		mtx_unlock(&PMAP2mutex);
1873	}
1874}
1875
1876/*
1877 *  Super fast pmap_pte2 routine best used when scanning
1878 *  the pv lists.  This eliminates many coarse-grained
1879 *  invltlb calls.  Note that many of the pv list
1880 *  scans are across different pmaps.  It is very wasteful
1881 *  to do an entire tlb flush for checking a single mapping.
1882 *
1883 *  If the given pmap is not the current pmap, pvh_global_lock
1884 *  must be held and curthread pinned to a CPU.
1885 */
1886static pt2_entry_t *
1887pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1888{
1889	pt1_entry_t pte1;
1890	vm_paddr_t pt2pg_pa;
1891
1892	pte1 = pte1_load(pmap_pte1(pmap, va));
1893	if (pte1_is_section(pte1))
1894		panic("%s: attempt to map PTE1", __func__);
1895	if (pte1_is_link(pte1)) {
1896		/* Are we current address space or kernel? */
1897		if (pmap_is_current(pmap))
1898			return (pt2map_entry(va));
1899		rw_assert(&pvh_global_lock, RA_WLOCKED);
1900		KASSERT(curthread->td_pinned > 0,
1901		    ("%s: curthread not pinned", __func__));
1902		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1903		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1904		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1905			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1906#ifdef SMP
1907			PMAP1cpu = PCPU_GET(cpuid);
1908#endif
1909			tlb_flush_local((vm_offset_t)PADDR1);
1910			PMAP1changed++;
1911		} else
1912#ifdef SMP
1913		if (PMAP1cpu != PCPU_GET(cpuid)) {
1914			PMAP1cpu = PCPU_GET(cpuid);
1915			tlb_flush_local((vm_offset_t)PADDR1);
1916			PMAP1changedcpu++;
1917		} else
1918#endif
1919			PMAP1unchanged++;
1920		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1921	}
1922	return (NULL);
1923}
1924
1925/*
1926 *  Routine: pmap_extract
1927 *  Function:
1928 * 	Extract the physical page address associated
1929 *	with the given map/virtual_address pair.
1930 */
1931vm_paddr_t
1932pmap_extract(pmap_t pmap, vm_offset_t va)
1933{
1934	vm_paddr_t pa;
1935	pt1_entry_t pte1;
1936	pt2_entry_t *pte2p;
1937
1938	PMAP_LOCK(pmap);
1939	pte1 = pte1_load(pmap_pte1(pmap, va));
1940	if (pte1_is_section(pte1))
1941		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1942	else if (pte1_is_link(pte1)) {
1943		pte2p = pmap_pte2(pmap, va);
1944		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1945		pmap_pte2_release(pte2p);
1946	} else
1947		pa = 0;
1948	PMAP_UNLOCK(pmap);
1949	return (pa);
1950}
1951
1952/*
1953 *  Routine: pmap_extract_and_hold
1954 *  Function:
1955 *	Atomically extract and hold the physical page
1956 *	with the given pmap and virtual address pair
1957 *	if that mapping permits the given protection.
1958 */
1959vm_page_t
1960pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1961{
1962	vm_paddr_t pa, lockpa;
1963	pt1_entry_t pte1;
1964	pt2_entry_t pte2, *pte2p;
1965	vm_page_t m;
1966
1967	lockpa = 0;
1968	m = NULL;
1969	PMAP_LOCK(pmap);
1970retry:
1971	pte1 = pte1_load(pmap_pte1(pmap, va));
1972	if (pte1_is_section(pte1)) {
1973		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1974			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1975			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1976				goto retry;
1977			m = PHYS_TO_VM_PAGE(pa);
1978			vm_page_hold(m);
1979		}
1980	} else if (pte1_is_link(pte1)) {
1981		pte2p = pmap_pte2(pmap, va);
1982		pte2 = pte2_load(pte2p);
1983		pmap_pte2_release(pte2p);
1984		if (pte2_is_valid(pte2) &&
1985		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1986			pa = pte2_pa(pte2);
1987			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1988				goto retry;
1989			m = PHYS_TO_VM_PAGE(pa);
1990			vm_page_hold(m);
1991		}
1992	}
1993	PA_UNLOCK_COND(lockpa);
1994	PMAP_UNLOCK(pmap);
1995	return (m);
1996}
1997
1998/*
1999 *  Grow the number of kernel L2 page table entries, if needed.
2000 */
2001void
2002pmap_growkernel(vm_offset_t addr)
2003{
2004	vm_page_t m;
2005	vm_paddr_t pt2pg_pa, pt2_pa;
2006	pt1_entry_t pte1;
2007	pt2_entry_t pte2;
2008
2009	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2010	/*
2011	 * All the time kernel_vm_end is first KVA for which underlying
2012	 * L2 page table is either not allocated or linked from L1 page table
2013	 * (not considering sections). Except for two possible cases:
2014	 *
2015	 *   (1) in the very beginning as long as pmap_growkernel() was
2016	 *       not called, it could be first unused KVA (which is not
2017	 *       rounded up to PTE1_SIZE),
2018	 *
2019	 *   (2) when all KVA space is mapped and kernel_map->max_offset
2020	 *       address is not rounded up to PTE1_SIZE. (For example,
2021	 *       it could be 0xFFFFFFFF.)
2022	 */
2023	kernel_vm_end = pte1_roundup(kernel_vm_end);
2024	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2025	addr = roundup2(addr, PTE1_SIZE);
2026	if (addr - 1 >= kernel_map->max_offset)
2027		addr = kernel_map->max_offset;
2028	while (kernel_vm_end < addr) {
2029		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2030		if (pte1_is_valid(pte1)) {
2031			kernel_vm_end += PTE1_SIZE;
2032			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2033				kernel_vm_end = kernel_map->max_offset;
2034				break;
2035			}
2036			continue;
2037		}
2038
2039		/*
2040		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2041		 * mappings are entered to new pmap all at once to avoid race
2042		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2043		 * The same aplies to pmap_kenter_pt2tab().
2044		 */
2045		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2046
2047		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2048		if (!pte2_is_valid(pte2)) {
2049			/*
2050			 * Install new PT2s page into kernel PT2TAB.
2051			 */
2052			m = vm_page_alloc(NULL,
2053			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2054			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2055			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2056			if (m == NULL)
2057				panic("%s: no memory to grow kernel", __func__);
2058			/*
2059			 * QQQ: To link all new L2 page tables from L1 page
2060			 *      table now and so pmap_kenter_pte1() them
2061			 *      at once together with pmap_kenter_pt2tab()
2062			 *      could be nice speed up. However,
2063			 *      pmap_growkernel() does not happen so often...
2064			 * QQQ: The other TTBR is another option.
2065			 */
2066			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2067			    m);
2068		} else
2069			pt2pg_pa = pte2_pa(pte2);
2070
2071		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2072		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2073
2074		kernel_vm_end = kernel_vm_end_new;
2075		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2076			kernel_vm_end = kernel_map->max_offset;
2077			break;
2078		}
2079	}
2080}
2081
2082static int
2083kvm_size(SYSCTL_HANDLER_ARGS)
2084{
2085	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2086
2087	return (sysctl_handle_long(oidp, &ksize, 0, req));
2088}
2089SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2090    0, 0, kvm_size, "IU", "Size of KVM");
2091
2092static int
2093kvm_free(SYSCTL_HANDLER_ARGS)
2094{
2095	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2096
2097	return (sysctl_handle_long(oidp, &kfree, 0, req));
2098}
2099SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2100    0, 0, kvm_free, "IU", "Amount of KVM free");
2101
2102/***********************************************
2103 *
2104 *  Pmap allocation/deallocation routines.
2105 *
2106 ***********************************************/
2107
2108/*
2109 *  Initialize the pmap for the swapper process.
2110 */
2111void
2112pmap_pinit0(pmap_t pmap)
2113{
2114	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2115
2116	PMAP_LOCK_INIT(pmap);
2117
2118	/*
2119	 * Kernel page table directory and pmap stuff around is already
2120	 * initialized, we are using it right now and here. So, finish
2121	 * only PMAP structures initialization for process0 ...
2122	 *
2123	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2124	 * which is already included in the list "allpmaps", this pmap does
2125	 * not need to be inserted into that list.
2126	 */
2127	pmap->pm_pt1 = kern_pt1;
2128	pmap->pm_pt2tab = kern_pt2tab;
2129	CPU_ZERO(&pmap->pm_active);
2130	PCPU_SET(curpmap, pmap);
2131	TAILQ_INIT(&pmap->pm_pvchunk);
2132	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2133	CPU_SET(0, &pmap->pm_active);
2134}
2135
2136static __inline void
2137pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2138    vm_offset_t eva)
2139{
2140	u_int idx, count;
2141
2142	idx = pte1_index(sva);
2143	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2144	bcopy(spte1p + idx, dpte1p + idx, count);
2145}
2146
2147static __inline void
2148pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2149    vm_offset_t eva)
2150{
2151	u_int idx, count;
2152
2153	idx = pt2tab_index(sva);
2154	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2155	bcopy(spte2p + idx, dpte2p + idx, count);
2156}
2157
2158/*
2159 *  Initialize a preallocated and zeroed pmap structure,
2160 *  such as one in a vmspace structure.
2161 */
2162int
2163pmap_pinit(pmap_t pmap)
2164{
2165	pt1_entry_t *pte1p;
2166	pt2_entry_t *pte2p;
2167	vm_paddr_t pa, pt2tab_pa;
2168	u_int i;
2169
2170	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2171	    pmap->pm_pt1));
2172
2173	/*
2174	 * No need to allocate L2 page table space yet but we do need
2175	 * a valid L1 page table and PT2TAB table.
2176	 *
2177	 * Install shared kernel mappings to these tables. It's a little
2178	 * tricky as some parts of KVA are reserved for vectors, devices,
2179	 * and whatever else. These parts are supposed to be above
2180	 * vm_max_kernel_address. Thus two regions should be installed:
2181	 *
2182	 *   (1) <KERNBASE, kernel_vm_end),
2183	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2184	 *
2185	 * QQQ: The second region should be stable enough to be installed
2186	 *      only once in time when the tables are allocated.
2187	 * QQQ: Maybe copy of both regions at once could be faster ...
2188	 * QQQ: Maybe the other TTBR is an option.
2189	 *
2190	 * Finally, install own PT2TAB table to these tables.
2191	 */
2192
2193	if (pmap->pm_pt1 == NULL) {
2194		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2195		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2196		    pt_memattr);
2197		if (pmap->pm_pt1 == NULL)
2198			return (0);
2199	}
2200	if (pmap->pm_pt2tab == NULL) {
2201		/*
2202		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2203		 *      only, what should be the only size for 32 bit systems,
2204		 *      then we could allocate it with vm_page_alloc() and all
2205		 *      the stuff needed as other L2 page table pages.
2206		 *      (2) Note that a process PT2TAB is special L2 page table
2207		 *      page. Its mapping in kernel_arena is permanent and can
2208		 *      be used no matter which process is current. Its mapping
2209		 *      in PT2MAP can be used only for current process.
2210		 */
2211		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2212		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2213		if (pmap->pm_pt2tab == NULL) {
2214			/*
2215			 * QQQ: As struct pmap is allocated from UMA with
2216			 *      UMA_ZONE_NOFREE flag, it's important to leave
2217			 *      no allocation in pmap if initialization failed.
2218			 */
2219			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2220			    NB_IN_PT1);
2221			pmap->pm_pt1 = NULL;
2222			return (0);
2223		}
2224		/*
2225		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2226		 *      pte1 index of virtual address mapped by this page.
2227		 *      It's not valid for non kernel PT2TABs themselves.
2228		 *      The pindex of these pages can not be altered because
2229		 *      of the way how they are allocated now. However, it
2230		 *      should not be a problem.
2231		 */
2232	}
2233
2234	mtx_lock_spin(&allpmaps_lock);
2235	/*
2236	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2237	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2238	 */
2239	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2240	    kernel_vm_end_new - 1);
2241	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2242	    0xFFFFFFFF);
2243	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2244	    kernel_vm_end_new - 1);
2245	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2246	    0xFFFFFFFF);
2247	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2248	mtx_unlock_spin(&allpmaps_lock);
2249
2250	/*
2251	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2252	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2253	 * into shared PT2MAP space, so the mapping should be not global.
2254	 */
2255	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2256	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2257	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2258		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2259	}
2260
2261	/* Insert PT2MAP PT2s into pmap PT1. */
2262	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2263	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2264		pte1_store(pte1p++, PTE1_LINK(pa));
2265	}
2266
2267	/*
2268	 * Now synchronize new mapping which was made above.
2269	 */
2270	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2271	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2272
2273	CPU_ZERO(&pmap->pm_active);
2274	TAILQ_INIT(&pmap->pm_pvchunk);
2275	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2276
2277	return (1);
2278}
2279
2280#ifdef INVARIANTS
2281static boolean_t
2282pt2tab_user_is_empty(pt2_entry_t *tab)
2283{
2284	u_int i, end;
2285
2286	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2287	for (i = 0; i < end; i++)
2288		if (tab[i] != 0) return (FALSE);
2289	return (TRUE);
2290}
2291#endif
2292/*
2293 *  Release any resources held by the given physical map.
2294 *  Called when a pmap initialized by pmap_pinit is being released.
2295 *  Should only be called if the map contains no valid mappings.
2296 */
2297void
2298pmap_release(pmap_t pmap)
2299{
2300#ifdef INVARIANTS
2301	vm_offset_t start, end;
2302#endif
2303	KASSERT(pmap->pm_stats.resident_count == 0,
2304	    ("%s: pmap resident count %ld != 0", __func__,
2305	    pmap->pm_stats.resident_count));
2306	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2307	    ("%s: has allocated user PT2(s)", __func__));
2308	KASSERT(CPU_EMPTY(&pmap->pm_active),
2309	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2310
2311	mtx_lock_spin(&allpmaps_lock);
2312	LIST_REMOVE(pmap, pm_list);
2313	mtx_unlock_spin(&allpmaps_lock);
2314
2315#ifdef INVARIANTS
2316	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2317	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2318	bzero((char *)pmap->pm_pt1 + start, end - start);
2319
2320	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2321	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2322	bzero((char *)pmap->pm_pt2tab + start, end - start);
2323#endif
2324	/*
2325	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2326	 * so hopefully UMA vmspace_zone will always be inited with
2327	 * UMA_ZONE_NOFREE flag.
2328	 */
2329}
2330
2331/*********************************************************
2332 *
2333 *  L2 table pages and their pages management routines.
2334 *
2335 *********************************************************/
2336
2337/*
2338 *  Virtual interface for L2 page table wire counting.
2339 *
2340 *  Each L2 page table in a page has own counter which counts a number of
2341 *  valid mappings in a table. Global page counter counts mappings in all
2342 *  tables in a page plus a single itself mapping in PT2TAB.
2343 *
2344 *  During a promotion we leave the associated L2 page table counter
2345 *  untouched, so the table (strictly speaking a page which holds it)
2346 *  is never freed if promoted.
2347 *
2348 *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2349 *  table in the page and the page itself is only mapped in PT2TAB.
2350 */
2351
2352static __inline void
2353pt2_wirecount_init(vm_page_t m)
2354{
2355	u_int i;
2356
2357	/*
2358	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2359	 *       m->wire_count should be already set correctly.
2360	 *       So, there is no need to set it again herein.
2361	 */
2362	for (i = 0; i < NPT2_IN_PG; i++)
2363		m->md.pt2_wirecount[i] = 0;
2364}
2365
2366static __inline void
2367pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2368{
2369
2370	/*
2371	 * Note: A just modificated pte2 (i.e. already allocated)
2372	 *       is acquiring one extra reference which must be
2373	 *       explicitly cleared. It influences the KASSERTs herein.
2374	 *       All L2 page tables in a page always belong to the same
2375	 *       pmap, so we allow only one extra reference for the page.
2376	 */
2377	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2378	    ("%s: PT2 is overflowing ...", __func__));
2379	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2380	    ("%s: PT2PG is overflowing ...", __func__));
2381
2382	m->wire_count++;
2383	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2384}
2385
2386static __inline void
2387pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2388{
2389
2390	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2391	    ("%s: PT2 is underflowing ...", __func__));
2392	KASSERT(m->wire_count > 1,
2393	    ("%s: PT2PG is underflowing ...", __func__));
2394
2395	m->wire_count--;
2396	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2397}
2398
2399static __inline void
2400pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2401{
2402
2403	KASSERT(count <= NPTE2_IN_PT2,
2404	    ("%s: invalid count %u", __func__, count));
2405	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2406	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2407	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2408
2409	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2410	m->wire_count += count;
2411	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2412
2413	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2414	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2415}
2416
2417static __inline uint32_t
2418pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2419{
2420
2421	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2422}
2423
2424static __inline boolean_t
2425pt2_is_empty(vm_page_t m, vm_offset_t va)
2426{
2427
2428	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2429}
2430
2431static __inline boolean_t
2432pt2_is_full(vm_page_t m, vm_offset_t va)
2433{
2434
2435	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2436	    NPTE2_IN_PT2);
2437}
2438
2439static __inline boolean_t
2440pt2pg_is_empty(vm_page_t m)
2441{
2442
2443	return (m->wire_count == 1);
2444}
2445
2446/*
2447 *  This routine is called if the L2 page table
2448 *  is not mapped correctly.
2449 */
2450static vm_page_t
2451_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2452{
2453	uint32_t pte1_idx;
2454	pt1_entry_t *pte1p;
2455	pt2_entry_t pte2;
2456	vm_page_t  m;
2457	vm_paddr_t pt2pg_pa, pt2_pa;
2458
2459	pte1_idx = pte1_index(va);
2460	pte1p = pmap->pm_pt1 + pte1_idx;
2461
2462	KASSERT(pte1_load(pte1p) == 0,
2463	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2464	    pte1_load(pte1p)));
2465
2466	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2467	if (!pte2_is_valid(pte2)) {
2468		/*
2469		 * Install new PT2s page into pmap PT2TAB.
2470		 */
2471		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2472		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2473		if (m == NULL) {
2474			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2475				PMAP_UNLOCK(pmap);
2476				rw_wunlock(&pvh_global_lock);
2477				VM_WAIT;
2478				rw_wlock(&pvh_global_lock);
2479				PMAP_LOCK(pmap);
2480			}
2481
2482			/*
2483			 * Indicate the need to retry.  While waiting,
2484			 * the L2 page table page may have been allocated.
2485			 */
2486			return (NULL);
2487		}
2488		pmap->pm_stats.resident_count++;
2489		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2490	} else {
2491		pt2pg_pa = pte2_pa(pte2);
2492		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2493	}
2494
2495	pt2_wirecount_inc(m, pte1_idx);
2496	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2497	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2498
2499	return (m);
2500}
2501
2502static vm_page_t
2503pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2504{
2505	u_int pte1_idx;
2506	pt1_entry_t *pte1p, pte1;
2507	vm_page_t m;
2508
2509	pte1_idx = pte1_index(va);
2510retry:
2511	pte1p = pmap->pm_pt1 + pte1_idx;
2512	pte1 = pte1_load(pte1p);
2513
2514	/*
2515	 * This supports switching from a 1MB page to a
2516	 * normal 4K page.
2517	 */
2518	if (pte1_is_section(pte1)) {
2519		(void)pmap_demote_pte1(pmap, pte1p, va);
2520		/*
2521		 * Reload pte1 after demotion.
2522		 *
2523		 * Note: Demotion can even fail as either PT2 is not find for
2524		 *       the virtual address or PT2PG can not be allocated.
2525		 */
2526		pte1 = pte1_load(pte1p);
2527	}
2528
2529	/*
2530	 * If the L2 page table page is mapped, we just increment the
2531	 * hold count, and activate it.
2532	 */
2533	if (pte1_is_link(pte1)) {
2534		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2535		pt2_wirecount_inc(m, pte1_idx);
2536	} else  {
2537		/*
2538		 * Here if the PT2 isn't mapped, or if it has
2539		 * been deallocated.
2540		 */
2541		m = _pmap_allocpte2(pmap, va, flags);
2542		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2543			goto retry;
2544	}
2545
2546	return (m);
2547}
2548
2549static __inline void
2550pmap_free_zero_pages(struct spglist *free)
2551{
2552	vm_page_t m;
2553
2554	while ((m = SLIST_FIRST(free)) != NULL) {
2555		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2556		/* Preserve the page's PG_ZERO setting. */
2557		vm_page_free_toq(m);
2558	}
2559}
2560
2561/*
2562 *  Schedule the specified unused L2 page table page to be freed. Specifically,
2563 *  add the page to the specified list of pages that will be released to the
2564 *  physical memory manager after the TLB has been updated.
2565 */
2566static __inline void
2567pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2568{
2569
2570	/*
2571	 * Put page on a list so that it is released after
2572	 * *ALL* TLB shootdown is done
2573	 */
2574#ifdef PMAP_DEBUG
2575	pmap_zero_page_check(m);
2576#endif
2577	m->flags |= PG_ZERO;
2578	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2579}
2580
2581/*
2582 *  Unwire L2 page tables page.
2583 */
2584static void
2585pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2586{
2587	pt1_entry_t *pte1p, opte1 __unused;
2588	pt2_entry_t *pte2p;
2589	uint32_t i;
2590
2591	KASSERT(pt2pg_is_empty(m),
2592	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2593
2594	/*
2595	 * Unmap all L2 page tables in the page from L1 page table.
2596	 *
2597	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2598	 * earlier. However, we are doing that this way.
2599	 */
2600	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2601	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2602	pte1p = pmap->pm_pt1 + m->pindex;
2603	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2604		KASSERT(m->md.pt2_wirecount[i] == 0,
2605		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2606		opte1 = pte1_load(pte1p);
2607		if (pte1_is_link(opte1)) {
2608			pte1_clear(pte1p);
2609			/*
2610			 * Flush intermediate TLB cache.
2611			 */
2612			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2613		}
2614#ifdef INVARIANTS
2615		else
2616			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2617			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2618			    pmap, va, opte1, i));
2619#endif
2620	}
2621
2622	/*
2623	 * Unmap the page from PT2TAB.
2624	 */
2625	pte2p = pmap_pt2tab_entry(pmap, va);
2626	(void)pt2tab_load_clear(pte2p);
2627	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2628
2629	m->wire_count = 0;
2630	pmap->pm_stats.resident_count--;
2631
2632	/*
2633	 * This is a release store so that the ordinary store unmapping
2634	 * the L2 page table page is globally performed before TLB shoot-
2635	 * down is begun.
2636	 */
2637	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2638}
2639
2640/*
2641 *  Decrements a L2 page table page's wire count, which is used to record the
2642 *  number of valid page table entries within the page.  If the wire count
2643 *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2644 *  page table page was unmapped and FALSE otherwise.
2645 */
2646static __inline boolean_t
2647pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2648{
2649	pt2_wirecount_dec(m, pte1_index(va));
2650	if (pt2pg_is_empty(m)) {
2651		/*
2652		 * QQQ: Wire count is zero, so whole page should be zero and
2653		 *      we can set PG_ZERO flag to it.
2654		 *      Note that when promotion is enabled, it takes some
2655		 *      more efforts. See pmap_unwire_pt2_all() below.
2656		 */
2657		pmap_unwire_pt2pg(pmap, va, m);
2658		pmap_add_delayed_free_list(m, free);
2659		return (TRUE);
2660	} else
2661		return (FALSE);
2662}
2663
2664/*
2665 *  Drop a L2 page table page's wire count at once, which is used to record
2666 *  the number of valid L2 page table entries within the page. If the wire
2667 *  count drops to zero, then the L2 page table page is unmapped.
2668 */
2669static __inline void
2670pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2671    struct spglist *free)
2672{
2673	u_int pte1_idx = pte1_index(va);
2674
2675	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2676		("%s: PT2 page's pindex is wrong", __func__));
2677	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2678	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2679	    pt2_wirecount_get(m, pte1_idx)));
2680
2681	/*
2682	 * It's possible that the L2 page table was never used.
2683	 * It happened in case that a section was created without promotion.
2684	 */
2685	if (pt2_is_full(m, va)) {
2686		pt2_wirecount_set(m, pte1_idx, 0);
2687
2688		/*
2689		 * QQQ: We clear L2 page table now, so when L2 page table page
2690		 *      is going to be freed, we can set it PG_ZERO flag ...
2691		 *      This function is called only on section mappings, so
2692		 *      hopefully it's not to big overload.
2693		 *
2694		 * XXX: If pmap is current, existing PT2MAP mapping could be
2695		 *      used for zeroing.
2696		 */
2697		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2698	}
2699#ifdef INVARIANTS
2700	else
2701		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2702		    __func__, pt2_wirecount_get(m, pte1_idx)));
2703#endif
2704	if (pt2pg_is_empty(m)) {
2705		pmap_unwire_pt2pg(pmap, va, m);
2706		pmap_add_delayed_free_list(m, free);
2707	}
2708}
2709
2710/*
2711 *  After removing a L2 page table entry, this routine is used to
2712 *  conditionally free the page, and manage the hold/wire counts.
2713 */
2714static boolean_t
2715pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2716{
2717	pt1_entry_t pte1;
2718	vm_page_t mpte;
2719
2720	if (va >= VM_MAXUSER_ADDRESS)
2721		return (FALSE);
2722	pte1 = pte1_load(pmap_pte1(pmap, va));
2723	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2724	return (pmap_unwire_pt2(pmap, va, mpte, free));
2725}
2726
2727/*************************************
2728 *
2729 *  Page management routines.
2730 *
2731 *************************************/
2732
2733CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2734CTASSERT(_NPCM == 11);
2735CTASSERT(_NPCPV == 336);
2736
2737static __inline struct pv_chunk *
2738pv_to_chunk(pv_entry_t pv)
2739{
2740
2741	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2742}
2743
2744#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2745
2746#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2747#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2748
2749static const uint32_t pc_freemask[_NPCM] = {
2750	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2751	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2752	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2753	PC_FREE0_9, PC_FREE10
2754};
2755
2756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2757	"Current number of pv entries");
2758
2759#ifdef PV_STATS
2760static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2761
2762SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2763    "Current number of pv entry chunks");
2764SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2765    "Current number of pv entry chunks allocated");
2766SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2767    "Current number of pv entry chunks frees");
2768SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2769    0, "Number of times tried to get a chunk page but failed.");
2770
2771static long pv_entry_frees, pv_entry_allocs;
2772static int pv_entry_spare;
2773
2774SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2775    "Current number of pv entry frees");
2776SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2777    0, "Current number of pv entry allocs");
2778SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2779    "Current number of spare pv entries");
2780#endif
2781
2782/*
2783 *  Is given page managed?
2784 */
2785static __inline bool
2786is_managed(vm_paddr_t pa)
2787{
2788	vm_page_t m;
2789
2790	m = PHYS_TO_VM_PAGE(pa);
2791	if (m == NULL)
2792		return (false);
2793	return ((m->oflags & VPO_UNMANAGED) == 0);
2794}
2795
2796static __inline bool
2797pte1_is_managed(pt1_entry_t pte1)
2798{
2799
2800	return (is_managed(pte1_pa(pte1)));
2801}
2802
2803static __inline bool
2804pte2_is_managed(pt2_entry_t pte2)
2805{
2806
2807	return (is_managed(pte2_pa(pte2)));
2808}
2809
2810/*
2811 *  We are in a serious low memory condition.  Resort to
2812 *  drastic measures to free some pages so we can allocate
2813 *  another pv entry chunk.
2814 */
2815static vm_page_t
2816pmap_pv_reclaim(pmap_t locked_pmap)
2817{
2818	struct pch newtail;
2819	struct pv_chunk *pc;
2820	struct md_page *pvh;
2821	pt1_entry_t *pte1p;
2822	pmap_t pmap;
2823	pt2_entry_t *pte2p, tpte2;
2824	pv_entry_t pv;
2825	vm_offset_t va;
2826	vm_page_t m, m_pc;
2827	struct spglist free;
2828	uint32_t inuse;
2829	int bit, field, freed;
2830
2831	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2832	pmap = NULL;
2833	m_pc = NULL;
2834	SLIST_INIT(&free);
2835	TAILQ_INIT(&newtail);
2836	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2837	    SLIST_EMPTY(&free))) {
2838		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2839		if (pmap != pc->pc_pmap) {
2840			if (pmap != NULL) {
2841				if (pmap != locked_pmap)
2842					PMAP_UNLOCK(pmap);
2843			}
2844			pmap = pc->pc_pmap;
2845			/* Avoid deadlock and lock recursion. */
2846			if (pmap > locked_pmap)
2847				PMAP_LOCK(pmap);
2848			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2849				pmap = NULL;
2850				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2851				continue;
2852			}
2853		}
2854
2855		/*
2856		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2857		 */
2858		freed = 0;
2859		for (field = 0; field < _NPCM; field++) {
2860			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2861			    inuse != 0; inuse &= ~(1UL << bit)) {
2862				bit = ffs(inuse) - 1;
2863				pv = &pc->pc_pventry[field * 32 + bit];
2864				va = pv->pv_va;
2865				pte1p = pmap_pte1(pmap, va);
2866				if (pte1_is_section(pte1_load(pte1p)))
2867					continue;
2868				pte2p = pmap_pte2(pmap, va);
2869				tpte2 = pte2_load(pte2p);
2870				if ((tpte2 & PTE2_W) == 0)
2871					tpte2 = pte2_load_clear(pte2p);
2872				pmap_pte2_release(pte2p);
2873				if ((tpte2 & PTE2_W) != 0)
2874					continue;
2875				KASSERT(tpte2 != 0,
2876				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2877				    pmap, va));
2878				pmap_tlb_flush(pmap, va);
2879				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2880				if (pte2_is_dirty(tpte2))
2881					vm_page_dirty(m);
2882				if ((tpte2 & PTE2_A) != 0)
2883					vm_page_aflag_set(m, PGA_REFERENCED);
2884				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2885				if (TAILQ_EMPTY(&m->md.pv_list) &&
2886				    (m->flags & PG_FICTITIOUS) == 0) {
2887					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2888					if (TAILQ_EMPTY(&pvh->pv_list)) {
2889						vm_page_aflag_clear(m,
2890						    PGA_WRITEABLE);
2891					}
2892				}
2893				pc->pc_map[field] |= 1UL << bit;
2894				pmap_unuse_pt2(pmap, va, &free);
2895				freed++;
2896			}
2897		}
2898		if (freed == 0) {
2899			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2900			continue;
2901		}
2902		/* Every freed mapping is for a 4 KB page. */
2903		pmap->pm_stats.resident_count -= freed;
2904		PV_STAT(pv_entry_frees += freed);
2905		PV_STAT(pv_entry_spare += freed);
2906		pv_entry_count -= freed;
2907		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2908		for (field = 0; field < _NPCM; field++)
2909			if (pc->pc_map[field] != pc_freemask[field]) {
2910				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2911				    pc_list);
2912				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2913
2914				/*
2915				 * One freed pv entry in locked_pmap is
2916				 * sufficient.
2917				 */
2918				if (pmap == locked_pmap)
2919					goto out;
2920				break;
2921			}
2922		if (field == _NPCM) {
2923			PV_STAT(pv_entry_spare -= _NPCPV);
2924			PV_STAT(pc_chunk_count--);
2925			PV_STAT(pc_chunk_frees++);
2926			/* Entire chunk is free; return it. */
2927			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2928			pmap_qremove((vm_offset_t)pc, 1);
2929			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2930			break;
2931		}
2932	}
2933out:
2934	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2935	if (pmap != NULL) {
2936		if (pmap != locked_pmap)
2937			PMAP_UNLOCK(pmap);
2938	}
2939	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2940		m_pc = SLIST_FIRST(&free);
2941		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2942		/* Recycle a freed page table page. */
2943		m_pc->wire_count = 1;
2944		atomic_add_int(&vm_cnt.v_wire_count, 1);
2945	}
2946	pmap_free_zero_pages(&free);
2947	return (m_pc);
2948}
2949
2950static void
2951free_pv_chunk(struct pv_chunk *pc)
2952{
2953	vm_page_t m;
2954
2955	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2956	PV_STAT(pv_entry_spare -= _NPCPV);
2957	PV_STAT(pc_chunk_count--);
2958	PV_STAT(pc_chunk_frees++);
2959	/* entire chunk is free, return it */
2960	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2961	pmap_qremove((vm_offset_t)pc, 1);
2962	vm_page_unwire(m, PQ_NONE);
2963	vm_page_free(m);
2964	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2965}
2966
2967/*
2968 *  Free the pv_entry back to the free list.
2969 */
2970static void
2971free_pv_entry(pmap_t pmap, pv_entry_t pv)
2972{
2973	struct pv_chunk *pc;
2974	int idx, field, bit;
2975
2976	rw_assert(&pvh_global_lock, RA_WLOCKED);
2977	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2978	PV_STAT(pv_entry_frees++);
2979	PV_STAT(pv_entry_spare++);
2980	pv_entry_count--;
2981	pc = pv_to_chunk(pv);
2982	idx = pv - &pc->pc_pventry[0];
2983	field = idx / 32;
2984	bit = idx % 32;
2985	pc->pc_map[field] |= 1ul << bit;
2986	for (idx = 0; idx < _NPCM; idx++)
2987		if (pc->pc_map[idx] != pc_freemask[idx]) {
2988			/*
2989			 * 98% of the time, pc is already at the head of the
2990			 * list.  If it isn't already, move it to the head.
2991			 */
2992			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2993			    pc)) {
2994				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2995				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2996				    pc_list);
2997			}
2998			return;
2999		}
3000	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3001	free_pv_chunk(pc);
3002}
3003
3004/*
3005 *  Get a new pv_entry, allocating a block from the system
3006 *  when needed.
3007 */
3008static pv_entry_t
3009get_pv_entry(pmap_t pmap, boolean_t try)
3010{
3011	static const struct timeval printinterval = { 60, 0 };
3012	static struct timeval lastprint;
3013	int bit, field;
3014	pv_entry_t pv;
3015	struct pv_chunk *pc;
3016	vm_page_t m;
3017
3018	rw_assert(&pvh_global_lock, RA_WLOCKED);
3019	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3020	PV_STAT(pv_entry_allocs++);
3021	pv_entry_count++;
3022	if (pv_entry_count > pv_entry_high_water)
3023		if (ratecheck(&lastprint, &printinterval))
3024			printf("Approaching the limit on PV entries, consider "
3025			    "increasing either the vm.pmap.shpgperproc or the "
3026			    "vm.pmap.pv_entry_max tunable.\n");
3027retry:
3028	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3029	if (pc != NULL) {
3030		for (field = 0; field < _NPCM; field++) {
3031			if (pc->pc_map[field]) {
3032				bit = ffs(pc->pc_map[field]) - 1;
3033				break;
3034			}
3035		}
3036		if (field < _NPCM) {
3037			pv = &pc->pc_pventry[field * 32 + bit];
3038			pc->pc_map[field] &= ~(1ul << bit);
3039			/* If this was the last item, move it to tail */
3040			for (field = 0; field < _NPCM; field++)
3041				if (pc->pc_map[field] != 0) {
3042					PV_STAT(pv_entry_spare--);
3043					return (pv);	/* not full, return */
3044				}
3045			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3046			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3047			PV_STAT(pv_entry_spare--);
3048			return (pv);
3049		}
3050	}
3051	/*
3052	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3053	 * global lock.  If "pv_vafree" is currently non-empty, it will
3054	 * remain non-empty until pmap_pte2list_alloc() completes.
3055	 */
3056	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3057	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3058		if (try) {
3059			pv_entry_count--;
3060			PV_STAT(pc_chunk_tryfail++);
3061			return (NULL);
3062		}
3063		m = pmap_pv_reclaim(pmap);
3064		if (m == NULL)
3065			goto retry;
3066	}
3067	PV_STAT(pc_chunk_count++);
3068	PV_STAT(pc_chunk_allocs++);
3069	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3070	pmap_qenter((vm_offset_t)pc, &m, 1);
3071	pc->pc_pmap = pmap;
3072	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3073	for (field = 1; field < _NPCM; field++)
3074		pc->pc_map[field] = pc_freemask[field];
3075	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3076	pv = &pc->pc_pventry[0];
3077	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3078	PV_STAT(pv_entry_spare += _NPCPV - 1);
3079	return (pv);
3080}
3081
3082/*
3083 *  Create a pv entry for page at pa for
3084 *  (pmap, va).
3085 */
3086static void
3087pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3088{
3089	pv_entry_t pv;
3090
3091	rw_assert(&pvh_global_lock, RA_WLOCKED);
3092	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3093	pv = get_pv_entry(pmap, FALSE);
3094	pv->pv_va = va;
3095	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3096}
3097
3098static __inline pv_entry_t
3099pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3100{
3101	pv_entry_t pv;
3102
3103	rw_assert(&pvh_global_lock, RA_WLOCKED);
3104	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3105		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3106			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3107			break;
3108		}
3109	}
3110	return (pv);
3111}
3112
3113static void
3114pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3115{
3116	pv_entry_t pv;
3117
3118	pv = pmap_pvh_remove(pvh, pmap, va);
3119	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3120	free_pv_entry(pmap, pv);
3121}
3122
3123static void
3124pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3125{
3126	struct md_page *pvh;
3127
3128	rw_assert(&pvh_global_lock, RA_WLOCKED);
3129	pmap_pvh_free(&m->md, pmap, va);
3130	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3131		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3132		if (TAILQ_EMPTY(&pvh->pv_list))
3133			vm_page_aflag_clear(m, PGA_WRITEABLE);
3134	}
3135}
3136
3137static void
3138pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3139{
3140	struct md_page *pvh;
3141	pv_entry_t pv;
3142	vm_offset_t va_last;
3143	vm_page_t m;
3144
3145	rw_assert(&pvh_global_lock, RA_WLOCKED);
3146	KASSERT((pa & PTE1_OFFSET) == 0,
3147	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3148
3149	/*
3150	 * Transfer the 1mpage's pv entry for this mapping to the first
3151	 * page's pv list.
3152	 */
3153	pvh = pa_to_pvh(pa);
3154	va = pte1_trunc(va);
3155	pv = pmap_pvh_remove(pvh, pmap, va);
3156	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3157	m = PHYS_TO_VM_PAGE(pa);
3158	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3159	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3160	va_last = va + PTE1_SIZE - PAGE_SIZE;
3161	do {
3162		m++;
3163		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3164		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3165		va += PAGE_SIZE;
3166		pmap_insert_entry(pmap, va, m);
3167	} while (va < va_last);
3168}
3169
3170static void
3171pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3172{
3173	struct md_page *pvh;
3174	pv_entry_t pv;
3175	vm_offset_t va_last;
3176	vm_page_t m;
3177
3178	rw_assert(&pvh_global_lock, RA_WLOCKED);
3179	KASSERT((pa & PTE1_OFFSET) == 0,
3180	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3181
3182	/*
3183	 * Transfer the first page's pv entry for this mapping to the
3184	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3185	 * to get_pv_entry(), a transfer avoids the possibility that
3186	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3187	 * removes one of the mappings that is being promoted.
3188	 */
3189	m = PHYS_TO_VM_PAGE(pa);
3190	va = pte1_trunc(va);
3191	pv = pmap_pvh_remove(&m->md, pmap, va);
3192	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3193	pvh = pa_to_pvh(pa);
3194	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3195	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3196	va_last = va + PTE1_SIZE - PAGE_SIZE;
3197	do {
3198		m++;
3199		va += PAGE_SIZE;
3200		pmap_pvh_free(&m->md, pmap, va);
3201	} while (va < va_last);
3202}
3203
3204/*
3205 *  Conditionally create a pv entry.
3206 */
3207static boolean_t
3208pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3209{
3210	pv_entry_t pv;
3211
3212	rw_assert(&pvh_global_lock, RA_WLOCKED);
3213	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3214	if (pv_entry_count < pv_entry_high_water &&
3215	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3216		pv->pv_va = va;
3217		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3218		return (TRUE);
3219	} else
3220		return (FALSE);
3221}
3222
3223/*
3224 *  Create the pv entries for each of the pages within a section.
3225 */
3226static boolean_t
3227pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3228{
3229	struct md_page *pvh;
3230	pv_entry_t pv;
3231
3232	rw_assert(&pvh_global_lock, RA_WLOCKED);
3233	if (pv_entry_count < pv_entry_high_water &&
3234	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3235		pv->pv_va = va;
3236		pvh = pa_to_pvh(pa);
3237		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3238		return (TRUE);
3239	} else
3240		return (FALSE);
3241}
3242
3243static inline void
3244pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3245{
3246
3247	/* Kill all the small mappings or the big one only. */
3248	if (pte1_is_section(npte1))
3249		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3250	else
3251		pmap_tlb_flush(pmap, pte1_trunc(va));
3252}
3253
3254/*
3255 *  Update kernel pte1 on all pmaps.
3256 *
3257 *  The following function is called only on one cpu with disabled interrupts.
3258 *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3259 *  nobody can invoke explicit hardware table walk during the update of pte1.
3260 *  Unsolicited hardware table walk can still happen, invoked by speculative
3261 *  data or instruction prefetch or even by speculative hardware table walk.
3262 *
3263 *  The break-before-make approach should be implemented here. However, it's
3264 *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3265 *  itself unexpectedly but voluntarily.
3266 */
3267static void
3268pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3269{
3270	pmap_t pmap;
3271	pt1_entry_t *pte1p;
3272
3273	/*
3274	 * Get current pmap. Interrupts should be disabled here
3275	 * so PCPU_GET() is done atomically.
3276	 */
3277	pmap = PCPU_GET(curpmap);
3278	if (pmap == NULL)
3279		pmap = kernel_pmap;
3280
3281	/*
3282	 * (1) Change pte1 on current pmap.
3283	 * (2) Flush all obsolete TLB entries on current CPU.
3284	 * (3) Change pte1 on all pmaps.
3285	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3286	 */
3287
3288	pte1p = pmap_pte1(pmap, va);
3289	pte1_store(pte1p, npte1);
3290
3291	/* Kill all the small mappings or the big one only. */
3292	if (pte1_is_section(npte1)) {
3293		pmap_pte1_kern_promotions++;
3294		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3295	} else {
3296		pmap_pte1_kern_demotions++;
3297		tlb_flush_local(pte1_trunc(va));
3298	}
3299
3300	/*
3301	 * In SMP case, this function is called when all cpus are at smp
3302	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3303	 * In UP case, the function is called with this lock locked.
3304	 */
3305	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3306		pte1p = pmap_pte1(pmap, va);
3307		pte1_store(pte1p, npte1);
3308	}
3309
3310#ifdef SMP
3311	/* Kill all the small mappings or the big one only. */
3312	if (pte1_is_section(npte1))
3313		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3314	else
3315		tlb_flush(pte1_trunc(va));
3316#endif
3317}
3318
3319#ifdef SMP
3320struct pte1_action {
3321	vm_offset_t va;
3322	pt1_entry_t npte1;
3323	u_int update;		/* CPU that updates the PTE1 */
3324};
3325
3326static void
3327pmap_update_pte1_action(void *arg)
3328{
3329	struct pte1_action *act = arg;
3330
3331	if (act->update == PCPU_GET(cpuid))
3332		pmap_update_pte1_kernel(act->va, act->npte1);
3333}
3334
3335/*
3336 *  Change pte1 on current pmap.
3337 *  Note that kernel pte1 must be changed on all pmaps.
3338 *
3339 *  According to the architecture reference manual published by ARM,
3340 *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3341 *  According to this manual, UNPREDICTABLE behaviours must never happen in
3342 *  a viable system. In contrast, on x86 processors, it is not specified which
3343 *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3344 *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3345 *  Black).
3346 *
3347 *  It's a problem when either promotion or demotion is being done. The pte1
3348 *  update and appropriate TLB flush must be done atomically in general.
3349 */
3350static void
3351pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3352    pt1_entry_t npte1)
3353{
3354
3355	if (pmap == kernel_pmap) {
3356		struct pte1_action act;
3357
3358		sched_pin();
3359		act.va = va;
3360		act.npte1 = npte1;
3361		act.update = PCPU_GET(cpuid);
3362		smp_rendezvous_cpus(all_cpus, smp_no_rendevous_barrier,
3363		    pmap_update_pte1_action, NULL, &act);
3364		sched_unpin();
3365	} else {
3366		register_t cspr;
3367
3368		/*
3369		 * Use break-before-make approach for changing userland
3370		 * mappings. It can cause L1 translation aborts on other
3371		 * cores in SMP case. So, special treatment is implemented
3372		 * in pmap_fault(). To reduce the likelihood that another core
3373		 * will be affected by the broken mapping, disable interrupts
3374		 * until the mapping change is completed.
3375		 */
3376		cspr = disable_interrupts(PSR_I | PSR_F);
3377		pte1_clear(pte1p);
3378		pmap_tlb_flush_pte1(pmap, va, npte1);
3379		pte1_store(pte1p, npte1);
3380		restore_interrupts(cspr);
3381	}
3382}
3383#else
3384static void
3385pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3386    pt1_entry_t npte1)
3387{
3388
3389	if (pmap == kernel_pmap) {
3390		mtx_lock_spin(&allpmaps_lock);
3391		pmap_update_pte1_kernel(va, npte1);
3392		mtx_unlock_spin(&allpmaps_lock);
3393	} else {
3394		register_t cspr;
3395
3396		/*
3397		 * Use break-before-make approach for changing userland
3398		 * mappings. It's absolutely safe in UP case when interrupts
3399		 * are disabled.
3400		 */
3401		cspr = disable_interrupts(PSR_I | PSR_F);
3402		pte1_clear(pte1p);
3403		pmap_tlb_flush_pte1(pmap, va, npte1);
3404		pte1_store(pte1p, npte1);
3405		restore_interrupts(cspr);
3406	}
3407}
3408#endif
3409
3410/*
3411 *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3412 *  within a single page table page (PT2) to a single 1MB page mapping.
3413 *  For promotion to occur, two conditions must be met: (1) the 4KB page
3414 *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3415 *  mappings must have identical characteristics.
3416 *
3417 *  Managed (PG_MANAGED) mappings within the kernel address space are not
3418 *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3419 *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3420 *  read the PTE1 from the kernel pmap.
3421 */
3422static void
3423pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3424{
3425	pt1_entry_t npte1;
3426	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3427	pt2_entry_t *pte2p, pte2;
3428	vm_offset_t pteva __unused;
3429	vm_page_t m __unused;
3430
3431	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3432	    pmap, va, pte1_load(pte1p), pte1p));
3433
3434	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3435
3436	/*
3437	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3438	 * either invalid, unused, or does not map the first 4KB physical page
3439	 * within a 1MB page.
3440	 */
3441	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3442	fpte2 = pte2_load(fpte2p);
3443	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3444	    (PTE2_A | PTE2_V)) {
3445		pmap_pte1_p_failures++;
3446		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3447		    __func__, va, pmap);
3448		return;
3449	}
3450	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3451		pmap_pte1_p_failures++;
3452		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3453		    __func__, va, pmap);
3454		return;
3455	}
3456	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3457		/*
3458		 * When page is not modified, PTE2_RO can be set without
3459		 * a TLB invalidation.
3460		 */
3461		fpte2 |= PTE2_RO;
3462		pte2_store(fpte2p, fpte2);
3463	}
3464
3465	/*
3466	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3467	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3468	 * characteristics to the first PTE2.
3469	 */
3470	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3471	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3472	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3473		pte2 = pte2_load(pte2p);
3474		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3475			pmap_pte1_p_failures++;
3476			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3477			    __func__, va, pmap);
3478			return;
3479		}
3480		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3481			/*
3482			 * When page is not modified, PTE2_RO can be set
3483			 * without a TLB invalidation. See note above.
3484			 */
3485			pte2 |= PTE2_RO;
3486			pte2_store(pte2p, pte2);
3487			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3488			    PTE2_FRAME);
3489			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3490			    __func__, pteva, pmap);
3491		}
3492		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3493			pmap_pte1_p_failures++;
3494			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3495			    __func__, va, pmap);
3496			return;
3497		}
3498
3499		fpte2_fav -= PTE2_SIZE;
3500	}
3501	/*
3502	 * The page table page in its current state will stay in PT2TAB
3503	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3504	 * or destroyed by pmap_remove_pte1().
3505	 *
3506	 * Note that L2 page table size is not equal to PAGE_SIZE.
3507	 */
3508	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3509	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3510	    ("%s: PT2 page is out of range", __func__));
3511	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3512	    ("%s: PT2 page's pindex is wrong", __func__));
3513
3514	/*
3515	 * Get pte1 from pte2 format.
3516	 */
3517	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3518
3519	/*
3520	 * Promote the pv entries.
3521	 */
3522	if (pte2_is_managed(fpte2))
3523		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3524
3525	/*
3526	 * Promote the mappings.
3527	 */
3528	pmap_change_pte1(pmap, pte1p, va, npte1);
3529
3530	pmap_pte1_promotions++;
3531	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3532	    __func__, va, pmap);
3533
3534	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3535	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3536}
3537
3538/*
3539 *  Zero L2 page table page.
3540 */
3541static __inline void
3542pmap_clear_pt2(pt2_entry_t *fpte2p)
3543{
3544	pt2_entry_t *pte2p;
3545
3546	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3547		pte2_clear(pte2p);
3548
3549}
3550
3551/*
3552 *  Removes a 1MB page mapping from the kernel pmap.
3553 */
3554static void
3555pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3556{
3557	vm_page_t m;
3558	uint32_t pte1_idx;
3559	pt2_entry_t *fpte2p;
3560	vm_paddr_t pt2_pa;
3561
3562	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3563	m = pmap_pt2_page(pmap, va);
3564	if (m == NULL)
3565		/*
3566		 * QQQ: Is this function called only on promoted pte1?
3567		 *      We certainly do section mappings directly
3568		 *      (without promotion) in kernel !!!
3569		 */
3570		panic("%s: missing pt2 page", __func__);
3571
3572	pte1_idx = pte1_index(va);
3573
3574	/*
3575	 * Initialize the L2 page table.
3576	 */
3577	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3578	pmap_clear_pt2(fpte2p);
3579
3580	/*
3581	 * Remove the mapping.
3582	 */
3583	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3584	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3585
3586	/*
3587	 * QQQ: We do not need to invalidate PT2MAP mapping
3588	 * as we did not change it. I.e. the L2 page table page
3589	 * was and still is mapped the same way.
3590	 */
3591}
3592
3593/*
3594 *  Do the things to unmap a section in a process
3595 */
3596static void
3597pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3598    struct spglist *free)
3599{
3600	pt1_entry_t opte1;
3601	struct md_page *pvh;
3602	vm_offset_t eva, va;
3603	vm_page_t m;
3604
3605	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3606	    pte1_load(pte1p), pte1p));
3607
3608	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3609	KASSERT((sva & PTE1_OFFSET) == 0,
3610	    ("%s: sva is not 1mpage aligned", __func__));
3611
3612	/*
3613	 * Clear and invalidate the mapping. It should occupy one and only TLB
3614	 * entry. So, pmap_tlb_flush() called with aligned address should be
3615	 * sufficient.
3616	 */
3617	opte1 = pte1_load_clear(pte1p);
3618	pmap_tlb_flush(pmap, sva);
3619
3620	if (pte1_is_wired(opte1))
3621		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3622	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3623	if (pte1_is_managed(opte1)) {
3624		pvh = pa_to_pvh(pte1_pa(opte1));
3625		pmap_pvh_free(pvh, pmap, sva);
3626		eva = sva + PTE1_SIZE;
3627		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3628		    va < eva; va += PAGE_SIZE, m++) {
3629			if (pte1_is_dirty(opte1))
3630				vm_page_dirty(m);
3631			if (opte1 & PTE1_A)
3632				vm_page_aflag_set(m, PGA_REFERENCED);
3633			if (TAILQ_EMPTY(&m->md.pv_list) &&
3634			    TAILQ_EMPTY(&pvh->pv_list))
3635				vm_page_aflag_clear(m, PGA_WRITEABLE);
3636		}
3637	}
3638	if (pmap == kernel_pmap) {
3639		/*
3640		 * L2 page table(s) can't be removed from kernel map as
3641		 * kernel counts on it (stuff around pmap_growkernel()).
3642		 */
3643		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3644	} else {
3645		/*
3646		 * Get associated L2 page table page.
3647		 * It's possible that the page was never allocated.
3648		 */
3649		m = pmap_pt2_page(pmap, sva);
3650		if (m != NULL)
3651			pmap_unwire_pt2_all(pmap, sva, m, free);
3652	}
3653}
3654
3655/*
3656 *  Fills L2 page table page with mappings to consecutive physical pages.
3657 */
3658static __inline void
3659pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3660{
3661	pt2_entry_t *pte2p;
3662
3663	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3664		pte2_store(pte2p, npte2);
3665		npte2 += PTE2_SIZE;
3666	}
3667}
3668
3669/*
3670 *  Tries to demote a 1MB page mapping. If demotion fails, the
3671 *  1MB page mapping is invalidated.
3672 */
3673static boolean_t
3674pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3675{
3676	pt1_entry_t opte1, npte1;
3677	pt2_entry_t *fpte2p, npte2;
3678	vm_paddr_t pt2pg_pa, pt2_pa;
3679	vm_page_t m;
3680	struct spglist free;
3681	uint32_t pte1_idx, isnew = 0;
3682
3683	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3684	    pmap, va, pte1_load(pte1p), pte1p));
3685
3686	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3687
3688	opte1 = pte1_load(pte1p);
3689	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3690
3691	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3692		KASSERT(!pte1_is_wired(opte1),
3693		    ("%s: PT2 page for a wired mapping is missing", __func__));
3694
3695		/*
3696		 * Invalidate the 1MB page mapping and return
3697		 * "failure" if the mapping was never accessed or the
3698		 * allocation of the new page table page fails.
3699		 */
3700		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3701		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3702		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3703			SLIST_INIT(&free);
3704			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3705			pmap_free_zero_pages(&free);
3706			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3707			    __func__, va, pmap);
3708			return (FALSE);
3709		}
3710		if (va < VM_MAXUSER_ADDRESS)
3711			pmap->pm_stats.resident_count++;
3712
3713		isnew = 1;
3714
3715		/*
3716		 * We init all L2 page tables in the page even if
3717		 * we are going to change everything for one L2 page
3718		 * table in a while.
3719		 */
3720		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3721	} else {
3722		if (va < VM_MAXUSER_ADDRESS) {
3723			if (pt2_is_empty(m, va))
3724				isnew = 1; /* Demoting section w/o promotion. */
3725#ifdef INVARIANTS
3726			else
3727				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3728				    " count %u", __func__,
3729				    pt2_wirecount_get(m, pte1_index(va))));
3730#endif
3731		}
3732	}
3733
3734	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3735	pte1_idx = pte1_index(va);
3736	/*
3737	 * If the pmap is current, then the PT2MAP can provide access to
3738	 * the page table page (promoted L2 page tables are not unmapped).
3739	 * Otherwise, temporarily map the L2 page table page (m) into
3740	 * the kernel's address space at either PADDR1 or PADDR2.
3741	 *
3742	 * Note that L2 page table size is not equal to PAGE_SIZE.
3743	 */
3744	if (pmap_is_current(pmap))
3745		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3746	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3747		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3748			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3749#ifdef SMP
3750			PMAP1cpu = PCPU_GET(cpuid);
3751#endif
3752			tlb_flush_local((vm_offset_t)PADDR1);
3753			PMAP1changed++;
3754		} else
3755#ifdef SMP
3756		if (PMAP1cpu != PCPU_GET(cpuid)) {
3757			PMAP1cpu = PCPU_GET(cpuid);
3758			tlb_flush_local((vm_offset_t)PADDR1);
3759			PMAP1changedcpu++;
3760		} else
3761#endif
3762			PMAP1unchanged++;
3763		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3764	} else {
3765		mtx_lock(&PMAP2mutex);
3766		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3767			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3768			tlb_flush((vm_offset_t)PADDR2);
3769		}
3770		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3771	}
3772	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3773	npte1 = PTE1_LINK(pt2_pa);
3774
3775	KASSERT((opte1 & PTE1_A) != 0,
3776	    ("%s: opte1 is missing PTE1_A", __func__));
3777	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3778	    ("%s: opte1 has PTE1_NM", __func__));
3779
3780	/*
3781	 *  Get pte2 from pte1 format.
3782	*/
3783	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3784
3785	/*
3786	 * If the L2 page table page is new, initialize it. If the mapping
3787	 * has changed attributes, update the page table entries.
3788	 */
3789	if (isnew != 0) {
3790		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3791		pmap_fill_pt2(fpte2p, npte2);
3792	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3793		    (npte2 & PTE2_PROMOTE))
3794		pmap_fill_pt2(fpte2p, npte2);
3795
3796	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3797	    ("%s: fpte2p and npte2 map different physical addresses",
3798	    __func__));
3799
3800	if (fpte2p == PADDR2)
3801		mtx_unlock(&PMAP2mutex);
3802
3803	/*
3804	 * Demote the mapping. This pmap is locked. The old PTE1 has
3805	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3806	 * has not PTE1_NM set. Thus, there is no danger of a race with
3807	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3808	 * between the read above and the store below.
3809	 */
3810	pmap_change_pte1(pmap, pte1p, va, npte1);
3811
3812	/*
3813	 * Demote the pv entry. This depends on the earlier demotion
3814	 * of the mapping. Specifically, the (re)creation of a per-
3815	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3816	 * which might reclaim a newly (re)created per-page pv entry
3817	 * and destroy the associated mapping. In order to destroy
3818	 * the mapping, the PTE1 must have already changed from mapping
3819	 * the 1mpage to referencing the page table page.
3820	 */
3821	if (pte1_is_managed(opte1))
3822		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3823
3824	pmap_pte1_demotions++;
3825	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3826	    __func__, va, pmap);
3827
3828	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3829	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3830	return (TRUE);
3831}
3832
3833/*
3834 *	Insert the given physical page (p) at
3835 *	the specified virtual address (v) in the
3836 *	target physical map with the protection requested.
3837 *
3838 *	If specified, the page will be wired down, meaning
3839 *	that the related pte can not be reclaimed.
3840 *
3841 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3842 *	or lose information.  That is, this routine must actually
3843 *	insert this page into the given map NOW.
3844 */
3845int
3846pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3847    u_int flags, int8_t psind)
3848{
3849	pt1_entry_t *pte1p;
3850	pt2_entry_t *pte2p;
3851	pt2_entry_t npte2, opte2;
3852	pv_entry_t pv;
3853	vm_paddr_t opa, pa;
3854	vm_page_t mpte2, om;
3855	boolean_t wired;
3856
3857	va = trunc_page(va);
3858	mpte2 = NULL;
3859	wired = (flags & PMAP_ENTER_WIRED) != 0;
3860
3861	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3862	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3863	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3864	    va));
3865	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3866		VM_OBJECT_ASSERT_LOCKED(m->object);
3867
3868	rw_wlock(&pvh_global_lock);
3869	PMAP_LOCK(pmap);
3870	sched_pin();
3871
3872	/*
3873	 * In the case that a page table page is not
3874	 * resident, we are creating it here.
3875	 */
3876	if (va < VM_MAXUSER_ADDRESS) {
3877		mpte2 = pmap_allocpte2(pmap, va, flags);
3878		if (mpte2 == NULL) {
3879			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3880			    ("pmap_allocpte2 failed with sleep allowed"));
3881			sched_unpin();
3882			rw_wunlock(&pvh_global_lock);
3883			PMAP_UNLOCK(pmap);
3884			return (KERN_RESOURCE_SHORTAGE);
3885		}
3886	}
3887	pte1p = pmap_pte1(pmap, va);
3888	if (pte1_is_section(pte1_load(pte1p)))
3889		panic("%s: attempted on 1MB page", __func__);
3890	pte2p = pmap_pte2_quick(pmap, va);
3891	if (pte2p == NULL)
3892		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3893
3894	om = NULL;
3895	pa = VM_PAGE_TO_PHYS(m);
3896	opte2 = pte2_load(pte2p);
3897	opa = pte2_pa(opte2);
3898	/*
3899	 * Mapping has not changed, must be protection or wiring change.
3900	 */
3901	if (pte2_is_valid(opte2) && (opa == pa)) {
3902		/*
3903		 * Wiring change, just update stats. We don't worry about
3904		 * wiring PT2 pages as they remain resident as long as there
3905		 * are valid mappings in them. Hence, if a user page is wired,
3906		 * the PT2 page will be also.
3907		 */
3908		if (wired && !pte2_is_wired(opte2))
3909			pmap->pm_stats.wired_count++;
3910		else if (!wired && pte2_is_wired(opte2))
3911			pmap->pm_stats.wired_count--;
3912
3913		/*
3914		 * Remove extra pte2 reference
3915		 */
3916		if (mpte2)
3917			pt2_wirecount_dec(mpte2, pte1_index(va));
3918		if (pte2_is_managed(opte2))
3919			om = m;
3920		goto validate;
3921	}
3922
3923	/*
3924	 * QQQ: We think that changing physical address on writeable mapping
3925	 *      is not safe. Well, maybe on kernel address space with correct
3926	 *      locking, it can make a sense. However, we have no idea why
3927	 *      anyone should do that on user address space. Are we wrong?
3928	 */
3929	KASSERT((opa == 0) || (opa == pa) ||
3930	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3931	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3932	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3933
3934	pv = NULL;
3935
3936	/*
3937	 * Mapping has changed, invalidate old range and fall through to
3938	 * handle validating new mapping.
3939	 */
3940	if (opa) {
3941		if (pte2_is_wired(opte2))
3942			pmap->pm_stats.wired_count--;
3943		if (pte2_is_managed(opte2)) {
3944			om = PHYS_TO_VM_PAGE(opa);
3945			pv = pmap_pvh_remove(&om->md, pmap, va);
3946		}
3947		/*
3948		 * Remove extra pte2 reference
3949		 */
3950		if (mpte2 != NULL)
3951			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3952	} else
3953		pmap->pm_stats.resident_count++;
3954
3955	/*
3956	 * Enter on the PV list if part of our managed memory.
3957	 */
3958	if ((m->oflags & VPO_UNMANAGED) == 0) {
3959		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3960		    ("%s: managed mapping within the clean submap", __func__));
3961		if (pv == NULL)
3962			pv = get_pv_entry(pmap, FALSE);
3963		pv->pv_va = va;
3964		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3965	} else if (pv != NULL)
3966		free_pv_entry(pmap, pv);
3967
3968	/*
3969	 * Increment counters
3970	 */
3971	if (wired)
3972		pmap->pm_stats.wired_count++;
3973
3974validate:
3975	/*
3976	 * Now validate mapping with desired protection/wiring.
3977	 */
3978	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3979	if (prot & VM_PROT_WRITE) {
3980		if (pte2_is_managed(npte2))
3981			vm_page_aflag_set(m, PGA_WRITEABLE);
3982	}
3983	else
3984		npte2 |= PTE2_RO;
3985	if ((prot & VM_PROT_EXECUTE) == 0)
3986		npte2 |= PTE2_NX;
3987	if (wired)
3988		npte2 |= PTE2_W;
3989	if (va < VM_MAXUSER_ADDRESS)
3990		npte2 |= PTE2_U;
3991	if (pmap != kernel_pmap)
3992		npte2 |= PTE2_NG;
3993
3994	/*
3995	 * If the mapping or permission bits are different, we need
3996	 * to update the pte2.
3997	 *
3998	 * QQQ: Think again and again what to do
3999	 *      if the mapping is going to be changed!
4000	 */
4001	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4002		/*
4003		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4004		 * is set. Do it now, before the mapping is stored and made
4005		 * valid for hardware table walk. If done later, there is a race
4006		 * for other threads of current process in lazy loading case.
4007		 * Don't do it for kernel memory which is mapped with exec
4008		 * permission even if the memory isn't going to hold executable
4009		 * code. The only time when icache sync is needed is after
4010		 * kernel module is loaded and the relocation info is processed.
4011		 * And it's done in elf_cpu_load_file().
4012		 *
4013		 * QQQ: (1) Does it exist any better way where
4014		 *          or how to sync icache?
4015		 *      (2) Now, we do it on a page basis.
4016		 */
4017		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4018		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4019		    (opa != pa || (opte2 & PTE2_NX)))
4020			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4021
4022		npte2 |= PTE2_A;
4023		if (flags & VM_PROT_WRITE)
4024			npte2 &= ~PTE2_NM;
4025		if (opte2 & PTE2_V) {
4026			/* Change mapping with break-before-make approach. */
4027			opte2 = pte2_load_clear(pte2p);
4028			pmap_tlb_flush(pmap, va);
4029			pte2_store(pte2p, npte2);
4030			if (opte2 & PTE2_A) {
4031				if (pte2_is_managed(opte2))
4032					vm_page_aflag_set(om, PGA_REFERENCED);
4033			}
4034			if (pte2_is_dirty(opte2)) {
4035				if (pte2_is_managed(opte2))
4036					vm_page_dirty(om);
4037			}
4038			if (pte2_is_managed(opte2) &&
4039			    TAILQ_EMPTY(&om->md.pv_list) &&
4040			    ((om->flags & PG_FICTITIOUS) != 0 ||
4041			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4042				vm_page_aflag_clear(om, PGA_WRITEABLE);
4043		} else
4044			pte2_store(pte2p, npte2);
4045	}
4046#if 0
4047	else {
4048		/*
4049		 * QQQ: In time when both access and not mofified bits are
4050		 *      emulated by software, this should not happen. Some
4051		 *      analysis is need, if this really happen. Missing
4052		 *      tlb flush somewhere could be the reason.
4053		 */
4054		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4055		    va, opte2, npte2);
4056	}
4057#endif
4058	/*
4059	 * If both the L2 page table page and the reservation are fully
4060	 * populated, then attempt promotion.
4061	 */
4062	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4063	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4064	    vm_reserv_level_iffullpop(m) == 0)
4065		pmap_promote_pte1(pmap, pte1p, va);
4066	sched_unpin();
4067	rw_wunlock(&pvh_global_lock);
4068	PMAP_UNLOCK(pmap);
4069	return (KERN_SUCCESS);
4070}
4071
4072/*
4073 *  Do the things to unmap a page in a process.
4074 */
4075static int
4076pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4077    struct spglist *free)
4078{
4079	pt2_entry_t opte2;
4080	vm_page_t m;
4081
4082	rw_assert(&pvh_global_lock, RA_WLOCKED);
4083	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4084
4085	/* Clear and invalidate the mapping. */
4086	opte2 = pte2_load_clear(pte2p);
4087	pmap_tlb_flush(pmap, va);
4088
4089	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4090	    __func__, pmap, va, opte2));
4091
4092	if (opte2 & PTE2_W)
4093		pmap->pm_stats.wired_count -= 1;
4094	pmap->pm_stats.resident_count -= 1;
4095	if (pte2_is_managed(opte2)) {
4096		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4097		if (pte2_is_dirty(opte2))
4098			vm_page_dirty(m);
4099		if (opte2 & PTE2_A)
4100			vm_page_aflag_set(m, PGA_REFERENCED);
4101		pmap_remove_entry(pmap, m, va);
4102	}
4103	return (pmap_unuse_pt2(pmap, va, free));
4104}
4105
4106/*
4107 *  Remove a single page from a process address space.
4108 */
4109static void
4110pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4111{
4112	pt2_entry_t *pte2p;
4113
4114	rw_assert(&pvh_global_lock, RA_WLOCKED);
4115	KASSERT(curthread->td_pinned > 0,
4116	    ("%s: curthread not pinned", __func__));
4117	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4118	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4119	    !pte2_is_valid(pte2_load(pte2p)))
4120		return;
4121	pmap_remove_pte2(pmap, pte2p, va, free);
4122}
4123
4124/*
4125 *  Remove the given range of addresses from the specified map.
4126 *
4127 *  It is assumed that the start and end are properly
4128 *  rounded to the page size.
4129 */
4130void
4131pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4132{
4133	vm_offset_t nextva;
4134	pt1_entry_t *pte1p, pte1;
4135	pt2_entry_t *pte2p, pte2;
4136	struct spglist free;
4137
4138	/*
4139	 * Perform an unsynchronized read. This is, however, safe.
4140	 */
4141	if (pmap->pm_stats.resident_count == 0)
4142		return;
4143
4144	SLIST_INIT(&free);
4145
4146	rw_wlock(&pvh_global_lock);
4147	sched_pin();
4148	PMAP_LOCK(pmap);
4149
4150	/*
4151	 * Special handling of removing one page. A very common
4152	 * operation and easy to short circuit some code.
4153	 */
4154	if (sva + PAGE_SIZE == eva) {
4155		pte1 = pte1_load(pmap_pte1(pmap, sva));
4156		if (pte1_is_link(pte1)) {
4157			pmap_remove_page(pmap, sva, &free);
4158			goto out;
4159		}
4160	}
4161
4162	for (; sva < eva; sva = nextva) {
4163		/*
4164		 * Calculate address for next L2 page table.
4165		 */
4166		nextva = pte1_trunc(sva + PTE1_SIZE);
4167		if (nextva < sva)
4168			nextva = eva;
4169		if (pmap->pm_stats.resident_count == 0)
4170			break;
4171
4172		pte1p = pmap_pte1(pmap, sva);
4173		pte1 = pte1_load(pte1p);
4174
4175		/*
4176		 * Weed out invalid mappings. Note: we assume that the L1 page
4177		 * table is always allocated, and in kernel virtual.
4178		 */
4179		if (pte1 == 0)
4180			continue;
4181
4182		if (pte1_is_section(pte1)) {
4183			/*
4184			 * Are we removing the entire large page?  If not,
4185			 * demote the mapping and fall through.
4186			 */
4187			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4188				pmap_remove_pte1(pmap, pte1p, sva, &free);
4189				continue;
4190			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4191				/* The large page mapping was destroyed. */
4192				continue;
4193			}
4194#ifdef INVARIANTS
4195			else {
4196				/* Update pte1 after demotion. */
4197				pte1 = pte1_load(pte1p);
4198			}
4199#endif
4200		}
4201
4202		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4203		    " is not link", __func__, pmap, sva, pte1, pte1p));
4204
4205		/*
4206		 * Limit our scan to either the end of the va represented
4207		 * by the current L2 page table page, or to the end of the
4208		 * range being removed.
4209		 */
4210		if (nextva > eva)
4211			nextva = eva;
4212
4213		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4214		    pte2p++, sva += PAGE_SIZE) {
4215			pte2 = pte2_load(pte2p);
4216			if (!pte2_is_valid(pte2))
4217				continue;
4218			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4219				break;
4220		}
4221	}
4222out:
4223	sched_unpin();
4224	rw_wunlock(&pvh_global_lock);
4225	PMAP_UNLOCK(pmap);
4226	pmap_free_zero_pages(&free);
4227}
4228
4229/*
4230 *	Routine:	pmap_remove_all
4231 *	Function:
4232 *		Removes this physical page from
4233 *		all physical maps in which it resides.
4234 *		Reflects back modify bits to the pager.
4235 *
4236 *	Notes:
4237 *		Original versions of this routine were very
4238 *		inefficient because they iteratively called
4239 *		pmap_remove (slow...)
4240 */
4241
4242void
4243pmap_remove_all(vm_page_t m)
4244{
4245	struct md_page *pvh;
4246	pv_entry_t pv;
4247	pmap_t pmap;
4248	pt2_entry_t *pte2p, opte2;
4249	pt1_entry_t *pte1p;
4250	vm_offset_t va;
4251	struct spglist free;
4252
4253	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4254	    ("%s: page %p is not managed", __func__, m));
4255	SLIST_INIT(&free);
4256	rw_wlock(&pvh_global_lock);
4257	sched_pin();
4258	if ((m->flags & PG_FICTITIOUS) != 0)
4259		goto small_mappings;
4260	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4261	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4262		va = pv->pv_va;
4263		pmap = PV_PMAP(pv);
4264		PMAP_LOCK(pmap);
4265		pte1p = pmap_pte1(pmap, va);
4266		(void)pmap_demote_pte1(pmap, pte1p, va);
4267		PMAP_UNLOCK(pmap);
4268	}
4269small_mappings:
4270	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4271		pmap = PV_PMAP(pv);
4272		PMAP_LOCK(pmap);
4273		pmap->pm_stats.resident_count--;
4274		pte1p = pmap_pte1(pmap, pv->pv_va);
4275		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4276		    "a 1mpage in page %p's pv list", __func__, m));
4277		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4278		opte2 = pte2_load_clear(pte2p);
4279		pmap_tlb_flush(pmap, pv->pv_va);
4280		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4281		    __func__, pmap, pv->pv_va));
4282		if (pte2_is_wired(opte2))
4283			pmap->pm_stats.wired_count--;
4284		if (opte2 & PTE2_A)
4285			vm_page_aflag_set(m, PGA_REFERENCED);
4286
4287		/*
4288		 * Update the vm_page_t clean and reference bits.
4289		 */
4290		if (pte2_is_dirty(opte2))
4291			vm_page_dirty(m);
4292		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4293		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4294		free_pv_entry(pmap, pv);
4295		PMAP_UNLOCK(pmap);
4296	}
4297	vm_page_aflag_clear(m, PGA_WRITEABLE);
4298	sched_unpin();
4299	rw_wunlock(&pvh_global_lock);
4300	pmap_free_zero_pages(&free);
4301}
4302
4303/*
4304 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4305 *  good coding style, a.k.a. 80 character line width limit hell.
4306 */
4307static __inline void
4308pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4309    struct spglist *free)
4310{
4311	vm_paddr_t pa;
4312	vm_page_t m, mt, mpt2pg;
4313	struct md_page *pvh;
4314
4315	pa = pte1_pa(pte1);
4316	m = PHYS_TO_VM_PAGE(pa);
4317
4318	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4319	    __func__, m, m->phys_addr, pa));
4320	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4321	    m < &vm_page_array[vm_page_array_size],
4322	    ("%s: bad pte1 %#x", __func__, pte1));
4323
4324	if (pte1_is_dirty(pte1)) {
4325		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4326			vm_page_dirty(mt);
4327	}
4328
4329	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4330	pvh = pa_to_pvh(pa);
4331	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4332	if (TAILQ_EMPTY(&pvh->pv_list)) {
4333		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4334			if (TAILQ_EMPTY(&mt->md.pv_list))
4335				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4336	}
4337	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4338	if (mpt2pg != NULL)
4339		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4340}
4341
4342/*
4343 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4344 *  good coding style, a.k.a. 80 character line width limit hell.
4345 */
4346static __inline void
4347pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4348    struct spglist *free)
4349{
4350	vm_paddr_t pa;
4351	vm_page_t m;
4352	struct md_page *pvh;
4353
4354	pa = pte2_pa(pte2);
4355	m = PHYS_TO_VM_PAGE(pa);
4356
4357	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4358	    __func__, m, m->phys_addr, pa));
4359	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4360	    m < &vm_page_array[vm_page_array_size],
4361	    ("%s: bad pte2 %#x", __func__, pte2));
4362
4363	if (pte2_is_dirty(pte2))
4364		vm_page_dirty(m);
4365
4366	pmap->pm_stats.resident_count--;
4367	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4368	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4369		pvh = pa_to_pvh(pa);
4370		if (TAILQ_EMPTY(&pvh->pv_list))
4371			vm_page_aflag_clear(m, PGA_WRITEABLE);
4372	}
4373	pmap_unuse_pt2(pmap, pv->pv_va, free);
4374}
4375
4376/*
4377 *  Remove all pages from specified address space this aids process
4378 *  exit speeds. Also, this code is special cased for current process
4379 *  only, but can have the more generic (and slightly slower) mode enabled.
4380 *  This is much faster than pmap_remove in the case of running down
4381 *  an entire address space.
4382 */
4383void
4384pmap_remove_pages(pmap_t pmap)
4385{
4386	pt1_entry_t *pte1p, pte1;
4387	pt2_entry_t *pte2p, pte2;
4388	pv_entry_t pv;
4389	struct pv_chunk *pc, *npc;
4390	struct spglist free;
4391	int field, idx;
4392	int32_t bit;
4393	uint32_t inuse, bitmask;
4394	boolean_t allfree;
4395
4396	/*
4397	 * Assert that the given pmap is only active on the current
4398	 * CPU.  Unfortunately, we cannot block another CPU from
4399	 * activating the pmap while this function is executing.
4400	 */
4401	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4402	    ("%s: non-current pmap %p", __func__, pmap));
4403#if defined(SMP) && defined(INVARIANTS)
4404	{
4405		cpuset_t other_cpus;
4406
4407		sched_pin();
4408		other_cpus = pmap->pm_active;
4409		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4410		sched_unpin();
4411		KASSERT(CPU_EMPTY(&other_cpus),
4412		    ("%s: pmap %p active on other cpus", __func__, pmap));
4413	}
4414#endif
4415	SLIST_INIT(&free);
4416	rw_wlock(&pvh_global_lock);
4417	PMAP_LOCK(pmap);
4418	sched_pin();
4419	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4420		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4421		    __func__, pmap, pc->pc_pmap));
4422		allfree = TRUE;
4423		for (field = 0; field < _NPCM; field++) {
4424			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4425			while (inuse != 0) {
4426				bit = ffs(inuse) - 1;
4427				bitmask = 1UL << bit;
4428				idx = field * 32 + bit;
4429				pv = &pc->pc_pventry[idx];
4430				inuse &= ~bitmask;
4431
4432				/*
4433				 * Note that we cannot remove wired pages
4434				 * from a process' mapping at this time
4435				 */
4436				pte1p = pmap_pte1(pmap, pv->pv_va);
4437				pte1 = pte1_load(pte1p);
4438				if (pte1_is_section(pte1)) {
4439					if (pte1_is_wired(pte1))  {
4440						allfree = FALSE;
4441						continue;
4442					}
4443					pte1_clear(pte1p);
4444					pmap_remove_pte1_quick(pmap, pte1, pv,
4445					    &free);
4446				}
4447				else if (pte1_is_link(pte1)) {
4448					pte2p = pt2map_entry(pv->pv_va);
4449					pte2 = pte2_load(pte2p);
4450
4451					if (!pte2_is_valid(pte2)) {
4452						printf("%s: pmap %p va %#x "
4453						    "pte2 %#x\n", __func__,
4454						    pmap, pv->pv_va, pte2);
4455						panic("bad pte2");
4456					}
4457
4458					if (pte2_is_wired(pte2))   {
4459						allfree = FALSE;
4460						continue;
4461					}
4462					pte2_clear(pte2p);
4463					pmap_remove_pte2_quick(pmap, pte2, pv,
4464					    &free);
4465				} else {
4466					printf("%s: pmap %p va %#x pte1 %#x\n",
4467					    __func__, pmap, pv->pv_va, pte1);
4468					panic("bad pte1");
4469				}
4470
4471				/* Mark free */
4472				PV_STAT(pv_entry_frees++);
4473				PV_STAT(pv_entry_spare++);
4474				pv_entry_count--;
4475				pc->pc_map[field] |= bitmask;
4476			}
4477		}
4478		if (allfree) {
4479			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4480			free_pv_chunk(pc);
4481		}
4482	}
4483	tlb_flush_all_ng_local();
4484	sched_unpin();
4485	rw_wunlock(&pvh_global_lock);
4486	PMAP_UNLOCK(pmap);
4487	pmap_free_zero_pages(&free);
4488}
4489
4490/*
4491 *  This code makes some *MAJOR* assumptions:
4492 *  1. Current pmap & pmap exists.
4493 *  2. Not wired.
4494 *  3. Read access.
4495 *  4. No L2 page table pages.
4496 *  but is *MUCH* faster than pmap_enter...
4497 */
4498static vm_page_t
4499pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4500    vm_prot_t prot, vm_page_t mpt2pg)
4501{
4502	pt2_entry_t *pte2p, pte2;
4503	vm_paddr_t pa;
4504	struct spglist free;
4505	uint32_t l2prot;
4506
4507	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4508	    (m->oflags & VPO_UNMANAGED) != 0,
4509	    ("%s: managed mapping within the clean submap", __func__));
4510	rw_assert(&pvh_global_lock, RA_WLOCKED);
4511	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4512
4513	/*
4514	 * In the case that a L2 page table page is not
4515	 * resident, we are creating it here.
4516	 */
4517	if (va < VM_MAXUSER_ADDRESS) {
4518		u_int pte1_idx;
4519		pt1_entry_t pte1, *pte1p;
4520		vm_paddr_t pt2_pa;
4521
4522		/*
4523		 * Get L1 page table things.
4524		 */
4525		pte1_idx = pte1_index(va);
4526		pte1p = pmap_pte1(pmap, va);
4527		pte1 = pte1_load(pte1p);
4528
4529		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4530			/*
4531			 * Each of NPT2_IN_PG L2 page tables on the page can
4532			 * come here. Make sure that associated L1 page table
4533			 * link is established.
4534			 *
4535			 * QQQ: It comes that we don't establish all links to
4536			 *      L2 page tables for newly allocated L2 page
4537			 *      tables page.
4538			 */
4539			KASSERT(!pte1_is_section(pte1),
4540			    ("%s: pte1 %#x is section", __func__, pte1));
4541			if (!pte1_is_link(pte1)) {
4542				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4543				    pte1_idx);
4544				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4545			}
4546			pt2_wirecount_inc(mpt2pg, pte1_idx);
4547		} else {
4548			/*
4549			 * If the L2 page table page is mapped, we just
4550			 * increment the hold count, and activate it.
4551			 */
4552			if (pte1_is_section(pte1)) {
4553				return (NULL);
4554			} else if (pte1_is_link(pte1)) {
4555				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4556				pt2_wirecount_inc(mpt2pg, pte1_idx);
4557			} else {
4558				mpt2pg = _pmap_allocpte2(pmap, va,
4559				    PMAP_ENTER_NOSLEEP);
4560				if (mpt2pg == NULL)
4561					return (NULL);
4562			}
4563		}
4564	} else {
4565		mpt2pg = NULL;
4566	}
4567
4568	/*
4569	 * This call to pt2map_entry() makes the assumption that we are
4570	 * entering the page into the current pmap.  In order to support
4571	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4572	 * But that isn't as quick as pt2map_entry().
4573	 */
4574	pte2p = pt2map_entry(va);
4575	pte2 = pte2_load(pte2p);
4576	if (pte2_is_valid(pte2)) {
4577		if (mpt2pg != NULL) {
4578			/*
4579			 * Remove extra pte2 reference
4580			 */
4581			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4582			mpt2pg = NULL;
4583		}
4584		return (NULL);
4585	}
4586
4587	/*
4588	 * Enter on the PV list if part of our managed memory.
4589	 */
4590	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4591	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4592		if (mpt2pg != NULL) {
4593			SLIST_INIT(&free);
4594			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4595				pmap_tlb_flush(pmap, va);
4596				pmap_free_zero_pages(&free);
4597			}
4598
4599			mpt2pg = NULL;
4600		}
4601		return (NULL);
4602	}
4603
4604	/*
4605	 * Increment counters
4606	 */
4607	pmap->pm_stats.resident_count++;
4608
4609	/*
4610	 * Now validate mapping with RO protection
4611	 */
4612	pa = VM_PAGE_TO_PHYS(m);
4613	l2prot = PTE2_RO | PTE2_NM;
4614	if (va < VM_MAXUSER_ADDRESS)
4615		l2prot |= PTE2_U | PTE2_NG;
4616	if ((prot & VM_PROT_EXECUTE) == 0)
4617		l2prot |= PTE2_NX;
4618	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4619		/*
4620		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4621		 * is set. QQQ: For more info, see comments in pmap_enter().
4622		 */
4623		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4624	}
4625	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4626
4627	return (mpt2pg);
4628}
4629
4630void
4631pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4632{
4633
4634	rw_wlock(&pvh_global_lock);
4635	PMAP_LOCK(pmap);
4636	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4637	rw_wunlock(&pvh_global_lock);
4638	PMAP_UNLOCK(pmap);
4639}
4640
4641/*
4642 *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4643 *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4644 *  blocking, (2) a mapping already exists at the specified virtual address, or
4645 *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4646 */
4647static boolean_t
4648pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4649{
4650	pt1_entry_t *pte1p;
4651	vm_paddr_t pa;
4652	uint32_t l1prot;
4653
4654	rw_assert(&pvh_global_lock, RA_WLOCKED);
4655	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4656	pte1p = pmap_pte1(pmap, va);
4657	if (pte1_is_valid(pte1_load(pte1p))) {
4658		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4659		    va, pmap);
4660		return (FALSE);
4661	}
4662	if ((m->oflags & VPO_UNMANAGED) == 0) {
4663		/*
4664		 * Abort this mapping if its PV entry could not be created.
4665		 */
4666		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4667			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4668			    __func__, va, pmap);
4669			return (FALSE);
4670		}
4671	}
4672	/*
4673	 * Increment counters.
4674	 */
4675	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4676
4677	/*
4678	 * Map the section.
4679	 *
4680	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4681	 *      made readonly?
4682	 */
4683	pa = VM_PAGE_TO_PHYS(m);
4684	l1prot = PTE1_RO | PTE1_NM;
4685	if (va < VM_MAXUSER_ADDRESS)
4686		l1prot |= PTE1_U | PTE1_NG;
4687	if ((prot & VM_PROT_EXECUTE) == 0)
4688		l1prot |= PTE1_NX;
4689	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4690		/*
4691		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4692		 * is set. QQQ: For more info, see comments in pmap_enter().
4693		 */
4694		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4695	}
4696	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4697
4698	pmap_pte1_mappings++;
4699	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4700	    pmap);
4701	return (TRUE);
4702}
4703
4704/*
4705 *  Maps a sequence of resident pages belonging to the same object.
4706 *  The sequence begins with the given page m_start.  This page is
4707 *  mapped at the given virtual address start.  Each subsequent page is
4708 *  mapped at a virtual address that is offset from start by the same
4709 *  amount as the page is offset from m_start within the object.  The
4710 *  last page in the sequence is the page with the largest offset from
4711 *  m_start that can be mapped at a virtual address less than the given
4712 *  virtual address end.  Not every virtual page between start and end
4713 *  is mapped; only those for which a resident page exists with the
4714 *  corresponding offset from m_start are mapped.
4715 */
4716void
4717pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4718    vm_page_t m_start, vm_prot_t prot)
4719{
4720	vm_offset_t va;
4721	vm_page_t m, mpt2pg;
4722	vm_pindex_t diff, psize;
4723
4724	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4725	    __func__, pmap, start, end, m_start, prot));
4726
4727	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4728	psize = atop(end - start);
4729	mpt2pg = NULL;
4730	m = m_start;
4731	rw_wlock(&pvh_global_lock);
4732	PMAP_LOCK(pmap);
4733	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4734		va = start + ptoa(diff);
4735		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4736		    m->psind == 1 && sp_enabled &&
4737		    pmap_enter_pte1(pmap, va, m, prot))
4738			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4739		else
4740			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4741			    mpt2pg);
4742		m = TAILQ_NEXT(m, listq);
4743	}
4744	rw_wunlock(&pvh_global_lock);
4745	PMAP_UNLOCK(pmap);
4746}
4747
4748/*
4749 *  This code maps large physical mmap regions into the
4750 *  processor address space.  Note that some shortcuts
4751 *  are taken, but the code works.
4752 */
4753void
4754pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4755    vm_pindex_t pindex, vm_size_t size)
4756{
4757	pt1_entry_t *pte1p;
4758	vm_paddr_t pa, pte2_pa;
4759	vm_page_t p;
4760	vm_memattr_t pat_mode;
4761	u_int l1attr, l1prot;
4762
4763	VM_OBJECT_ASSERT_WLOCKED(object);
4764	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4765	    ("%s: non-device object", __func__));
4766	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4767		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4768			return;
4769		p = vm_page_lookup(object, pindex);
4770		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4771		    ("%s: invalid page %p", __func__, p));
4772		pat_mode = p->md.pat_mode;
4773
4774		/*
4775		 * Abort the mapping if the first page is not physically
4776		 * aligned to a 1MB page boundary.
4777		 */
4778		pte2_pa = VM_PAGE_TO_PHYS(p);
4779		if (pte2_pa & PTE1_OFFSET)
4780			return;
4781
4782		/*
4783		 * Skip the first page. Abort the mapping if the rest of
4784		 * the pages are not physically contiguous or have differing
4785		 * memory attributes.
4786		 */
4787		p = TAILQ_NEXT(p, listq);
4788		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4789		    pa += PAGE_SIZE) {
4790			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4791			    ("%s: invalid page %p", __func__, p));
4792			if (pa != VM_PAGE_TO_PHYS(p) ||
4793			    pat_mode != p->md.pat_mode)
4794				return;
4795			p = TAILQ_NEXT(p, listq);
4796		}
4797
4798		/*
4799		 * Map using 1MB pages.
4800		 *
4801		 * QQQ: Well, we are mapping a section, so same condition must
4802		 * be hold like during promotion. It looks that only RW mapping
4803		 * is done here, so readonly mapping must be done elsewhere.
4804		 */
4805		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4806		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4807		PMAP_LOCK(pmap);
4808		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4809			pte1p = pmap_pte1(pmap, addr);
4810			if (!pte1_is_valid(pte1_load(pte1p))) {
4811				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4812				pmap->pm_stats.resident_count += PTE1_SIZE /
4813				    PAGE_SIZE;
4814				pmap_pte1_mappings++;
4815			}
4816			/* Else continue on if the PTE1 is already valid. */
4817			addr += PTE1_SIZE;
4818		}
4819		PMAP_UNLOCK(pmap);
4820	}
4821}
4822
4823/*
4824 *  Do the things to protect a 1mpage in a process.
4825 */
4826static void
4827pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4828    vm_prot_t prot)
4829{
4830	pt1_entry_t npte1, opte1;
4831	vm_offset_t eva, va;
4832	vm_page_t m;
4833
4834	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4835	KASSERT((sva & PTE1_OFFSET) == 0,
4836	    ("%s: sva is not 1mpage aligned", __func__));
4837
4838	opte1 = npte1 = pte1_load(pte1p);
4839	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4840		eva = sva + PTE1_SIZE;
4841		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4842		    va < eva; va += PAGE_SIZE, m++)
4843			vm_page_dirty(m);
4844	}
4845	if ((prot & VM_PROT_WRITE) == 0)
4846		npte1 |= PTE1_RO | PTE1_NM;
4847	if ((prot & VM_PROT_EXECUTE) == 0)
4848		npte1 |= PTE1_NX;
4849
4850	/*
4851	 * QQQ: Herein, execute permission is never set.
4852	 *      It only can be cleared. So, no icache
4853	 *      syncing is needed.
4854	 */
4855
4856	if (npte1 != opte1) {
4857		pte1_store(pte1p, npte1);
4858		pmap_tlb_flush(pmap, sva);
4859	}
4860}
4861
4862/*
4863 *	Set the physical protection on the
4864 *	specified range of this map as requested.
4865 */
4866void
4867pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4868{
4869	boolean_t pv_lists_locked;
4870	vm_offset_t nextva;
4871	pt1_entry_t *pte1p, pte1;
4872	pt2_entry_t *pte2p, opte2, npte2;
4873
4874	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4875	if (prot == VM_PROT_NONE) {
4876		pmap_remove(pmap, sva, eva);
4877		return;
4878	}
4879
4880	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4881	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4882		return;
4883
4884	if (pmap_is_current(pmap))
4885		pv_lists_locked = FALSE;
4886	else {
4887		pv_lists_locked = TRUE;
4888resume:
4889		rw_wlock(&pvh_global_lock);
4890		sched_pin();
4891	}
4892
4893	PMAP_LOCK(pmap);
4894	for (; sva < eva; sva = nextva) {
4895		/*
4896		 * Calculate address for next L2 page table.
4897		 */
4898		nextva = pte1_trunc(sva + PTE1_SIZE);
4899		if (nextva < sva)
4900			nextva = eva;
4901
4902		pte1p = pmap_pte1(pmap, sva);
4903		pte1 = pte1_load(pte1p);
4904
4905		/*
4906		 * Weed out invalid mappings. Note: we assume that L1 page
4907		 * page table is always allocated, and in kernel virtual.
4908		 */
4909		if (pte1 == 0)
4910			continue;
4911
4912		if (pte1_is_section(pte1)) {
4913			/*
4914			 * Are we protecting the entire large page?  If not,
4915			 * demote the mapping and fall through.
4916			 */
4917			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4918				pmap_protect_pte1(pmap, pte1p, sva, prot);
4919				continue;
4920			} else {
4921				if (!pv_lists_locked) {
4922					pv_lists_locked = TRUE;
4923					if (!rw_try_wlock(&pvh_global_lock)) {
4924						PMAP_UNLOCK(pmap);
4925						goto resume;
4926					}
4927					sched_pin();
4928				}
4929				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4930					/*
4931					 * The large page mapping
4932					 * was destroyed.
4933					 */
4934					continue;
4935				}
4936#ifdef INVARIANTS
4937				else {
4938					/* Update pte1 after demotion */
4939					pte1 = pte1_load(pte1p);
4940				}
4941#endif
4942			}
4943		}
4944
4945		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4946		    " is not link", __func__, pmap, sva, pte1, pte1p));
4947
4948		/*
4949		 * Limit our scan to either the end of the va represented
4950		 * by the current L2 page table page, or to the end of the
4951		 * range being protected.
4952		 */
4953		if (nextva > eva)
4954			nextva = eva;
4955
4956		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4957		    sva += PAGE_SIZE) {
4958			vm_page_t m;
4959
4960			opte2 = npte2 = pte2_load(pte2p);
4961			if (!pte2_is_valid(opte2))
4962				continue;
4963
4964			if ((prot & VM_PROT_WRITE) == 0) {
4965				if (pte2_is_managed(opte2) &&
4966				    pte2_is_dirty(opte2)) {
4967					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4968					vm_page_dirty(m);
4969				}
4970				npte2 |= PTE2_RO | PTE2_NM;
4971			}
4972
4973			if ((prot & VM_PROT_EXECUTE) == 0)
4974				npte2 |= PTE2_NX;
4975
4976			/*
4977			 * QQQ: Herein, execute permission is never set.
4978			 *      It only can be cleared. So, no icache
4979			 *      syncing is needed.
4980			 */
4981
4982			if (npte2 != opte2) {
4983				pte2_store(pte2p, npte2);
4984				pmap_tlb_flush(pmap, sva);
4985			}
4986		}
4987	}
4988	if (pv_lists_locked) {
4989		sched_unpin();
4990		rw_wunlock(&pvh_global_lock);
4991	}
4992	PMAP_UNLOCK(pmap);
4993}
4994
4995/*
4996 *	pmap_pvh_wired_mappings:
4997 *
4998 *	Return the updated number "count" of managed mappings that are wired.
4999 */
5000static int
5001pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5002{
5003	pmap_t pmap;
5004	pt1_entry_t pte1;
5005	pt2_entry_t pte2;
5006	pv_entry_t pv;
5007
5008	rw_assert(&pvh_global_lock, RA_WLOCKED);
5009	sched_pin();
5010	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5011		pmap = PV_PMAP(pv);
5012		PMAP_LOCK(pmap);
5013		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5014		if (pte1_is_section(pte1)) {
5015			if (pte1_is_wired(pte1))
5016				count++;
5017		} else {
5018			KASSERT(pte1_is_link(pte1),
5019			    ("%s: pte1 %#x is not link", __func__, pte1));
5020			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5021			if (pte2_is_wired(pte2))
5022				count++;
5023		}
5024		PMAP_UNLOCK(pmap);
5025	}
5026	sched_unpin();
5027	return (count);
5028}
5029
5030/*
5031 *	pmap_page_wired_mappings:
5032 *
5033 *	Return the number of managed mappings to the given physical page
5034 *	that are wired.
5035 */
5036int
5037pmap_page_wired_mappings(vm_page_t m)
5038{
5039	int count;
5040
5041	count = 0;
5042	if ((m->oflags & VPO_UNMANAGED) != 0)
5043		return (count);
5044	rw_wlock(&pvh_global_lock);
5045	count = pmap_pvh_wired_mappings(&m->md, count);
5046	if ((m->flags & PG_FICTITIOUS) == 0) {
5047		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5048		    count);
5049	}
5050	rw_wunlock(&pvh_global_lock);
5051	return (count);
5052}
5053
5054/*
5055 *  Returns TRUE if any of the given mappings were used to modify
5056 *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5057 *  mappings are supported.
5058 */
5059static boolean_t
5060pmap_is_modified_pvh(struct md_page *pvh)
5061{
5062	pv_entry_t pv;
5063	pt1_entry_t pte1;
5064	pt2_entry_t pte2;
5065	pmap_t pmap;
5066	boolean_t rv;
5067
5068	rw_assert(&pvh_global_lock, RA_WLOCKED);
5069	rv = FALSE;
5070	sched_pin();
5071	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5072		pmap = PV_PMAP(pv);
5073		PMAP_LOCK(pmap);
5074		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5075		if (pte1_is_section(pte1)) {
5076			rv = pte1_is_dirty(pte1);
5077		} else {
5078			KASSERT(pte1_is_link(pte1),
5079			    ("%s: pte1 %#x is not link", __func__, pte1));
5080			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5081			rv = pte2_is_dirty(pte2);
5082		}
5083		PMAP_UNLOCK(pmap);
5084		if (rv)
5085			break;
5086	}
5087	sched_unpin();
5088	return (rv);
5089}
5090
5091/*
5092 *	pmap_is_modified:
5093 *
5094 *	Return whether or not the specified physical page was modified
5095 *	in any physical maps.
5096 */
5097boolean_t
5098pmap_is_modified(vm_page_t m)
5099{
5100	boolean_t rv;
5101
5102	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5103	    ("%s: page %p is not managed", __func__, m));
5104
5105	/*
5106	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5107	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5108	 * is clear, no PTE2s can have PG_M set.
5109	 */
5110	VM_OBJECT_ASSERT_WLOCKED(m->object);
5111	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5112		return (FALSE);
5113	rw_wlock(&pvh_global_lock);
5114	rv = pmap_is_modified_pvh(&m->md) ||
5115	    ((m->flags & PG_FICTITIOUS) == 0 &&
5116	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5117	rw_wunlock(&pvh_global_lock);
5118	return (rv);
5119}
5120
5121/*
5122 *	pmap_is_prefaultable:
5123 *
5124 *	Return whether or not the specified virtual address is eligible
5125 *	for prefault.
5126 */
5127boolean_t
5128pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5129{
5130	pt1_entry_t pte1;
5131	pt2_entry_t pte2;
5132	boolean_t rv;
5133
5134	rv = FALSE;
5135	PMAP_LOCK(pmap);
5136	pte1 = pte1_load(pmap_pte1(pmap, addr));
5137	if (pte1_is_link(pte1)) {
5138		pte2 = pte2_load(pt2map_entry(addr));
5139		rv = !pte2_is_valid(pte2) ;
5140	}
5141	PMAP_UNLOCK(pmap);
5142	return (rv);
5143}
5144
5145/*
5146 *  Returns TRUE if any of the given mappings were referenced and FALSE
5147 *  otherwise. Both page and 1mpage mappings are supported.
5148 */
5149static boolean_t
5150pmap_is_referenced_pvh(struct md_page *pvh)
5151{
5152
5153	pv_entry_t pv;
5154	pt1_entry_t pte1;
5155	pt2_entry_t pte2;
5156	pmap_t pmap;
5157	boolean_t rv;
5158
5159	rw_assert(&pvh_global_lock, RA_WLOCKED);
5160	rv = FALSE;
5161	sched_pin();
5162	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5163		pmap = PV_PMAP(pv);
5164		PMAP_LOCK(pmap);
5165		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5166		if (pte1_is_section(pte1)) {
5167			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5168		} else {
5169			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5170			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5171		}
5172		PMAP_UNLOCK(pmap);
5173		if (rv)
5174			break;
5175	}
5176	sched_unpin();
5177	return (rv);
5178}
5179
5180/*
5181 *	pmap_is_referenced:
5182 *
5183 *	Return whether or not the specified physical page was referenced
5184 *	in any physical maps.
5185 */
5186boolean_t
5187pmap_is_referenced(vm_page_t m)
5188{
5189	boolean_t rv;
5190
5191	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5192	    ("%s: page %p is not managed", __func__, m));
5193	rw_wlock(&pvh_global_lock);
5194	rv = pmap_is_referenced_pvh(&m->md) ||
5195	    ((m->flags & PG_FICTITIOUS) == 0 &&
5196	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5197	rw_wunlock(&pvh_global_lock);
5198	return (rv);
5199}
5200
5201#define	PMAP_TS_REFERENCED_MAX	5
5202
5203/*
5204 *	pmap_ts_referenced:
5205 *
5206 *	Return a count of reference bits for a page, clearing those bits.
5207 *	It is not necessary for every reference bit to be cleared, but it
5208 *	is necessary that 0 only be returned when there are truly no
5209 *	reference bits set.
5210 *
5211 *	XXX: The exact number of bits to check and clear is a matter that
5212 *	should be tested and standardized at some point in the future for
5213 *	optimal aging of shared pages.
5214 *
5215 *	As an optimization, update the page's dirty field if a modified bit is
5216 *	found while counting reference bits.  This opportunistic update can be
5217 *	performed at low cost and can eliminate the need for some future calls
5218 *	to pmap_is_modified().  However, since this function stops after
5219 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5220 *	dirty pages.  Those dirty pages will only be detected by a future call
5221 *	to pmap_is_modified().
5222 */
5223int
5224pmap_ts_referenced(vm_page_t m)
5225{
5226	struct md_page *pvh;
5227	pv_entry_t pv, pvf;
5228	pmap_t pmap;
5229	pt1_entry_t  *pte1p, opte1;
5230	pt2_entry_t *pte2p, opte2;
5231	vm_paddr_t pa;
5232	int rtval = 0;
5233
5234	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5235	    ("%s: page %p is not managed", __func__, m));
5236	pa = VM_PAGE_TO_PHYS(m);
5237	pvh = pa_to_pvh(pa);
5238	rw_wlock(&pvh_global_lock);
5239	sched_pin();
5240	if ((m->flags & PG_FICTITIOUS) != 0 ||
5241	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5242		goto small_mappings;
5243	pv = pvf;
5244	do {
5245		pmap = PV_PMAP(pv);
5246		PMAP_LOCK(pmap);
5247		pte1p = pmap_pte1(pmap, pv->pv_va);
5248		opte1 = pte1_load(pte1p);
5249		if (pte1_is_dirty(opte1)) {
5250			/*
5251			 * Although "opte1" is mapping a 1MB page, because
5252			 * this function is called at a 4KB page granularity,
5253			 * we only update the 4KB page under test.
5254			 */
5255			vm_page_dirty(m);
5256		}
5257		if ((opte1 & PTE1_A) != 0) {
5258			/*
5259			 * Since this reference bit is shared by 256 4KB pages,
5260			 * it should not be cleared every time it is tested.
5261			 * Apply a simple "hash" function on the physical page
5262			 * number, the virtual section number, and the pmap
5263			 * address to select one 4KB page out of the 256
5264			 * on which testing the reference bit will result
5265			 * in clearing that bit. This function is designed
5266			 * to avoid the selection of the same 4KB page
5267			 * for every 1MB page mapping.
5268			 *
5269			 * On demotion, a mapping that hasn't been referenced
5270			 * is simply destroyed.  To avoid the possibility of a
5271			 * subsequent page fault on a demoted wired mapping,
5272			 * always leave its reference bit set.  Moreover,
5273			 * since the section is wired, the current state of
5274			 * its reference bit won't affect page replacement.
5275			 */
5276			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5277			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5278			    !pte1_is_wired(opte1)) {
5279				pte1_clear_bit(pte1p, PTE1_A);
5280				pmap_tlb_flush(pmap, pv->pv_va);
5281			}
5282			rtval++;
5283		}
5284		PMAP_UNLOCK(pmap);
5285		/* Rotate the PV list if it has more than one entry. */
5286		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5287			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5288			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5289		}
5290		if (rtval >= PMAP_TS_REFERENCED_MAX)
5291			goto out;
5292	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5293small_mappings:
5294	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5295		goto out;
5296	pv = pvf;
5297	do {
5298		pmap = PV_PMAP(pv);
5299		PMAP_LOCK(pmap);
5300		pte1p = pmap_pte1(pmap, pv->pv_va);
5301		KASSERT(pte1_is_link(pte1_load(pte1p)),
5302		    ("%s: not found a link in page %p's pv list", __func__, m));
5303
5304		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5305		opte2 = pte2_load(pte2p);
5306		if (pte2_is_dirty(opte2))
5307			vm_page_dirty(m);
5308		if ((opte2 & PTE2_A) != 0) {
5309			pte2_clear_bit(pte2p, PTE2_A);
5310			pmap_tlb_flush(pmap, pv->pv_va);
5311			rtval++;
5312		}
5313		PMAP_UNLOCK(pmap);
5314		/* Rotate the PV list if it has more than one entry. */
5315		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5316			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5317			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5318		}
5319	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5320	    PMAP_TS_REFERENCED_MAX);
5321out:
5322	sched_unpin();
5323	rw_wunlock(&pvh_global_lock);
5324	return (rtval);
5325}
5326
5327/*
5328 *	Clear the wired attribute from the mappings for the specified range of
5329 *	addresses in the given pmap.  Every valid mapping within that range
5330 *	must have the wired attribute set.  In contrast, invalid mappings
5331 *	cannot have the wired attribute set, so they are ignored.
5332 *
5333 *	The wired attribute of the page table entry is not a hardware feature,
5334 *	so there is no need to invalidate any TLB entries.
5335 */
5336void
5337pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5338{
5339	vm_offset_t nextva;
5340	pt1_entry_t *pte1p, pte1;
5341	pt2_entry_t *pte2p, pte2;
5342	boolean_t pv_lists_locked;
5343
5344	if (pmap_is_current(pmap))
5345		pv_lists_locked = FALSE;
5346	else {
5347		pv_lists_locked = TRUE;
5348resume:
5349		rw_wlock(&pvh_global_lock);
5350		sched_pin();
5351	}
5352	PMAP_LOCK(pmap);
5353	for (; sva < eva; sva = nextva) {
5354		nextva = pte1_trunc(sva + PTE1_SIZE);
5355		if (nextva < sva)
5356			nextva = eva;
5357
5358		pte1p = pmap_pte1(pmap, sva);
5359		pte1 = pte1_load(pte1p);
5360
5361		/*
5362		 * Weed out invalid mappings. Note: we assume that L1 page
5363		 * page table is always allocated, and in kernel virtual.
5364		 */
5365		if (pte1 == 0)
5366			continue;
5367
5368		if (pte1_is_section(pte1)) {
5369			if (!pte1_is_wired(pte1))
5370				panic("%s: pte1 %#x not wired", __func__, pte1);
5371
5372			/*
5373			 * Are we unwiring the entire large page?  If not,
5374			 * demote the mapping and fall through.
5375			 */
5376			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5377				pte1_clear_bit(pte1p, PTE1_W);
5378				pmap->pm_stats.wired_count -= PTE1_SIZE /
5379				    PAGE_SIZE;
5380				continue;
5381			} else {
5382				if (!pv_lists_locked) {
5383					pv_lists_locked = TRUE;
5384					if (!rw_try_wlock(&pvh_global_lock)) {
5385						PMAP_UNLOCK(pmap);
5386						/* Repeat sva. */
5387						goto resume;
5388					}
5389					sched_pin();
5390				}
5391				if (!pmap_demote_pte1(pmap, pte1p, sva))
5392					panic("%s: demotion failed", __func__);
5393#ifdef INVARIANTS
5394				else {
5395					/* Update pte1 after demotion */
5396					pte1 = pte1_load(pte1p);
5397				}
5398#endif
5399			}
5400		}
5401
5402		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5403		    " is not link", __func__, pmap, sva, pte1, pte1p));
5404
5405		/*
5406		 * Limit our scan to either the end of the va represented
5407		 * by the current L2 page table page, or to the end of the
5408		 * range being protected.
5409		 */
5410		if (nextva > eva)
5411			nextva = eva;
5412
5413		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5414		    sva += PAGE_SIZE) {
5415			pte2 = pte2_load(pte2p);
5416			if (!pte2_is_valid(pte2))
5417				continue;
5418			if (!pte2_is_wired(pte2))
5419				panic("%s: pte2 %#x is missing PTE2_W",
5420				    __func__, pte2);
5421
5422			/*
5423			 * PTE2_W must be cleared atomically. Although the pmap
5424			 * lock synchronizes access to PTE2_W, another processor
5425			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5426			 */
5427			pte2_clear_bit(pte2p, PTE2_W);
5428			pmap->pm_stats.wired_count--;
5429		}
5430	}
5431	if (pv_lists_locked) {
5432		sched_unpin();
5433		rw_wunlock(&pvh_global_lock);
5434	}
5435	PMAP_UNLOCK(pmap);
5436}
5437
5438/*
5439 *  Clear the write and modified bits in each of the given page's mappings.
5440 */
5441void
5442pmap_remove_write(vm_page_t m)
5443{
5444	struct md_page *pvh;
5445	pv_entry_t next_pv, pv;
5446	pmap_t pmap;
5447	pt1_entry_t *pte1p;
5448	pt2_entry_t *pte2p, opte2;
5449	vm_offset_t va;
5450
5451	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5452	    ("%s: page %p is not managed", __func__, m));
5453
5454	/*
5455	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5456	 * set by another thread while the object is locked.  Thus,
5457	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5458	 */
5459	VM_OBJECT_ASSERT_WLOCKED(m->object);
5460	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5461		return;
5462	rw_wlock(&pvh_global_lock);
5463	sched_pin();
5464	if ((m->flags & PG_FICTITIOUS) != 0)
5465		goto small_mappings;
5466	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5467	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5468		va = pv->pv_va;
5469		pmap = PV_PMAP(pv);
5470		PMAP_LOCK(pmap);
5471		pte1p = pmap_pte1(pmap, va);
5472		if (!(pte1_load(pte1p) & PTE1_RO))
5473			(void)pmap_demote_pte1(pmap, pte1p, va);
5474		PMAP_UNLOCK(pmap);
5475	}
5476small_mappings:
5477	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5478		pmap = PV_PMAP(pv);
5479		PMAP_LOCK(pmap);
5480		pte1p = pmap_pte1(pmap, pv->pv_va);
5481		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5482		    " a section in page %p's pv list", __func__, m));
5483		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5484		opte2 = pte2_load(pte2p);
5485		if (!(opte2 & PTE2_RO)) {
5486			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5487			if (pte2_is_dirty(opte2))
5488				vm_page_dirty(m);
5489			pmap_tlb_flush(pmap, pv->pv_va);
5490		}
5491		PMAP_UNLOCK(pmap);
5492	}
5493	vm_page_aflag_clear(m, PGA_WRITEABLE);
5494	sched_unpin();
5495	rw_wunlock(&pvh_global_lock);
5496}
5497
5498/*
5499 *	Apply the given advice to the specified range of addresses within the
5500 *	given pmap.  Depending on the advice, clear the referenced and/or
5501 *	modified flags in each mapping and set the mapped page's dirty field.
5502 */
5503void
5504pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5505{
5506	pt1_entry_t *pte1p, opte1;
5507	pt2_entry_t *pte2p, pte2;
5508	vm_offset_t pdnxt;
5509	vm_page_t m;
5510	boolean_t pv_lists_locked;
5511
5512	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5513		return;
5514	if (pmap_is_current(pmap))
5515		pv_lists_locked = FALSE;
5516	else {
5517		pv_lists_locked = TRUE;
5518resume:
5519		rw_wlock(&pvh_global_lock);
5520		sched_pin();
5521	}
5522	PMAP_LOCK(pmap);
5523	for (; sva < eva; sva = pdnxt) {
5524		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5525		if (pdnxt < sva)
5526			pdnxt = eva;
5527		pte1p = pmap_pte1(pmap, sva);
5528		opte1 = pte1_load(pte1p);
5529		if (!pte1_is_valid(opte1)) /* XXX */
5530			continue;
5531		else if (pte1_is_section(opte1)) {
5532			if (!pte1_is_managed(opte1))
5533				continue;
5534			if (!pv_lists_locked) {
5535				pv_lists_locked = TRUE;
5536				if (!rw_try_wlock(&pvh_global_lock)) {
5537					PMAP_UNLOCK(pmap);
5538					goto resume;
5539				}
5540				sched_pin();
5541			}
5542			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5543				/*
5544				 * The large page mapping was destroyed.
5545				 */
5546				continue;
5547			}
5548
5549			/*
5550			 * Unless the page mappings are wired, remove the
5551			 * mapping to a single page so that a subsequent
5552			 * access may repromote.  Since the underlying L2 page
5553			 * table is fully populated, this removal never
5554			 * frees a L2 page table page.
5555			 */
5556			if (!pte1_is_wired(opte1)) {
5557				pte2p = pmap_pte2_quick(pmap, sva);
5558				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5559				    ("%s: invalid PTE2", __func__));
5560				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5561			}
5562		}
5563		if (pdnxt > eva)
5564			pdnxt = eva;
5565		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5566		    sva += PAGE_SIZE) {
5567			pte2 = pte2_load(pte2p);
5568			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5569				continue;
5570			else if (pte2_is_dirty(pte2)) {
5571				if (advice == MADV_DONTNEED) {
5572					/*
5573					 * Future calls to pmap_is_modified()
5574					 * can be avoided by making the page
5575					 * dirty now.
5576					 */
5577					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5578					vm_page_dirty(m);
5579				}
5580				pte2_set_bit(pte2p, PTE2_NM);
5581				pte2_clear_bit(pte2p, PTE2_A);
5582			} else if ((pte2 & PTE2_A) != 0)
5583				pte2_clear_bit(pte2p, PTE2_A);
5584			else
5585				continue;
5586			pmap_tlb_flush(pmap, sva);
5587		}
5588	}
5589	if (pv_lists_locked) {
5590		sched_unpin();
5591		rw_wunlock(&pvh_global_lock);
5592	}
5593	PMAP_UNLOCK(pmap);
5594}
5595
5596/*
5597 *	Clear the modify bits on the specified physical page.
5598 */
5599void
5600pmap_clear_modify(vm_page_t m)
5601{
5602	struct md_page *pvh;
5603	pv_entry_t next_pv, pv;
5604	pmap_t pmap;
5605	pt1_entry_t *pte1p, opte1;
5606	pt2_entry_t *pte2p, opte2;
5607	vm_offset_t va;
5608
5609	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5610	    ("%s: page %p is not managed", __func__, m));
5611	VM_OBJECT_ASSERT_WLOCKED(m->object);
5612	KASSERT(!vm_page_xbusied(m),
5613	    ("%s: page %p is exclusive busy", __func__, m));
5614
5615	/*
5616	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5617	 * cleared. If the object containing the page is locked and the page
5618	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5619	 * set.
5620	 */
5621	if ((m->flags & PGA_WRITEABLE) == 0)
5622		return;
5623	rw_wlock(&pvh_global_lock);
5624	sched_pin();
5625	if ((m->flags & PG_FICTITIOUS) != 0)
5626		goto small_mappings;
5627	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5628	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5629		va = pv->pv_va;
5630		pmap = PV_PMAP(pv);
5631		PMAP_LOCK(pmap);
5632		pte1p = pmap_pte1(pmap, va);
5633		opte1 = pte1_load(pte1p);
5634		if (!(opte1 & PTE1_RO)) {
5635			if (pmap_demote_pte1(pmap, pte1p, va) &&
5636			    !pte1_is_wired(opte1)) {
5637				/*
5638				 * Write protect the mapping to a
5639				 * single page so that a subsequent
5640				 * write access may repromote.
5641				 */
5642				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5643				pte2p = pmap_pte2_quick(pmap, va);
5644				opte2 = pte2_load(pte2p);
5645				if ((opte2 & PTE2_V)) {
5646					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5647					vm_page_dirty(m);
5648					pmap_tlb_flush(pmap, va);
5649				}
5650			}
5651		}
5652		PMAP_UNLOCK(pmap);
5653	}
5654small_mappings:
5655	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5656		pmap = PV_PMAP(pv);
5657		PMAP_LOCK(pmap);
5658		pte1p = pmap_pte1(pmap, pv->pv_va);
5659		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5660		    " a section in page %p's pv list", __func__, m));
5661		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5662		if (pte2_is_dirty(pte2_load(pte2p))) {
5663			pte2_set_bit(pte2p, PTE2_NM);
5664			pmap_tlb_flush(pmap, pv->pv_va);
5665		}
5666		PMAP_UNLOCK(pmap);
5667	}
5668	sched_unpin();
5669	rw_wunlock(&pvh_global_lock);
5670}
5671
5672
5673/*
5674 *  Sets the memory attribute for the specified page.
5675 */
5676void
5677pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5678{
5679	pt2_entry_t *cmap2_pte2p;
5680	vm_memattr_t oma;
5681	vm_paddr_t pa;
5682	struct pcpu *pc;
5683
5684	oma = m->md.pat_mode;
5685	m->md.pat_mode = ma;
5686
5687	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5688	    VM_PAGE_TO_PHYS(m), oma, ma);
5689	if ((m->flags & PG_FICTITIOUS) != 0)
5690		return;
5691#if 0
5692	/*
5693	 * If "m" is a normal page, flush it from the cache.
5694	 *
5695	 * First, try to find an existing mapping of the page by sf
5696	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5697	 * flushes the cache.
5698	 */
5699	if (sf_buf_invalidate_cache(m, oma))
5700		return;
5701#endif
5702	/*
5703	 * If page is not mapped by sf buffer, map the page
5704	 * transient and do invalidation.
5705	 */
5706	if (ma != oma) {
5707		pa = VM_PAGE_TO_PHYS(m);
5708		sched_pin();
5709		pc = get_pcpu();
5710		cmap2_pte2p = pc->pc_cmap2_pte2p;
5711		mtx_lock(&pc->pc_cmap_lock);
5712		if (pte2_load(cmap2_pte2p) != 0)
5713			panic("%s: CMAP2 busy", __func__);
5714		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5715		    vm_memattr_to_pte2(ma)));
5716		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5717		pte2_clear(cmap2_pte2p);
5718		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5719		sched_unpin();
5720		mtx_unlock(&pc->pc_cmap_lock);
5721	}
5722}
5723
5724/*
5725 *  Miscellaneous support routines follow
5726 */
5727
5728/*
5729 *  Returns TRUE if the given page is mapped individually or as part of
5730 *  a 1mpage.  Otherwise, returns FALSE.
5731 */
5732boolean_t
5733pmap_page_is_mapped(vm_page_t m)
5734{
5735	boolean_t rv;
5736
5737	if ((m->oflags & VPO_UNMANAGED) != 0)
5738		return (FALSE);
5739	rw_wlock(&pvh_global_lock);
5740	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5741	    ((m->flags & PG_FICTITIOUS) == 0 &&
5742	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5743	rw_wunlock(&pvh_global_lock);
5744	return (rv);
5745}
5746
5747/*
5748 *  Returns true if the pmap's pv is one of the first
5749 *  16 pvs linked to from this page.  This count may
5750 *  be changed upwards or downwards in the future; it
5751 *  is only necessary that true be returned for a small
5752 *  subset of pmaps for proper page aging.
5753 */
5754boolean_t
5755pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5756{
5757	struct md_page *pvh;
5758	pv_entry_t pv;
5759	int loops = 0;
5760	boolean_t rv;
5761
5762	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5763	    ("%s: page %p is not managed", __func__, m));
5764	rv = FALSE;
5765	rw_wlock(&pvh_global_lock);
5766	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5767		if (PV_PMAP(pv) == pmap) {
5768			rv = TRUE;
5769			break;
5770		}
5771		loops++;
5772		if (loops >= 16)
5773			break;
5774	}
5775	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5776		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5777		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5778			if (PV_PMAP(pv) == pmap) {
5779				rv = TRUE;
5780				break;
5781			}
5782			loops++;
5783			if (loops >= 16)
5784				break;
5785		}
5786	}
5787	rw_wunlock(&pvh_global_lock);
5788	return (rv);
5789}
5790
5791/*
5792 *	pmap_zero_page zeros the specified hardware page by mapping
5793 *	the page into KVM and using bzero to clear its contents.
5794 */
5795void
5796pmap_zero_page(vm_page_t m)
5797{
5798	pt2_entry_t *cmap2_pte2p;
5799	struct pcpu *pc;
5800
5801	sched_pin();
5802	pc = get_pcpu();
5803	cmap2_pte2p = pc->pc_cmap2_pte2p;
5804	mtx_lock(&pc->pc_cmap_lock);
5805	if (pte2_load(cmap2_pte2p) != 0)
5806		panic("%s: CMAP2 busy", __func__);
5807	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5808	    vm_page_pte2_attr(m)));
5809	pagezero(pc->pc_cmap2_addr);
5810	pte2_clear(cmap2_pte2p);
5811	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5812	sched_unpin();
5813	mtx_unlock(&pc->pc_cmap_lock);
5814}
5815
5816/*
5817 *	pmap_zero_page_area zeros the specified hardware page by mapping
5818 *	the page into KVM and using bzero to clear its contents.
5819 *
5820 *	off and size may not cover an area beyond a single hardware page.
5821 */
5822void
5823pmap_zero_page_area(vm_page_t m, int off, int size)
5824{
5825	pt2_entry_t *cmap2_pte2p;
5826	struct pcpu *pc;
5827
5828	sched_pin();
5829	pc = get_pcpu();
5830	cmap2_pte2p = pc->pc_cmap2_pte2p;
5831	mtx_lock(&pc->pc_cmap_lock);
5832	if (pte2_load(cmap2_pte2p) != 0)
5833		panic("%s: CMAP2 busy", __func__);
5834	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5835	    vm_page_pte2_attr(m)));
5836	if (off == 0 && size == PAGE_SIZE)
5837		pagezero(pc->pc_cmap2_addr);
5838	else
5839		bzero(pc->pc_cmap2_addr + off, size);
5840	pte2_clear(cmap2_pte2p);
5841	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5842	sched_unpin();
5843	mtx_unlock(&pc->pc_cmap_lock);
5844}
5845
5846/*
5847 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5848 *	the page into KVM and using bzero to clear its contents.  This
5849 *	is intended to be called from the vm_pagezero process only and
5850 *	outside of Giant.
5851 */
5852void
5853pmap_zero_page_idle(vm_page_t m)
5854{
5855
5856	if (pte2_load(CMAP3) != 0)
5857		panic("%s: CMAP3 busy", __func__);
5858	sched_pin();
5859	pte2_store(CMAP3, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5860	    vm_page_pte2_attr(m)));
5861	pagezero(CADDR3);
5862	pte2_clear(CMAP3);
5863	tlb_flush((vm_offset_t)CADDR3);
5864	sched_unpin();
5865}
5866
5867/*
5868 *	pmap_copy_page copies the specified (machine independent)
5869 *	page by mapping the page into virtual memory and using
5870 *	bcopy to copy the page, one machine dependent page at a
5871 *	time.
5872 */
5873void
5874pmap_copy_page(vm_page_t src, vm_page_t dst)
5875{
5876	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5877	struct pcpu *pc;
5878
5879	sched_pin();
5880	pc = get_pcpu();
5881	cmap1_pte2p = pc->pc_cmap1_pte2p;
5882	cmap2_pte2p = pc->pc_cmap2_pte2p;
5883	mtx_lock(&pc->pc_cmap_lock);
5884	if (pte2_load(cmap1_pte2p) != 0)
5885		panic("%s: CMAP1 busy", __func__);
5886	if (pte2_load(cmap2_pte2p) != 0)
5887		panic("%s: CMAP2 busy", __func__);
5888	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5889	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5890	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5891	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5892	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5893	pte2_clear(cmap1_pte2p);
5894	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5895	pte2_clear(cmap2_pte2p);
5896	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5897	sched_unpin();
5898	mtx_unlock(&pc->pc_cmap_lock);
5899}
5900
5901int unmapped_buf_allowed = 1;
5902
5903void
5904pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5905    vm_offset_t b_offset, int xfersize)
5906{
5907	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5908	vm_page_t a_pg, b_pg;
5909	char *a_cp, *b_cp;
5910	vm_offset_t a_pg_offset, b_pg_offset;
5911	struct pcpu *pc;
5912	int cnt;
5913
5914	sched_pin();
5915	pc = get_pcpu();
5916	cmap1_pte2p = pc->pc_cmap1_pte2p;
5917	cmap2_pte2p = pc->pc_cmap2_pte2p;
5918	mtx_lock(&pc->pc_cmap_lock);
5919	if (pte2_load(cmap1_pte2p) != 0)
5920		panic("pmap_copy_pages: CMAP1 busy");
5921	if (pte2_load(cmap2_pte2p) != 0)
5922		panic("pmap_copy_pages: CMAP2 busy");
5923	while (xfersize > 0) {
5924		a_pg = ma[a_offset >> PAGE_SHIFT];
5925		a_pg_offset = a_offset & PAGE_MASK;
5926		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5927		b_pg = mb[b_offset >> PAGE_SHIFT];
5928		b_pg_offset = b_offset & PAGE_MASK;
5929		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5930		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5931		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5932		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5933		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5934		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5935		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5936		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5937		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5938		bcopy(a_cp, b_cp, cnt);
5939		a_offset += cnt;
5940		b_offset += cnt;
5941		xfersize -= cnt;
5942	}
5943	pte2_clear(cmap1_pte2p);
5944	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5945	pte2_clear(cmap2_pte2p);
5946	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5947	sched_unpin();
5948	mtx_unlock(&pc->pc_cmap_lock);
5949}
5950
5951vm_offset_t
5952pmap_quick_enter_page(vm_page_t m)
5953{
5954	struct pcpu *pc;
5955	pt2_entry_t *pte2p;
5956
5957	critical_enter();
5958	pc = get_pcpu();
5959	pte2p = pc->pc_qmap_pte2p;
5960
5961	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5962
5963	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5964	    vm_page_pte2_attr(m)));
5965	return (pc->pc_qmap_addr);
5966}
5967
5968void
5969pmap_quick_remove_page(vm_offset_t addr)
5970{
5971	struct pcpu *pc;
5972	pt2_entry_t *pte2p;
5973
5974	pc = get_pcpu();
5975	pte2p = pc->pc_qmap_pte2p;
5976
5977	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5978	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5979
5980	pte2_clear(pte2p);
5981	tlb_flush(pc->pc_qmap_addr);
5982	critical_exit();
5983}
5984
5985/*
5986 *	Copy the range specified by src_addr/len
5987 *	from the source map to the range dst_addr/len
5988 *	in the destination map.
5989 *
5990 *	This routine is only advisory and need not do anything.
5991 */
5992void
5993pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
5994    vm_offset_t src_addr)
5995{
5996	struct spglist free;
5997	vm_offset_t addr;
5998	vm_offset_t end_addr = src_addr + len;
5999	vm_offset_t nextva;
6000
6001	if (dst_addr != src_addr)
6002		return;
6003
6004	if (!pmap_is_current(src_pmap))
6005		return;
6006
6007	rw_wlock(&pvh_global_lock);
6008	if (dst_pmap < src_pmap) {
6009		PMAP_LOCK(dst_pmap);
6010		PMAP_LOCK(src_pmap);
6011	} else {
6012		PMAP_LOCK(src_pmap);
6013		PMAP_LOCK(dst_pmap);
6014	}
6015	sched_pin();
6016	for (addr = src_addr; addr < end_addr; addr = nextva) {
6017		pt2_entry_t *src_pte2p, *dst_pte2p;
6018		vm_page_t dst_mpt2pg, src_mpt2pg;
6019		pt1_entry_t src_pte1;
6020		u_int pte1_idx;
6021
6022		KASSERT(addr < VM_MAXUSER_ADDRESS,
6023		    ("%s: invalid to pmap_copy page tables", __func__));
6024
6025		nextva = pte1_trunc(addr + PTE1_SIZE);
6026		if (nextva < addr)
6027			nextva = end_addr;
6028
6029		pte1_idx = pte1_index(addr);
6030		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6031		if (pte1_is_section(src_pte1)) {
6032			if ((addr & PTE1_OFFSET) != 0 ||
6033			    (addr + PTE1_SIZE) > end_addr)
6034				continue;
6035			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6036			    (!pte1_is_managed(src_pte1) ||
6037			    pmap_pv_insert_pte1(dst_pmap, addr,
6038			    pte1_pa(src_pte1)))) {
6039				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6040				    ~PTE1_W;
6041				dst_pmap->pm_stats.resident_count +=
6042				    PTE1_SIZE / PAGE_SIZE;
6043				pmap_pte1_mappings++;
6044			}
6045			continue;
6046		} else if (!pte1_is_link(src_pte1))
6047			continue;
6048
6049		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6050
6051		/*
6052		 * We leave PT2s to be linked from PT1 even if they are not
6053		 * referenced until all PT2s in a page are without reference.
6054		 *
6055		 * QQQ: It could be changed ...
6056		 */
6057#if 0 /* single_pt2_link_is_cleared */
6058		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6059		    ("%s: source page table page is unused", __func__));
6060#else
6061		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6062			continue;
6063#endif
6064		if (nextva > end_addr)
6065			nextva = end_addr;
6066
6067		src_pte2p = pt2map_entry(addr);
6068		while (addr < nextva) {
6069			pt2_entry_t temp_pte2;
6070			temp_pte2 = pte2_load(src_pte2p);
6071			/*
6072			 * we only virtual copy managed pages
6073			 */
6074			if (pte2_is_managed(temp_pte2)) {
6075				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6076				    PMAP_ENTER_NOSLEEP);
6077				if (dst_mpt2pg == NULL)
6078					goto out;
6079				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6080				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6081				    pmap_try_insert_pv_entry(dst_pmap, addr,
6082				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6083					/*
6084					 * Clear the wired, modified, and
6085					 * accessed (referenced) bits
6086					 * during the copy.
6087					 */
6088					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6089					temp_pte2 |= PTE2_NM;
6090					pte2_store(dst_pte2p, temp_pte2);
6091					dst_pmap->pm_stats.resident_count++;
6092				} else {
6093					SLIST_INIT(&free);
6094					if (pmap_unwire_pt2(dst_pmap, addr,
6095					    dst_mpt2pg, &free)) {
6096						pmap_tlb_flush(dst_pmap, addr);
6097						pmap_free_zero_pages(&free);
6098					}
6099					goto out;
6100				}
6101				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6102				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6103					break;
6104			}
6105			addr += PAGE_SIZE;
6106			src_pte2p++;
6107		}
6108	}
6109out:
6110	sched_unpin();
6111	rw_wunlock(&pvh_global_lock);
6112	PMAP_UNLOCK(src_pmap);
6113	PMAP_UNLOCK(dst_pmap);
6114}
6115
6116/*
6117 *	Increase the starting virtual address of the given mapping if a
6118 *	different alignment might result in more section mappings.
6119 */
6120void
6121pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6122    vm_offset_t *addr, vm_size_t size)
6123{
6124	vm_offset_t pte1_offset;
6125
6126	if (size < PTE1_SIZE)
6127		return;
6128	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6129		offset += ptoa(object->pg_color);
6130	pte1_offset = offset & PTE1_OFFSET;
6131	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6132	    (*addr & PTE1_OFFSET) == pte1_offset)
6133		return;
6134	if ((*addr & PTE1_OFFSET) < pte1_offset)
6135		*addr = pte1_trunc(*addr) + pte1_offset;
6136	else
6137		*addr = pte1_roundup(*addr) + pte1_offset;
6138}
6139
6140void
6141pmap_activate(struct thread *td)
6142{
6143	pmap_t pmap, oldpmap;
6144	u_int cpuid, ttb;
6145
6146	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6147
6148	critical_enter();
6149	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6150	oldpmap = PCPU_GET(curpmap);
6151	cpuid = PCPU_GET(cpuid);
6152
6153#if defined(SMP)
6154	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6155	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6156#else
6157	CPU_CLR(cpuid, &oldpmap->pm_active);
6158	CPU_SET(cpuid, &pmap->pm_active);
6159#endif
6160
6161	ttb = pmap_ttb_get(pmap);
6162
6163	/*
6164	 * pmap_activate is for the current thread on the current cpu
6165	 */
6166	td->td_pcb->pcb_pagedir = ttb;
6167	cp15_ttbr_set(ttb);
6168	PCPU_SET(curpmap, pmap);
6169	critical_exit();
6170}
6171
6172/*
6173 *  Perform the pmap work for mincore.
6174 */
6175int
6176pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6177{
6178	pt1_entry_t *pte1p, pte1;
6179	pt2_entry_t *pte2p, pte2;
6180	vm_paddr_t pa;
6181	bool managed;
6182	int val;
6183
6184	PMAP_LOCK(pmap);
6185retry:
6186	pte1p = pmap_pte1(pmap, addr);
6187	pte1 = pte1_load(pte1p);
6188	if (pte1_is_section(pte1)) {
6189		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6190		managed = pte1_is_managed(pte1);
6191		val = MINCORE_SUPER | MINCORE_INCORE;
6192		if (pte1_is_dirty(pte1))
6193			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6194		if (pte1 & PTE1_A)
6195			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6196	} else if (pte1_is_link(pte1)) {
6197		pte2p = pmap_pte2(pmap, addr);
6198		pte2 = pte2_load(pte2p);
6199		pmap_pte2_release(pte2p);
6200		pa = pte2_pa(pte2);
6201		managed = pte2_is_managed(pte2);
6202		val = MINCORE_INCORE;
6203		if (pte2_is_dirty(pte2))
6204			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6205		if (pte2 & PTE2_A)
6206			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6207	} else {
6208		managed = false;
6209		val = 0;
6210	}
6211	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6212	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6213		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6214		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6215			goto retry;
6216	} else
6217		PA_UNLOCK_COND(*locked_pa);
6218	PMAP_UNLOCK(pmap);
6219	return (val);
6220}
6221
6222void
6223pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6224{
6225	vm_offset_t sva;
6226	uint32_t l2attr;
6227
6228	KASSERT((size & PAGE_MASK) == 0,
6229	    ("%s: device mapping not page-sized", __func__));
6230
6231	sva = va;
6232	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6233	while (size != 0) {
6234		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6235		va += PAGE_SIZE;
6236		pa += PAGE_SIZE;
6237		size -= PAGE_SIZE;
6238	}
6239	tlb_flush_range(sva, va - sva);
6240}
6241
6242void
6243pmap_kremove_device(vm_offset_t va, vm_size_t size)
6244{
6245	vm_offset_t sva;
6246
6247	KASSERT((size & PAGE_MASK) == 0,
6248	    ("%s: device mapping not page-sized", __func__));
6249
6250	sva = va;
6251	while (size != 0) {
6252		pmap_kremove(va);
6253		va += PAGE_SIZE;
6254		size -= PAGE_SIZE;
6255	}
6256	tlb_flush_range(sva, va - sva);
6257}
6258
6259void
6260pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6261{
6262
6263	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6264}
6265
6266
6267/*
6268 *  Clean L1 data cache range by physical address.
6269 *  The range must be within a single page.
6270 */
6271static void
6272pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6273{
6274	pt2_entry_t *cmap2_pte2p;
6275	struct pcpu *pc;
6276
6277	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6278	    ("%s: not on single page", __func__));
6279
6280	sched_pin();
6281	pc = get_pcpu();
6282	cmap2_pte2p = pc->pc_cmap2_pte2p;
6283	mtx_lock(&pc->pc_cmap_lock);
6284	if (pte2_load(cmap2_pte2p) != 0)
6285		panic("%s: CMAP2 busy", __func__);
6286	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6287	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6288	pte2_clear(cmap2_pte2p);
6289	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6290	sched_unpin();
6291	mtx_unlock(&pc->pc_cmap_lock);
6292}
6293
6294/*
6295 *  Sync instruction cache range which is not mapped yet.
6296 */
6297void
6298cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6299{
6300	uint32_t len, offset;
6301	vm_page_t m;
6302
6303	/* Write back d-cache on given address range. */
6304	offset = pa & PAGE_MASK;
6305	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6306		len = min(PAGE_SIZE - offset, size);
6307		m = PHYS_TO_VM_PAGE(pa);
6308		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6309		  __func__, pa));
6310		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6311	}
6312	/*
6313	 * I-cache is VIPT. Only way how to flush all virtual mappings
6314	 * on given physical address is to invalidate all i-cache.
6315	 */
6316	icache_inv_all();
6317}
6318
6319void
6320pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6321{
6322
6323	/* Write back d-cache on given address range. */
6324	if (va >= VM_MIN_KERNEL_ADDRESS) {
6325		dcache_wb_pou(va, size);
6326	} else {
6327		uint32_t len, offset;
6328		vm_paddr_t pa;
6329		vm_page_t m;
6330
6331		offset = va & PAGE_MASK;
6332		for ( ; size != 0; size -= len, va += len, offset = 0) {
6333			pa = pmap_extract(pmap, va); /* offset is preserved */
6334			len = min(PAGE_SIZE - offset, size);
6335			m = PHYS_TO_VM_PAGE(pa);
6336			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6337				__func__, pa));
6338			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6339		}
6340	}
6341	/*
6342	 * I-cache is VIPT. Only way how to flush all virtual mappings
6343	 * on given physical address is to invalidate all i-cache.
6344	 */
6345	icache_inv_all();
6346}
6347
6348/*
6349 *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6350 *  depends on the fact that given range size is a power of 2.
6351 */
6352CTASSERT(powerof2(NB_IN_PT1));
6353CTASSERT(powerof2(PT2MAP_SIZE));
6354
6355#define IN_RANGE2(addr, start, size)	\
6356    ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6357
6358/*
6359 *  Handle access and R/W emulation faults.
6360 */
6361int
6362pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6363{
6364	pt1_entry_t *pte1p, pte1;
6365	pt2_entry_t *pte2p, pte2;
6366
6367	if (pmap == NULL)
6368		pmap = kernel_pmap;
6369
6370	/*
6371	 * In kernel, we should never get abort with FAR which is in range of
6372	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6373	 * and print out a useful abort message and even get to the debugger
6374	 * otherwise it likely ends with never ending loop of aborts.
6375	 */
6376	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6377		/*
6378		 * All L1 tables should always be mapped and present.
6379		 * However, we check only current one herein. For user mode,
6380		 * only permission abort from malicious user is not fatal.
6381		 * And alignment abort as it may have higher priority.
6382		 */
6383		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6384			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6385			    __func__, pmap, pmap->pm_pt1, far);
6386			panic("%s: pm_pt1 abort", __func__);
6387		}
6388		return (KERN_INVALID_ADDRESS);
6389	}
6390	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6391		/*
6392		 * PT2MAP should be always mapped and present in current
6393		 * L1 table. However, only existing L2 tables are mapped
6394		 * in PT2MAP. For user mode, only L2 translation abort and
6395		 * permission abort from malicious user is not fatal.
6396		 * And alignment abort as it may have higher priority.
6397		 */
6398		if (!usermode || (idx != FAULT_ALIGN &&
6399		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6400			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6401			    __func__, pmap, PT2MAP, far);
6402			panic("%s: PT2MAP abort", __func__);
6403		}
6404		return (KERN_INVALID_ADDRESS);
6405	}
6406
6407	/*
6408	 * A pmap lock is used below for handling of access and R/W emulation
6409	 * aborts. They were handled by atomic operations before so some
6410	 * analysis of new situation is needed to answer the following question:
6411	 * Is it safe to use the lock even for these aborts?
6412	 *
6413	 * There may happen two cases in general:
6414	 *
6415	 * (1) Aborts while the pmap lock is locked already - this should not
6416	 * happen as pmap lock is not recursive. However, under pmap lock only
6417	 * internal kernel data should be accessed and such data should be
6418	 * mapped with A bit set and NM bit cleared. If double abort happens,
6419	 * then a mapping of data which has caused it must be fixed. Further,
6420	 * all new mappings are always made with A bit set and the bit can be
6421	 * cleared only on managed mappings.
6422	 *
6423	 * (2) Aborts while another lock(s) is/are locked - this already can
6424	 * happen. However, there is no difference here if it's either access or
6425	 * R/W emulation abort, or if it's some other abort.
6426	 */
6427
6428	PMAP_LOCK(pmap);
6429#ifdef SMP
6430	/*
6431	 * Special treatment is due to break-before-make approach done when
6432	 * pte1 is updated for userland mapping during section promotion or
6433	 * demotion. If not caught here, pmap_enter() can find a section
6434	 * mapping on faulting address. That is not allowed.
6435	 */
6436	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6437		PMAP_UNLOCK(pmap);
6438		return (KERN_SUCCESS);
6439	}
6440#endif
6441	/*
6442	 * Accesss bits for page and section. Note that the entry
6443	 * is not in TLB yet, so TLB flush is not necessary.
6444	 *
6445	 * QQQ: This is hardware emulation, we do not call userret()
6446	 *      for aborts from user mode.
6447	 */
6448	if (idx == FAULT_ACCESS_L2) {
6449		pte2p = pt2map_entry(far);
6450		pte2 = pte2_load(pte2p);
6451		if (pte2_is_valid(pte2)) {
6452			pte2_store(pte2p, pte2 | PTE2_A);
6453			PMAP_UNLOCK(pmap);
6454			return (KERN_SUCCESS);
6455		}
6456	}
6457	if (idx == FAULT_ACCESS_L1) {
6458		pte1p = pmap_pte1(pmap, far);
6459		pte1 = pte1_load(pte1p);
6460		if (pte1_is_section(pte1)) {
6461			pte1_store(pte1p, pte1 | PTE1_A);
6462			PMAP_UNLOCK(pmap);
6463			return (KERN_SUCCESS);
6464		}
6465	}
6466
6467	/*
6468	 * Handle modify bits for page and section. Note that the modify
6469	 * bit is emulated by software. So PTEx_RO is software read only
6470	 * bit and PTEx_NM flag is real hardware read only bit.
6471	 *
6472	 * QQQ: This is hardware emulation, we do not call userret()
6473	 *      for aborts from user mode.
6474	 */
6475	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6476		pte2p = pt2map_entry(far);
6477		pte2 = pte2_load(pte2p);
6478		if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6479		    (pte2 & PTE2_NM)) {
6480			pte2_store(pte2p, pte2 & ~PTE2_NM);
6481			tlb_flush(trunc_page(far));
6482			PMAP_UNLOCK(pmap);
6483			return (KERN_SUCCESS);
6484		}
6485	}
6486	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6487		pte1p = pmap_pte1(pmap, far);
6488		pte1 = pte1_load(pte1p);
6489		if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
6490		    (pte1 & PTE1_NM)) {
6491			pte1_store(pte1p, pte1 & ~PTE1_NM);
6492			tlb_flush(pte1_trunc(far));
6493			PMAP_UNLOCK(pmap);
6494			return (KERN_SUCCESS);
6495		}
6496	}
6497
6498	/*
6499	 * QQQ: The previous code, mainly fast handling of access and
6500	 *      modify bits aborts, could be moved to ASM. Now we are
6501	 *      starting to deal with not fast aborts.
6502	 */
6503
6504#ifdef INVARIANTS
6505	/*
6506	 * Read an entry in PT2TAB associated with both pmap and far.
6507	 * It's safe because PT2TAB is always mapped.
6508	 */
6509	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6510	if (pte2_is_valid(pte2)) {
6511		/*
6512		 * Now, when we know that L2 page table is allocated,
6513		 * we can use PT2MAP to get L2 page table entry.
6514		 */
6515		pte2 = pte2_load(pt2map_entry(far));
6516		if (pte2_is_valid(pte2)) {
6517			/*
6518			 * If L2 page table entry is valid, make sure that
6519			 * L1 page table entry is valid too.  Note that we
6520			 * leave L2 page entries untouched when promoted.
6521			 */
6522			pte1 = pte1_load(pmap_pte1(pmap, far));
6523			if (!pte1_is_valid(pte1)) {
6524				panic("%s: missing L1 page entry (%p, %#x)",
6525				    __func__, pmap, far);
6526			}
6527		}
6528	}
6529#endif
6530	PMAP_UNLOCK(pmap);
6531	return (KERN_FAILURE);
6532}
6533
6534#if defined(PMAP_DEBUG)
6535/*
6536 *  Reusing of KVA used in pmap_zero_page function !!!
6537 */
6538static void
6539pmap_zero_page_check(vm_page_t m)
6540{
6541	pt2_entry_t *cmap2_pte2p;
6542	uint32_t *p, *end;
6543	struct pcpu *pc;
6544
6545	sched_pin();
6546	pc = get_pcpu();
6547	cmap2_pte2p = pc->pc_cmap2_pte2p;
6548	mtx_lock(&pc->pc_cmap_lock);
6549	if (pte2_load(cmap2_pte2p) != 0)
6550		panic("%s: CMAP2 busy", __func__);
6551	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6552	    vm_page_pte2_attr(m)));
6553	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6554	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6555		if (*p != 0)
6556			panic("%s: page %p not zero, va: %p", __func__, m,
6557			    pc->pc_cmap2_addr);
6558	pte2_clear(cmap2_pte2p);
6559	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6560	sched_unpin();
6561	mtx_unlock(&pc->pc_cmap_lock);
6562}
6563
6564int
6565pmap_pid_dump(int pid)
6566{
6567	pmap_t pmap;
6568	struct proc *p;
6569	int npte2 = 0;
6570	int i, j, index;
6571
6572	sx_slock(&allproc_lock);
6573	FOREACH_PROC_IN_SYSTEM(p) {
6574		if (p->p_pid != pid || p->p_vmspace == NULL)
6575			continue;
6576		index = 0;
6577		pmap = vmspace_pmap(p->p_vmspace);
6578		for (i = 0; i < NPTE1_IN_PT1; i++) {
6579			pt1_entry_t pte1;
6580			pt2_entry_t *pte2p, pte2;
6581			vm_offset_t base, va;
6582			vm_paddr_t pa;
6583			vm_page_t m;
6584
6585			base = i << PTE1_SHIFT;
6586			pte1 = pte1_load(&pmap->pm_pt1[i]);
6587
6588			if (pte1_is_section(pte1)) {
6589				/*
6590				 * QQQ: Do something here!
6591				 */
6592			} else if (pte1_is_link(pte1)) {
6593				for (j = 0; j < NPTE2_IN_PT2; j++) {
6594					va = base + (j << PAGE_SHIFT);
6595					if (va >= VM_MIN_KERNEL_ADDRESS) {
6596						if (index) {
6597							index = 0;
6598							printf("\n");
6599						}
6600						sx_sunlock(&allproc_lock);
6601						return (npte2);
6602					}
6603					pte2p = pmap_pte2(pmap, va);
6604					pte2 = pte2_load(pte2p);
6605					pmap_pte2_release(pte2p);
6606					if (!pte2_is_valid(pte2))
6607						continue;
6608
6609					pa = pte2_pa(pte2);
6610					m = PHYS_TO_VM_PAGE(pa);
6611					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6612					    " %d, f: 0x%x", va, pa,
6613					    m->hold_count, m->wire_count,
6614					    m->flags);
6615					npte2++;
6616					index++;
6617					if (index >= 2) {
6618						index = 0;
6619						printf("\n");
6620					} else {
6621						printf(" ");
6622					}
6623				}
6624			}
6625		}
6626	}
6627	sx_sunlock(&allproc_lock);
6628	return (npte2);
6629}
6630
6631#endif
6632
6633#ifdef DDB
6634static pt2_entry_t *
6635pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6636{
6637	pt1_entry_t pte1;
6638	vm_paddr_t pt2pg_pa;
6639
6640	pte1 = pte1_load(pmap_pte1(pmap, va));
6641	if (!pte1_is_link(pte1))
6642		return (NULL);
6643
6644	if (pmap_is_current(pmap))
6645		return (pt2map_entry(va));
6646
6647	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6648	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6649	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6650		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6651#ifdef SMP
6652		PMAP3cpu = PCPU_GET(cpuid);
6653#endif
6654		tlb_flush_local((vm_offset_t)PADDR3);
6655	}
6656#ifdef SMP
6657	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6658		PMAP3cpu = PCPU_GET(cpuid);
6659		tlb_flush_local((vm_offset_t)PADDR3);
6660	}
6661#endif
6662	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6663}
6664
6665static void
6666dump_pmap(pmap_t pmap)
6667{
6668
6669	printf("pmap %p\n", pmap);
6670	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6671	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6672	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6673}
6674
6675DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6676{
6677
6678	pmap_t pmap;
6679	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6680		dump_pmap(pmap);
6681	}
6682}
6683
6684static int
6685pte2_class(pt2_entry_t pte2)
6686{
6687	int cls;
6688
6689	cls = (pte2 >> 2) & 0x03;
6690	cls |= (pte2 >> 4) & 0x04;
6691	return (cls);
6692}
6693
6694static void
6695dump_section(pmap_t pmap, uint32_t pte1_idx)
6696{
6697}
6698
6699static void
6700dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6701{
6702	uint32_t i;
6703	vm_offset_t va;
6704	pt2_entry_t *pte2p, pte2;
6705	vm_page_t m;
6706
6707	va = pte1_idx << PTE1_SHIFT;
6708	pte2p = pmap_pte2_ddb(pmap, va);
6709	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6710		pte2 = pte2_load(pte2p);
6711		if (pte2 == 0)
6712			continue;
6713		if (!pte2_is_valid(pte2)) {
6714			printf(" 0x%08X: 0x%08X", va, pte2);
6715			if (!invalid_ok)
6716				printf(" - not valid !!!");
6717			printf("\n");
6718			continue;
6719		}
6720		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6721		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6722		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6723		if (m != NULL) {
6724			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6725			    m->hold_count, m->wire_count, m->flags);
6726		} else {
6727			printf("\n");
6728		}
6729	}
6730}
6731
6732static __inline boolean_t
6733is_pv_chunk_space(vm_offset_t va)
6734{
6735
6736	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6737	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6738		return (TRUE);
6739	return (FALSE);
6740}
6741
6742DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6743{
6744	/* XXX convert args. */
6745	pmap_t pmap = (pmap_t)addr;
6746	pt1_entry_t pte1;
6747	pt2_entry_t pte2;
6748	vm_offset_t va, eva;
6749	vm_page_t m;
6750	uint32_t i;
6751	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6752
6753	if (have_addr) {
6754		pmap_t pm;
6755
6756		LIST_FOREACH(pm, &allpmaps, pm_list)
6757			if (pm == pmap) break;
6758		if (pm == NULL) {
6759			printf("given pmap %p is not in allpmaps list\n", pmap);
6760			return;
6761		}
6762	} else
6763		pmap = PCPU_GET(curpmap);
6764
6765	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6766	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6767
6768	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6769	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6770	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6771
6772	for(i = 0; i < NPTE1_IN_PT1; i++) {
6773		pte1 = pte1_load(&pmap->pm_pt1[i]);
6774		if (pte1 == 0)
6775			continue;
6776		va = i << PTE1_SHIFT;
6777		if (va >= eva)
6778			break;
6779
6780		if (pte1_is_section(pte1)) {
6781			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6782			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6783			dump_section(pmap, i);
6784		} else if (pte1_is_link(pte1)) {
6785			dump_link_ok = TRUE;
6786			invalid_ok = FALSE;
6787			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6788			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6789			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6790			    va, pte1, pte2, m);
6791			if (is_pv_chunk_space(va)) {
6792				printf(" - pv_chunk space");
6793				if (dump_pv_chunk)
6794					invalid_ok = TRUE;
6795				else
6796					dump_link_ok = FALSE;
6797			}
6798			else if (m != NULL)
6799				printf(" w:%d w2:%u", m->wire_count,
6800				    pt2_wirecount_get(m, pte1_index(va)));
6801			if (pte2 == 0)
6802				printf(" !!! pt2tab entry is ZERO");
6803			else if (pte2_pa(pte1) != pte2_pa(pte2))
6804				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6805				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6806			printf("\n");
6807			if (dump_link_ok)
6808				dump_link(pmap, i, invalid_ok);
6809		} else
6810			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6811	}
6812}
6813
6814static void
6815dump_pt2tab(pmap_t pmap)
6816{
6817	uint32_t i;
6818	pt2_entry_t pte2;
6819	vm_offset_t va;
6820	vm_paddr_t pa;
6821	vm_page_t m;
6822
6823	printf("PT2TAB:\n");
6824	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6825		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6826		if (!pte2_is_valid(pte2))
6827			continue;
6828		va = i << PT2TAB_SHIFT;
6829		pa = pte2_pa(pte2);
6830		m = PHYS_TO_VM_PAGE(pa);
6831		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6832		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6833		if (m != NULL)
6834			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6835			    m->hold_count, m->wire_count, m->flags, m->pindex);
6836		printf("\n");
6837	}
6838}
6839
6840DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6841{
6842	/* XXX convert args. */
6843	pmap_t pmap = (pmap_t)addr;
6844	pt1_entry_t pte1;
6845	pt2_entry_t pte2;
6846	vm_offset_t va;
6847	uint32_t i, start;
6848
6849	if (have_addr) {
6850		printf("supported only on current pmap\n");
6851		return;
6852	}
6853
6854	pmap = PCPU_GET(curpmap);
6855	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6856	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6857	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6858
6859	start = pte1_index((vm_offset_t)PT2MAP);
6860	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6861		pte1 = pte1_load(&pmap->pm_pt1[i]);
6862		if (pte1 == 0)
6863			continue;
6864		va = i << PTE1_SHIFT;
6865		if (pte1_is_section(pte1)) {
6866			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6867			    !!(pte1 & PTE1_S));
6868			dump_section(pmap, i);
6869		} else if (pte1_is_link(pte1)) {
6870			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6871			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6872			    pte1, pte2);
6873			if (pte2 == 0)
6874				printf("  !!! pt2tab entry is ZERO\n");
6875		} else
6876			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6877	}
6878	dump_pt2tab(pmap);
6879}
6880#endif
6881