pmap-v6.c revision 314296
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
6 * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
7 * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department and William Jolitz of UUNET Technologies Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
39 */
40/*-
41 * Copyright (c) 2003 Networks Associates Technology, Inc.
42 * All rights reserved.
43 *
44 * This software was developed for the FreeBSD Project by Jake Burkholder,
45 * Safeport Network Services, and Network Associates Laboratories, the
46 * Security Research Division of Network Associates, Inc. under
47 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48 * CHATS research program.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 *    notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 *    notice, this list of conditions and the following disclaimer in the
57 *    documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72#include <sys/cdefs.h>
73__FBSDID("$FreeBSD: stable/11/sys/arm/arm/pmap-v6.c 314296 2017-02-26 10:53:02Z kib $");
74
75/*
76 *	Manages physical address maps.
77 *
78 *	Since the information managed by this module is
79 *	also stored by the logical address mapping module,
80 *	this module may throw away valid virtual-to-physical
81 *	mappings at almost any time.  However, invalidations
82 *	of virtual-to-physical mappings must be done as
83 *	requested.
84 *
85 *	In order to cope with hardware architectures which
86 *	make virtual-to-physical map invalidates expensive,
87 *	this module may delay invalidate or reduced protection
88 *	operations until such time as they are actually
89 *	necessary.  This module is given full information as
90 *	to which processors are currently using which maps,
91 *	and to when physical maps must be made correct.
92 */
93
94#include "opt_vm.h"
95#include "opt_pmap.h"
96#include "opt_ddb.h"
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#include <sys/kernel.h>
101#include <sys/ktr.h>
102#include <sys/lock.h>
103#include <sys/proc.h>
104#include <sys/rwlock.h>
105#include <sys/malloc.h>
106#include <sys/vmmeter.h>
107#include <sys/malloc.h>
108#include <sys/mman.h>
109#include <sys/sf_buf.h>
110#include <sys/smp.h>
111#include <sys/sched.h>
112#include <sys/sysctl.h>
113
114#ifdef DDB
115#include <ddb/ddb.h>
116#endif
117
118#include <machine/physmem.h>
119
120#include <vm/vm.h>
121#include <vm/uma.h>
122#include <vm/pmap.h>
123#include <vm/vm_param.h>
124#include <vm/vm_kern.h>
125#include <vm/vm_object.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/vm_pageout.h>
129#include <vm/vm_phys.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_reserv.h>
132#include <sys/lock.h>
133#include <sys/mutex.h>
134
135#include <machine/md_var.h>
136#include <machine/pmap_var.h>
137#include <machine/cpu.h>
138#include <machine/pcb.h>
139#include <machine/sf_buf.h>
140#ifdef SMP
141#include <machine/smp.h>
142#endif
143
144#ifndef PMAP_SHPGPERPROC
145#define PMAP_SHPGPERPROC 200
146#endif
147
148#ifndef DIAGNOSTIC
149#define PMAP_INLINE	__inline
150#else
151#define PMAP_INLINE
152#endif
153
154#ifdef PMAP_DEBUG
155static void pmap_zero_page_check(vm_page_t m);
156void pmap_debug(int level);
157int pmap_pid_dump(int pid);
158
159#define PDEBUG(_lev_,_stat_) \
160	if (pmap_debug_level >= (_lev_)) \
161		((_stat_))
162#define dprintf printf
163int pmap_debug_level = 1;
164#else   /* PMAP_DEBUG */
165#define PDEBUG(_lev_,_stat_) /* Nothing */
166#define dprintf(x, arg...)
167#endif  /* PMAP_DEBUG */
168
169/*
170 *  Level 2 page tables map definion ('max' is excluded).
171 */
172
173#define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
174#define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
175
176#define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
177#define UPT2V_MAX_ADDRESS \
178    ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
179
180/*
181 *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
182 *  4KB (PTE2) page mappings have identical settings for the following fields:
183 */
184#define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
185			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
186			 PTE2_ATTR_MASK)
187
188#define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
189			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
190			 PTE1_ATTR_MASK)
191
192#define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
193				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
194				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
195				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
196				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
197				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
198				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
199				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
200				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
201				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
202				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
203
204#define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
205				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
206				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
207				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
208				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
209				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
210				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
211				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
212				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
213				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
214				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
215
216/*
217 *  PTE2 descriptors creation macros.
218 */
219#define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
220#define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
221
222#define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223#define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224
225#define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
226#define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
227
228#define PV_STATS
229#ifdef PV_STATS
230#define PV_STAT(x)	do { x ; } while (0)
231#else
232#define PV_STAT(x)	do { } while (0)
233#endif
234
235/*
236 *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
237 *  We can init many things with no memory allocation thanks to its static
238 *  allocation and this brings two main advantages:
239 *  (1) other cores can be started very simply,
240 *  (2) various boot loaders can be supported as its arguments can be processed
241 *      in virtual address space and can be moved to safe location before
242 *      first allocation happened.
243 *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
244 *  However, the table is uninitialized and so lays in bss. Therefore kernel
245 *  image size is not influenced.
246 *
247 *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
248 *       CPU suspend/resume game.
249 */
250extern pt1_entry_t boot_pt1[];
251
252vm_paddr_t base_pt1;
253pt1_entry_t *kern_pt1;
254pt2_entry_t *kern_pt2tab;
255pt2_entry_t *PT2MAP;
256
257static uint32_t ttb_flags;
258static vm_memattr_t pt_memattr;
259ttb_entry_t pmap_kern_ttb;
260
261struct pmap kernel_pmap_store;
262LIST_HEAD(pmaplist, pmap);
263static struct pmaplist allpmaps;
264static struct mtx allpmaps_lock;
265
266vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
267vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
268
269static vm_offset_t kernel_vm_end_new;
270vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
271vm_offset_t vm_max_kernel_address;
272vm_paddr_t kernel_l1pa;
273
274static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
275
276/*
277 *  Data for the pv entry allocation mechanism
278 */
279static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
281static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
282static int shpgperproc = PMAP_SHPGPERPROC;
283
284struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
285int pv_maxchunks;			/* How many chunks we have KVA for */
286vm_offset_t pv_vafree;			/* freelist stored in the PTE */
287
288vm_paddr_t first_managed_pa;
289#define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
290
291/*
292 *  All those kernel PT submaps that BSD is so fond of
293 */
294static pt2_entry_t *CMAP3;
295static caddr_t CADDR3;
296caddr_t _tmppt = 0;
297
298struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
299
300/*
301 *  Crashdump maps.
302 */
303static caddr_t crashdumpmap;
304
305static pt2_entry_t *PMAP1 = NULL, *PMAP2;
306static pt2_entry_t *PADDR1 = NULL, *PADDR2;
307#ifdef DDB
308static pt2_entry_t *PMAP3;
309static pt2_entry_t *PADDR3;
310static int PMAP3cpu __unused; /* for SMP only */
311#endif
312#ifdef SMP
313static int PMAP1cpu;
314static int PMAP1changedcpu;
315SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
316    &PMAP1changedcpu, 0,
317    "Number of times pmap_pte2_quick changed CPU with same PMAP1");
318#endif
319static int PMAP1changed;
320SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
321    &PMAP1changed, 0,
322    "Number of times pmap_pte2_quick changed PMAP1");
323static int PMAP1unchanged;
324SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
325    &PMAP1unchanged, 0,
326    "Number of times pmap_pte2_quick didn't change PMAP1");
327static struct mtx PMAP2mutex;
328
329static __inline void pt2_wirecount_init(vm_page_t m);
330static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
331    vm_offset_t va);
332void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
333
334/*
335 *  Function to set the debug level of the pmap code.
336 */
337#ifdef PMAP_DEBUG
338void
339pmap_debug(int level)
340{
341
342	pmap_debug_level = level;
343	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
344}
345#endif /* PMAP_DEBUG */
346
347/*
348 *  This table must corespond with memory attribute configuration in vm.h.
349 *  First entry is used for normal system mapping.
350 *
351 *  Device memory is always marked as shared.
352 *  Normal memory is shared only in SMP .
353 *  Not outer shareable bits are not used yet.
354 *  Class 6 cannot be used on ARM11.
355 */
356#define TEXDEF_TYPE_SHIFT	0
357#define TEXDEF_TYPE_MASK	0x3
358#define TEXDEF_INNER_SHIFT	2
359#define TEXDEF_INNER_MASK	0x3
360#define TEXDEF_OUTER_SHIFT	4
361#define TEXDEF_OUTER_MASK	0x3
362#define TEXDEF_NOS_SHIFT	6
363#define TEXDEF_NOS_MASK		0x1
364
365#define TEX(t, i, o, s) 			\
366		((t) << TEXDEF_TYPE_SHIFT) |	\
367		((i) << TEXDEF_INNER_SHIFT) |	\
368		((o) << TEXDEF_OUTER_SHIFT | 	\
369		((s) << TEXDEF_NOS_SHIFT))
370
371static uint32_t tex_class[8] = {
372/*	    type      inner cache outer cache */
373	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
374	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
375	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
376	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
377	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
378	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
379	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
380	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
381};
382#undef TEX
383
384static uint32_t pte2_attr_tab[8] = {
385	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
386	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
387	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
388	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
389	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
390	0,			/* 5 - NOT USED YET */
391	0,			/* 6 - NOT USED YET */
392	0			/* 7 - NOT USED YET */
393};
394CTASSERT(VM_MEMATTR_WB_WA == 0);
395CTASSERT(VM_MEMATTR_NOCACHE == 1);
396CTASSERT(VM_MEMATTR_DEVICE == 2);
397CTASSERT(VM_MEMATTR_SO == 3);
398CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
399
400static inline uint32_t
401vm_memattr_to_pte2(vm_memattr_t ma)
402{
403
404	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
405	return (pte2_attr_tab[(u_int)ma]);
406}
407
408static inline uint32_t
409vm_page_pte2_attr(vm_page_t m)
410{
411
412	return (vm_memattr_to_pte2(m->md.pat_mode));
413}
414
415/*
416 * Convert TEX definition entry to TTB flags.
417 */
418static uint32_t
419encode_ttb_flags(int idx)
420{
421	uint32_t inner, outer, nos, reg;
422
423	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
424		TEXDEF_INNER_MASK;
425	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
426		TEXDEF_OUTER_MASK;
427	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
428		TEXDEF_NOS_MASK;
429
430	reg = nos << 5;
431	reg |= outer << 3;
432	if (cpuinfo.coherent_walk)
433		reg |= (inner & 0x1) << 6;
434	reg |= (inner & 0x2) >> 1;
435#ifdef SMP
436	reg |= 1 << 1;
437#endif
438	return reg;
439}
440
441/*
442 *  Set TEX remapping registers in current CPU.
443 */
444void
445pmap_set_tex(void)
446{
447	uint32_t prrr, nmrr;
448	uint32_t type, inner, outer, nos;
449	int i;
450
451#ifdef PMAP_PTE_NOCACHE
452	/* XXX fixme */
453	if (cpuinfo.coherent_walk) {
454		pt_memattr = VM_MEMATTR_WB_WA;
455		ttb_flags = encode_ttb_flags(0);
456	}
457	else {
458		pt_memattr = VM_MEMATTR_NOCACHE;
459		ttb_flags = encode_ttb_flags(1);
460	}
461#else
462	pt_memattr = VM_MEMATTR_WB_WA;
463	ttb_flags = encode_ttb_flags(0);
464#endif
465
466	prrr = 0;
467	nmrr = 0;
468
469	/* Build remapping register from TEX classes. */
470	for (i = 0; i < 8; i++) {
471		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
472			TEXDEF_TYPE_MASK;
473		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
474			TEXDEF_INNER_MASK;
475		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
476			TEXDEF_OUTER_MASK;
477		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
478			TEXDEF_NOS_MASK;
479
480		prrr |= type  << (i * 2);
481		prrr |= nos   << (i + 24);
482		nmrr |= inner << (i * 2);
483		nmrr |= outer << (i * 2 + 16);
484	}
485	/* Add shareable bits for device memory. */
486	prrr |= PRRR_DS0 | PRRR_DS1;
487
488	/* Add shareable bits for normal memory in SMP case. */
489#ifdef SMP
490	prrr |= PRRR_NS1;
491#endif
492	cp15_prrr_set(prrr);
493	cp15_nmrr_set(nmrr);
494
495	/* Caches are disabled, so full TLB flush should be enough. */
496	tlb_flush_all_local();
497}
498
499/*
500 * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
501 * KERNBASE is mapped by first L2 page table in L2 page table page. It
502 * meets same constrain due to PT2MAP being placed just under KERNBASE.
503 */
504CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
505CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
506
507/*
508 *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
509 *  For now, anyhow, the following check must be fulfilled.
510 */
511CTASSERT(PAGE_SIZE == PTE2_SIZE);
512/*
513 *  We don't want to mess up MI code with all MMU and PMAP definitions,
514 *  so some things, which depend on other ones, are defined independently.
515 *  Now, it is time to check that we don't screw up something.
516 */
517CTASSERT(PDRSHIFT == PTE1_SHIFT);
518/*
519 *  Check L1 and L2 page table entries definitions consistency.
520 */
521CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
522CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
523/*
524 *  Check L2 page tables page consistency.
525 */
526CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
527CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
528/*
529 *  Check PT2TAB consistency.
530 *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
531 *  This should be done without remainder.
532 */
533CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
534
535/*
536 *	A PT2MAP magic.
537 *
538 *  All level 2 page tables (PT2s) are mapped continuously and accordingly
539 *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
540 *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
541 *  must be used together, but not necessary at once. The first PT2 in a page
542 *  must map things on correctly aligned address and the others must follow
543 *  in right order.
544 */
545#define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
546#define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
547#define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
548
549/*
550 *  Check PT2TAB consistency.
551 *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
552 *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
553 *  The both should be done without remainder.
554 */
555CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
556CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
557/*
558 *  The implementation was made general, however, with the assumption
559 *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
560 *  the code should be once more rechecked.
561 */
562CTASSERT(NPG_IN_PT2TAB == 1);
563
564/*
565 *  Get offset of PT2 in a page
566 *  associated with given PT1 index.
567 */
568static __inline u_int
569page_pt2off(u_int pt1_idx)
570{
571
572	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
573}
574
575/*
576 *  Get physical address of PT2
577 *  associated with given PT2s page and PT1 index.
578 */
579static __inline vm_paddr_t
580page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
581{
582
583	return (pgpa + page_pt2off(pt1_idx));
584}
585
586/*
587 *  Get first entry of PT2
588 *  associated with given PT2s page and PT1 index.
589 */
590static __inline pt2_entry_t *
591page_pt2(vm_offset_t pgva, u_int pt1_idx)
592{
593
594	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
595}
596
597/*
598 *  Get virtual address of PT2s page (mapped in PT2MAP)
599 *  which holds PT2 which holds entry which maps given virtual address.
600 */
601static __inline vm_offset_t
602pt2map_pt2pg(vm_offset_t va)
603{
604
605	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
606	return ((vm_offset_t)pt2map_entry(va));
607}
608
609/*****************************************************************************
610 *
611 *     THREE pmap initialization milestones exist:
612 *
613 *  locore.S
614 *    -> fundamental init (including MMU) in ASM
615 *
616 *  initarm()
617 *    -> fundamental init continues in C
618 *    -> first available physical address is known
619 *
620 *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
621 *      -> basic (safe) interface for physical address allocation is made
622 *      -> basic (safe) interface for virtual mapping is made
623 *      -> limited not SMP coherent work is possible
624 *
625 *    -> more fundamental init continues in C
626 *    -> locks and some more things are available
627 *    -> all fundamental allocations and mappings are done
628 *
629 *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
630 *      -> phys_avail[] and virtual_avail is set
631 *      -> control is passed to vm subsystem
632 *      -> physical and virtual address allocation are off limit
633 *      -> low level mapping functions, some SMP coherent,
634 *         are available, which cannot be used before vm subsystem
635 *         is being inited
636 *
637 *  mi_startup()
638 *    -> vm subsystem is being inited
639 *
640 *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
641 *        -> pmap is fully inited
642 *
643 *****************************************************************************/
644
645/*****************************************************************************
646 *
647 *	PMAP first stage initialization and utility functions
648 *	for pre-bootstrap epoch.
649 *
650 *  After pmap_bootstrap_prepare() is called, the following functions
651 *  can be used:
652 *
653 *  (1) strictly only for this stage functions for physical page allocations,
654 *      virtual space allocations, and mappings:
655 *
656 *  vm_paddr_t pmap_preboot_get_pages(u_int num);
657 *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
658 *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
659 *  vm_offset_t pmap_preboot_get_vpages(u_int num);
660 *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
661 *      vm_prot_t prot, vm_memattr_t attr);
662 *
663 *  (2) for all stages:
664 *
665 *  vm_paddr_t pmap_kextract(vm_offset_t va);
666 *
667 *  NOTE: This is not SMP coherent stage.
668 *
669 *****************************************************************************/
670
671#define KERNEL_P2V(pa) \
672    ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
673#define KERNEL_V2P(va) \
674    ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
675
676static vm_paddr_t last_paddr;
677
678/*
679 *  Pre-bootstrap epoch page allocator.
680 */
681vm_paddr_t
682pmap_preboot_get_pages(u_int num)
683{
684	vm_paddr_t ret;
685
686	ret = last_paddr;
687	last_paddr += num * PAGE_SIZE;
688
689	return (ret);
690}
691
692/*
693 *	The fundamental initialization of PMAP stuff.
694 *
695 *  Some things already happened in locore.S and some things could happen
696 *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
697 *  1. Caches are disabled.
698 *  2. We are running on virtual addresses already with 'boot_pt1'
699 *     as L1 page table.
700 *  3. So far, all virtual addresses can be converted to physical ones and
701 *     vice versa by the following macros:
702 *       KERNEL_P2V(pa) .... physical to virtual ones,
703 *       KERNEL_V2P(va) .... virtual to physical ones.
704 *
705 *  What is done herein:
706 *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
707 *  2. PT2MAP magic is brought to live.
708 *  3. Basic preboot functions for page allocations and mappings can be used.
709 *  4. Everything is prepared for L1 cache enabling.
710 *
711 *  Variations:
712 *  1. To use second TTB register, so kernel and users page tables will be
713 *     separated. This way process forking - pmap_pinit() - could be faster,
714 *     it saves physical pages and KVA per a process, and it's simple change.
715 *     However, it will lead, due to hardware matter, to the following:
716 *     (a) 2G space for kernel and 2G space for users.
717 *     (b) 1G space for kernel in low addresses and 3G for users above it.
718 *     A question is: Is the case (b) really an option? Note that case (b)
719 *     does save neither physical memory and KVA.
720 */
721void
722pmap_bootstrap_prepare(vm_paddr_t last)
723{
724	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
725	vm_offset_t pt2pg_va;
726	pt1_entry_t *pte1p;
727	pt2_entry_t *pte2p;
728	u_int i;
729	uint32_t actlr_mask, actlr_set, l1_attr;
730
731	/*
732	 * Now, we are going to make real kernel mapping. Note that we are
733	 * already running on some mapping made in locore.S and we expect
734	 * that it's large enough to ensure nofault access to physical memory
735	 * allocated herein before switch.
736	 *
737	 * As kernel image and everything needed before are and will be mapped
738	 * by section mappings, we align last physical address to PTE1_SIZE.
739	 */
740	last_paddr = pte1_roundup(last);
741
742	/*
743	 * Allocate and zero page(s) for kernel L1 page table.
744	 *
745	 * Note that it's first allocation on space which was PTE1_SIZE
746	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
747	 */
748	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
749	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
750	bzero((void*)kern_pt1, NB_IN_PT1);
751	pte1_sync_range(kern_pt1, NB_IN_PT1);
752
753	/* Allocate and zero page(s) for kernel PT2TAB. */
754	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
755	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
756	bzero(kern_pt2tab, NB_IN_PT2TAB);
757	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
758
759	/* Allocate and zero page(s) for kernel L2 page tables. */
760	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
761	pt2pg_va = KERNEL_P2V(pt2pg_pa);
762	size = NKPT2PG * PAGE_SIZE;
763	bzero((void*)pt2pg_va, size);
764	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
765
766	/*
767	 * Add a physical memory segment (vm_phys_seg) corresponding to the
768	 * preallocated pages for kernel L2 page tables so that vm_page
769	 * structures representing these pages will be created. The vm_page
770	 * structures are required for promotion of the corresponding kernel
771	 * virtual addresses to section mappings.
772	 */
773	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
774
775	/*
776	 * Insert allocated L2 page table pages to PT2TAB and make
777	 * link to all PT2s in L1 page table. See how kernel_vm_end
778	 * is initialized.
779	 *
780	 * We play simple and safe. So every KVA will have underlaying
781	 * L2 page table, even kernel image mapped by sections.
782	 */
783	pte2p = kern_pt2tab_entry(KERNBASE);
784	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
785		pt2tab_store(pte2p++, PTE2_KPT(pa));
786
787	pte1p = kern_pte1(KERNBASE);
788	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
789		pte1_store(pte1p++, PTE1_LINK(pa));
790
791	/* Make section mappings for kernel. */
792	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
793	pte1p = kern_pte1(KERNBASE);
794	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
795		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
796
797	/*
798	 * Get free and aligned space for PT2MAP and make L1 page table links
799	 * to L2 page tables held in PT2TAB.
800	 *
801	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
802	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
803	 * each entry in PT2TAB maps all PT2s in a page. This implies that
804	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
805	 */
806	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
807	pte1p = kern_pte1((vm_offset_t)PT2MAP);
808	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
809		pte1_store(pte1p++, PTE1_LINK(pa));
810	}
811
812	/*
813	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
814	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
815	 */
816	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
817	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
818		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
819	}
820
821	/*
822	 * Choose correct L2 page table and make mappings for allocations
823	 * made herein which replaces temporary locore.S mappings after a while.
824	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
825	 *
826	 * Note, that these allocations started aligned on 1M section and
827	 * kernel PT1 was allocated first. Making of mappings must follow
828	 * order of physical allocations as we've used KERNEL_P2V() macro
829	 * for virtual addresses resolution.
830	 */
831	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
832	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
833
834	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
835
836	/* Make mapping for kernel L1 page table. */
837	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
838		pte2_store(pte2p++, PTE2_KPT(pa));
839
840	/* Make mapping for kernel PT2TAB. */
841	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
842		pte2_store(pte2p++, PTE2_KPT(pa));
843
844	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
845	pmap_kern_ttb = base_pt1 | ttb_flags;
846	cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
847	reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
848	/*
849	 * Initialize the first available KVA. As kernel image is mapped by
850	 * sections, we are leaving some gap behind.
851	 */
852	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
853}
854
855/*
856 *  Setup L2 page table page for given KVA.
857 *  Used in pre-bootstrap epoch.
858 *
859 *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
860 *  and used them for mapping KVA starting from KERNBASE. However, this is not
861 *  enough. Vectors and devices need L2 page tables too. Note that they are
862 *  even above VM_MAX_KERNEL_ADDRESS.
863 */
864static __inline vm_paddr_t
865pmap_preboot_pt2pg_setup(vm_offset_t va)
866{
867	pt2_entry_t *pte2p, pte2;
868	vm_paddr_t pt2pg_pa;
869
870	/* Get associated entry in PT2TAB. */
871	pte2p = kern_pt2tab_entry(va);
872
873	/* Just return, if PT2s page exists already. */
874	pte2 = pt2tab_load(pte2p);
875	if (pte2_is_valid(pte2))
876		return (pte2_pa(pte2));
877
878	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
879	    ("%s: NKPT2PG too small", __func__));
880
881	/*
882	 * Allocate page for PT2s and insert it to PT2TAB.
883	 * In other words, map it into PT2MAP space.
884	 */
885	pt2pg_pa = pmap_preboot_get_pages(1);
886	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
887
888	/* Zero all PT2s in allocated page. */
889	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
890	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
891
892	return (pt2pg_pa);
893}
894
895/*
896 *  Setup L2 page table for given KVA.
897 *  Used in pre-bootstrap epoch.
898 */
899static void
900pmap_preboot_pt2_setup(vm_offset_t va)
901{
902	pt1_entry_t *pte1p;
903	vm_paddr_t pt2pg_pa, pt2_pa;
904
905	/* Setup PT2's page. */
906	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
907	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
908
909	/* Insert PT2 to PT1. */
910	pte1p = kern_pte1(va);
911	pte1_store(pte1p, PTE1_LINK(pt2_pa));
912}
913
914/*
915 *  Get L2 page entry associated with given KVA.
916 *  Used in pre-bootstrap epoch.
917 */
918static __inline pt2_entry_t*
919pmap_preboot_vtopte2(vm_offset_t va)
920{
921	pt1_entry_t *pte1p;
922
923	/* Setup PT2 if needed. */
924	pte1p = kern_pte1(va);
925	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
926		pmap_preboot_pt2_setup(va);
927
928	return (pt2map_entry(va));
929}
930
931/*
932 *  Pre-bootstrap epoch page(s) mapping(s).
933 */
934void
935pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
936{
937	u_int i;
938	pt2_entry_t *pte2p;
939
940	/* Map all the pages. */
941	for (i = 0; i < num; i++) {
942		pte2p = pmap_preboot_vtopte2(va);
943		pte2_store(pte2p, PTE2_KRW(pa));
944		va += PAGE_SIZE;
945		pa += PAGE_SIZE;
946	}
947}
948
949/*
950 *  Pre-bootstrap epoch virtual space alocator.
951 */
952vm_offset_t
953pmap_preboot_reserve_pages(u_int num)
954{
955	u_int i;
956	vm_offset_t start, va;
957	pt2_entry_t *pte2p;
958
959	/* Allocate virtual space. */
960	start = va = virtual_avail;
961	virtual_avail += num * PAGE_SIZE;
962
963	/* Zero the mapping. */
964	for (i = 0; i < num; i++) {
965		pte2p = pmap_preboot_vtopte2(va);
966		pte2_store(pte2p, 0);
967		va += PAGE_SIZE;
968	}
969
970	return (start);
971}
972
973/*
974 *  Pre-bootstrap epoch page(s) allocation and mapping(s).
975 */
976vm_offset_t
977pmap_preboot_get_vpages(u_int num)
978{
979	vm_paddr_t  pa;
980	vm_offset_t va;
981
982	/* Allocate physical page(s). */
983	pa = pmap_preboot_get_pages(num);
984
985	/* Allocate virtual space. */
986	va = virtual_avail;
987	virtual_avail += num * PAGE_SIZE;
988
989	/* Map and zero all. */
990	pmap_preboot_map_pages(pa, va, num);
991	bzero((void *)va, num * PAGE_SIZE);
992
993	return (va);
994}
995
996/*
997 *  Pre-bootstrap epoch page mapping(s) with attributes.
998 */
999void
1000pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1001    vm_prot_t prot, vm_memattr_t attr)
1002{
1003	u_int num;
1004	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1005	pt1_entry_t *pte1p;
1006	pt2_entry_t *pte2p;
1007
1008	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1009	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1010	l2_attr = vm_memattr_to_pte2(attr);
1011	l1_prot = ATTR_TO_L1(l2_prot);
1012	l1_attr = ATTR_TO_L1(l2_attr);
1013
1014	/* Map all the pages. */
1015	num = round_page(size);
1016	while (num > 0) {
1017		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1018			pte1p = kern_pte1(va);
1019			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1020			va += PTE1_SIZE;
1021			pa += PTE1_SIZE;
1022			num -= PTE1_SIZE;
1023		} else {
1024			pte2p = pmap_preboot_vtopte2(va);
1025			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1026			va += PAGE_SIZE;
1027			pa += PAGE_SIZE;
1028			num -= PAGE_SIZE;
1029		}
1030	}
1031}
1032
1033/*
1034 *  Extract from the kernel page table the physical address
1035 *  that is mapped by the given virtual address "va".
1036 */
1037vm_paddr_t
1038pmap_kextract(vm_offset_t va)
1039{
1040	vm_paddr_t pa;
1041	pt1_entry_t pte1;
1042	pt2_entry_t pte2;
1043
1044	pte1 = pte1_load(kern_pte1(va));
1045	if (pte1_is_section(pte1)) {
1046		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1047	} else if (pte1_is_link(pte1)) {
1048		/*
1049		 * We should beware of concurrent promotion that changes
1050		 * pte1 at this point. However, it's not a problem as PT2
1051		 * page is preserved by promotion in PT2TAB. So even if
1052		 * it happens, using of PT2MAP is still safe.
1053		 *
1054		 * QQQ: However, concurrent removing is a problem which
1055		 *      ends in abort on PT2MAP space. Locking must be used
1056		 *      to deal with this.
1057		 */
1058		pte2 = pte2_load(pt2map_entry(va));
1059		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1060	}
1061	else {
1062		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1063	}
1064	return (pa);
1065}
1066
1067/*
1068 *  Extract from the kernel page table the physical address
1069 *  that is mapped by the given virtual address "va". Also
1070 *  return L2 page table entry which maps the address.
1071 *
1072 *  This is only intended to be used for panic dumps.
1073 */
1074vm_paddr_t
1075pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1076{
1077	vm_paddr_t pa;
1078	pt1_entry_t pte1;
1079	pt2_entry_t pte2;
1080
1081	pte1 = pte1_load(kern_pte1(va));
1082	if (pte1_is_section(pte1)) {
1083		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1084		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1085	} else if (pte1_is_link(pte1)) {
1086		pte2 = pte2_load(pt2map_entry(va));
1087		pa = pte2_pa(pte2);
1088	} else {
1089		pte2 = 0;
1090		pa = 0;
1091	}
1092	if (pte2p != NULL)
1093		*pte2p = pte2;
1094	return (pa);
1095}
1096
1097/*****************************************************************************
1098 *
1099 *	PMAP second stage initialization and utility functions
1100 *	for bootstrap epoch.
1101 *
1102 *  After pmap_bootstrap() is called, the following functions for
1103 *  mappings can be used:
1104 *
1105 *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1106 *  void pmap_kremove(vm_offset_t va);
1107 *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1108 *      int prot);
1109 *
1110 *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1111 *        allowed during this stage.
1112 *
1113 *****************************************************************************/
1114
1115/*
1116 *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1117 *  reserve various virtual spaces for temporary mappings.
1118 */
1119void
1120pmap_bootstrap(vm_offset_t firstaddr)
1121{
1122	pt2_entry_t *unused __unused;
1123	struct pcpu *pc;
1124
1125	/*
1126	 * Initialize the kernel pmap (which is statically allocated).
1127	 */
1128	PMAP_LOCK_INIT(kernel_pmap);
1129	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1130	kernel_pmap->pm_pt1 = kern_pt1;
1131	kernel_pmap->pm_pt2tab = kern_pt2tab;
1132	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1133	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1134
1135	/*
1136	 * Initialize the global pv list lock.
1137	 */
1138	rw_init(&pvh_global_lock, "pmap pv global");
1139
1140	LIST_INIT(&allpmaps);
1141
1142	/*
1143	 * Request a spin mutex so that changes to allpmaps cannot be
1144	 * preempted by smp_rendezvous_cpus().
1145	 */
1146	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1147	mtx_lock_spin(&allpmaps_lock);
1148	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1149	mtx_unlock_spin(&allpmaps_lock);
1150
1151	/*
1152	 * Reserve some special page table entries/VA space for temporary
1153	 * mapping of pages.
1154	 */
1155#define	SYSMAP(c, p, v, n)  do {		\
1156	v = (c)pmap_preboot_reserve_pages(n);	\
1157	p = pt2map_entry((vm_offset_t)v);	\
1158	} while (0)
1159
1160	/*
1161	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1162	 * Local CMAP2 is also used for data cache cleaning.
1163	 * Global CMAP3 is used for the idle process page zeroing.
1164	 */
1165	pc = get_pcpu();
1166	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1167	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1168	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1169	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1170	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
1171
1172	/*
1173	 * Crashdump maps.
1174	 */
1175	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1176
1177	/*
1178	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1179	 */
1180	SYSMAP(caddr_t, unused, _tmppt, 1);
1181
1182	/*
1183	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1184	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1185	 */
1186	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1187	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1188#ifdef DDB
1189	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1190#endif
1191	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1192
1193	/*
1194	 * Note that in very short time in initarm(), we are going to
1195	 * initialize phys_avail[] array and no further page allocation
1196	 * can happen after that until vm subsystem will be initialized.
1197	 */
1198	kernel_vm_end_new = kernel_vm_end;
1199	virtual_end = vm_max_kernel_address;
1200}
1201
1202static void
1203pmap_init_reserved_pages(void)
1204{
1205	struct pcpu *pc;
1206	vm_offset_t pages;
1207	int i;
1208
1209	CPU_FOREACH(i) {
1210		pc = pcpu_find(i);
1211		/*
1212		 * Skip if the mapping has already been initialized,
1213		 * i.e. this is the BSP.
1214		 */
1215		if (pc->pc_cmap1_addr != 0)
1216			continue;
1217		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1218		pages = kva_alloc(PAGE_SIZE * 3);
1219		if (pages == 0)
1220			panic("%s: unable to allocate KVA", __func__);
1221		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1222		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1223		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1224		pc->pc_cmap1_addr = (caddr_t)pages;
1225		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1226		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1227	}
1228}
1229SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1230
1231/*
1232 *  The function can already be use in second initialization stage.
1233 *  As such, the function DOES NOT call pmap_growkernel() where PT2
1234 *  allocation can happen. So if used, be sure that PT2 for given
1235 *  virtual address is allocated already!
1236 *
1237 *  Add a wired page to the kva.
1238 *  Note: not SMP coherent.
1239 */
1240static __inline void
1241pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1242    uint32_t attr)
1243{
1244	pt1_entry_t *pte1p;
1245	pt2_entry_t *pte2p;
1246
1247	pte1p = kern_pte1(va);
1248	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1249		/*
1250		 * This is a very low level function, so PT2 and particularly
1251		 * PT2PG associated with given virtual address must be already
1252		 * allocated. It's a pain mainly during pmap initialization
1253		 * stage. However, called after pmap initialization with
1254		 * virtual address not under kernel_vm_end will lead to
1255		 * the same misery.
1256		 */
1257		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1258			panic("%s: kernel PT2 not allocated!", __func__);
1259	}
1260
1261	pte2p = pt2map_entry(va);
1262	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1263}
1264
1265PMAP_INLINE void
1266pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1267{
1268
1269	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1270}
1271
1272/*
1273 *  Remove a page from the kernel pagetables.
1274 *  Note: not SMP coherent.
1275 */
1276PMAP_INLINE void
1277pmap_kremove(vm_offset_t va)
1278{
1279	pt2_entry_t *pte2p;
1280
1281	pte2p = pt2map_entry(va);
1282	pte2_clear(pte2p);
1283}
1284
1285/*
1286 *  Share new kernel PT2PG with all pmaps.
1287 *  The caller is responsible for maintaining TLB consistency.
1288 */
1289static void
1290pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1291{
1292	pmap_t pmap;
1293	pt2_entry_t *pte2p;
1294
1295	mtx_lock_spin(&allpmaps_lock);
1296	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1297		pte2p = pmap_pt2tab_entry(pmap, va);
1298		pt2tab_store(pte2p, npte2);
1299	}
1300	mtx_unlock_spin(&allpmaps_lock);
1301}
1302
1303/*
1304 *  Share new kernel PTE1 with all pmaps.
1305 *  The caller is responsible for maintaining TLB consistency.
1306 */
1307static void
1308pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1309{
1310	pmap_t pmap;
1311	pt1_entry_t *pte1p;
1312
1313	mtx_lock_spin(&allpmaps_lock);
1314	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1315		pte1p = pmap_pte1(pmap, va);
1316		pte1_store(pte1p, npte1);
1317	}
1318	mtx_unlock_spin(&allpmaps_lock);
1319}
1320
1321/*
1322 *  Used to map a range of physical addresses into kernel
1323 *  virtual address space.
1324 *
1325 *  The value passed in '*virt' is a suggested virtual address for
1326 *  the mapping. Architectures which can support a direct-mapped
1327 *  physical to virtual region can return the appropriate address
1328 *  within that region, leaving '*virt' unchanged. Other
1329 *  architectures should map the pages starting at '*virt' and
1330 *  update '*virt' with the first usable address after the mapped
1331 *  region.
1332 *
1333 *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1334 *        the function is used herein!
1335 */
1336vm_offset_t
1337pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1338{
1339	vm_offset_t va, sva;
1340	vm_paddr_t pte1_offset;
1341	pt1_entry_t npte1;
1342	uint32_t l1prot, l2prot;
1343	uint32_t l1attr, l2attr;
1344
1345	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1346	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1347
1348	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1349	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1350	l1prot = ATTR_TO_L1(l2prot);
1351
1352	l2attr = PTE2_ATTR_DEFAULT;
1353	l1attr = ATTR_TO_L1(l2attr);
1354
1355	va = *virt;
1356	/*
1357	 * Does the physical address range's size and alignment permit at
1358	 * least one section mapping to be created?
1359	 */
1360	pte1_offset = start & PTE1_OFFSET;
1361	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1362	    PTE1_SIZE) {
1363		/*
1364		 * Increase the starting virtual address so that its alignment
1365		 * does not preclude the use of section mappings.
1366		 */
1367		if ((va & PTE1_OFFSET) < pte1_offset)
1368			va = pte1_trunc(va) + pte1_offset;
1369		else if ((va & PTE1_OFFSET) > pte1_offset)
1370			va = pte1_roundup(va) + pte1_offset;
1371	}
1372	sva = va;
1373	while (start < end) {
1374		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1375			KASSERT((va & PTE1_OFFSET) == 0,
1376			    ("%s: misaligned va %#x", __func__, va));
1377			npte1 = PTE1_KERN(start, l1prot, l1attr);
1378			pmap_kenter_pte1(va, npte1);
1379			va += PTE1_SIZE;
1380			start += PTE1_SIZE;
1381		} else {
1382			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1383			va += PAGE_SIZE;
1384			start += PAGE_SIZE;
1385		}
1386	}
1387	tlb_flush_range(sva, va - sva);
1388	*virt = va;
1389	return (sva);
1390}
1391
1392/*
1393 *  Make a temporary mapping for a physical address.
1394 *  This is only intended to be used for panic dumps.
1395 */
1396void *
1397pmap_kenter_temporary(vm_paddr_t pa, int i)
1398{
1399	vm_offset_t va;
1400
1401	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1402
1403	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1404	pmap_kenter(va, pa);
1405	tlb_flush_local(va);
1406	return ((void *)crashdumpmap);
1407}
1408
1409
1410/*************************************
1411 *
1412 *  TLB & cache maintenance routines.
1413 *
1414 *************************************/
1415
1416/*
1417 *  We inline these within pmap.c for speed.
1418 */
1419PMAP_INLINE void
1420pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1421{
1422
1423	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1424		tlb_flush(va);
1425}
1426
1427PMAP_INLINE void
1428pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1429{
1430
1431	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1432		tlb_flush_range(sva, size);
1433}
1434
1435/*
1436 *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1437 *  Requirements:
1438 *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1439 *     are ever set, PTE2_V in particular.
1440 *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1441 *   - Assumes nothing will ever test these addresses for 0 to indicate
1442 *     no mapping instead of correctly checking PTE2_V.
1443 *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1444 *  Because PTE2_V is never set, there can be no mappings to invalidate.
1445 */
1446static vm_offset_t
1447pmap_pte2list_alloc(vm_offset_t *head)
1448{
1449	pt2_entry_t *pte2p;
1450	vm_offset_t va;
1451
1452	va = *head;
1453	if (va == 0)
1454		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1455	pte2p = pt2map_entry(va);
1456	*head = *pte2p;
1457	if (*head & PTE2_V)
1458		panic("%s: va with PTE2_V set!", __func__);
1459	*pte2p = 0;
1460	return (va);
1461}
1462
1463static void
1464pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1465{
1466	pt2_entry_t *pte2p;
1467
1468	if (va & PTE2_V)
1469		panic("%s: freeing va with PTE2_V set!", __func__);
1470	pte2p = pt2map_entry(va);
1471	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1472	*head = va;
1473}
1474
1475static void
1476pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1477{
1478	int i;
1479	vm_offset_t va;
1480
1481	*head = 0;
1482	for (i = npages - 1; i >= 0; i--) {
1483		va = (vm_offset_t)base + i * PAGE_SIZE;
1484		pmap_pte2list_free(head, va);
1485	}
1486}
1487
1488/*****************************************************************************
1489 *
1490 *	PMAP third and final stage initialization.
1491 *
1492 *  After pmap_init() is called, PMAP subsystem is fully initialized.
1493 *
1494 *****************************************************************************/
1495
1496SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1497
1498SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1499    "Max number of PV entries");
1500SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1501    "Page share factor per proc");
1502
1503static u_long nkpt2pg = NKPT2PG;
1504SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1505    &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1506
1507static int sp_enabled = 1;
1508SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1509    &sp_enabled, 0, "Are large page mappings enabled?");
1510
1511static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1512    "1MB page mapping counters");
1513
1514static u_long pmap_pte1_demotions;
1515SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1516    &pmap_pte1_demotions, 0, "1MB page demotions");
1517
1518static u_long pmap_pte1_mappings;
1519SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1520    &pmap_pte1_mappings, 0, "1MB page mappings");
1521
1522static u_long pmap_pte1_p_failures;
1523SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1524    &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1525
1526static u_long pmap_pte1_promotions;
1527SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1528    &pmap_pte1_promotions, 0, "1MB page promotions");
1529
1530static u_long pmap_pte1_kern_demotions;
1531SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1532    &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1533
1534static u_long pmap_pte1_kern_promotions;
1535SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1536    &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1537
1538static __inline ttb_entry_t
1539pmap_ttb_get(pmap_t pmap)
1540{
1541
1542	return (vtophys(pmap->pm_pt1) | ttb_flags);
1543}
1544
1545/*
1546 *  Initialize a vm_page's machine-dependent fields.
1547 *
1548 *  Variations:
1549 *  1. Pages for L2 page tables are always not managed. So, pv_list and
1550 *     pt2_wirecount can share same physical space. However, proper
1551 *     initialization on a page alloc for page tables and reinitialization
1552 *     on the page free must be ensured.
1553 */
1554void
1555pmap_page_init(vm_page_t m)
1556{
1557
1558	TAILQ_INIT(&m->md.pv_list);
1559	pt2_wirecount_init(m);
1560	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1561}
1562
1563/*
1564 *  Virtualization for faster way how to zero whole page.
1565 */
1566static __inline void
1567pagezero(void *page)
1568{
1569
1570	bzero(page, PAGE_SIZE);
1571}
1572
1573/*
1574 *  Zero L2 page table page.
1575 *  Use same KVA as in pmap_zero_page().
1576 */
1577static __inline vm_paddr_t
1578pmap_pt2pg_zero(vm_page_t m)
1579{
1580	pt2_entry_t *cmap2_pte2p;
1581	vm_paddr_t pa;
1582	struct pcpu *pc;
1583
1584	pa = VM_PAGE_TO_PHYS(m);
1585
1586	/*
1587	 * XXX: For now, we map whole page even if it's already zero,
1588	 *      to sync it even if the sync is only DSB.
1589	 */
1590	sched_pin();
1591	pc = get_pcpu();
1592	cmap2_pte2p = pc->pc_cmap2_pte2p;
1593	mtx_lock(&pc->pc_cmap_lock);
1594	if (pte2_load(cmap2_pte2p) != 0)
1595		panic("%s: CMAP2 busy", __func__);
1596	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1597	    vm_page_pte2_attr(m)));
1598	/*  Even VM_ALLOC_ZERO request is only advisory. */
1599	if ((m->flags & PG_ZERO) == 0)
1600		pagezero(pc->pc_cmap2_addr);
1601	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1602	pte2_clear(cmap2_pte2p);
1603	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1604
1605	/*
1606	 * Unpin the thread before releasing the lock.  Otherwise the thread
1607	 * could be rescheduled while still bound to the current CPU, only
1608	 * to unpin itself immediately upon resuming execution.
1609	 */
1610	sched_unpin();
1611	mtx_unlock(&pc->pc_cmap_lock);
1612
1613	return (pa);
1614}
1615
1616/*
1617 *  Init just allocated page as L2 page table(s) holder
1618 *  and return its physical address.
1619 */
1620static __inline vm_paddr_t
1621pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1622{
1623	vm_paddr_t pa;
1624	pt2_entry_t *pte2p;
1625
1626	/* Check page attributes. */
1627	if (m->md.pat_mode != pt_memattr)
1628		pmap_page_set_memattr(m, pt_memattr);
1629
1630	/* Zero page and init wire counts. */
1631	pa = pmap_pt2pg_zero(m);
1632	pt2_wirecount_init(m);
1633
1634	/*
1635	 * Map page to PT2MAP address space for given pmap.
1636	 * Note that PT2MAP space is shared with all pmaps.
1637	 */
1638	if (pmap == kernel_pmap)
1639		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1640	else {
1641		pte2p = pmap_pt2tab_entry(pmap, va);
1642		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1643	}
1644
1645	return (pa);
1646}
1647
1648/*
1649 *  Initialize the pmap module.
1650 *  Called by vm_init, to initialize any structures that the pmap
1651 *  system needs to map virtual memory.
1652 */
1653void
1654pmap_init(void)
1655{
1656	vm_size_t s;
1657	pt2_entry_t *pte2p, pte2;
1658	u_int i, pte1_idx, pv_npg;
1659
1660	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1661
1662	/*
1663	 * Initialize the vm page array entries for kernel pmap's
1664	 * L2 page table pages allocated in advance.
1665	 */
1666	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1667	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1668	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1669		vm_paddr_t pa;
1670		vm_page_t m;
1671
1672		pte2 = pte2_load(pte2p);
1673		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1674
1675		pa = pte2_pa(pte2);
1676		m = PHYS_TO_VM_PAGE(pa);
1677		KASSERT(m >= vm_page_array &&
1678		    m < &vm_page_array[vm_page_array_size],
1679		    ("%s: L2 page table page is out of range", __func__));
1680
1681		m->pindex = pte1_idx;
1682		m->phys_addr = pa;
1683		pte1_idx += NPT2_IN_PG;
1684	}
1685
1686	/*
1687	 * Initialize the address space (zone) for the pv entries.  Set a
1688	 * high water mark so that the system can recover from excessive
1689	 * numbers of pv entries.
1690	 */
1691	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1692	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1693	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1694	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1695	pv_entry_high_water = 9 * (pv_entry_max / 10);
1696
1697	/*
1698	 * Are large page mappings enabled?
1699	 */
1700	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1701	if (sp_enabled) {
1702		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1703		    ("%s: can't assign to pagesizes[1]", __func__));
1704		pagesizes[1] = PTE1_SIZE;
1705	}
1706
1707	/*
1708	 * Calculate the size of the pv head table for sections.
1709	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1710	 * Note that the table is only for sections which could be promoted.
1711	 */
1712	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1713	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1714	    - first_managed_pa) / PTE1_SIZE + 1;
1715
1716	/*
1717	 * Allocate memory for the pv head table for sections.
1718	 */
1719	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1720	s = round_page(s);
1721	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1722	    M_WAITOK | M_ZERO);
1723	for (i = 0; i < pv_npg; i++)
1724		TAILQ_INIT(&pv_table[i].pv_list);
1725
1726	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1727	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1728	if (pv_chunkbase == NULL)
1729		panic("%s: not enough kvm for pv chunks", __func__);
1730	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1731}
1732
1733/*
1734 *  Add a list of wired pages to the kva
1735 *  this routine is only used for temporary
1736 *  kernel mappings that do not need to have
1737 *  page modification or references recorded.
1738 *  Note that old mappings are simply written
1739 *  over.  The page *must* be wired.
1740 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1741 */
1742void
1743pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1744{
1745	u_int anychanged;
1746	pt2_entry_t *epte2p, *pte2p, pte2;
1747	vm_page_t m;
1748	vm_paddr_t pa;
1749
1750	anychanged = 0;
1751	pte2p = pt2map_entry(sva);
1752	epte2p = pte2p + count;
1753	while (pte2p < epte2p) {
1754		m = *ma++;
1755		pa = VM_PAGE_TO_PHYS(m);
1756		pte2 = pte2_load(pte2p);
1757		if ((pte2_pa(pte2) != pa) ||
1758		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1759			anychanged++;
1760			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1761			    vm_page_pte2_attr(m)));
1762		}
1763		pte2p++;
1764	}
1765	if (__predict_false(anychanged))
1766		tlb_flush_range(sva, count * PAGE_SIZE);
1767}
1768
1769/*
1770 *  This routine tears out page mappings from the
1771 *  kernel -- it is meant only for temporary mappings.
1772 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1773 */
1774void
1775pmap_qremove(vm_offset_t sva, int count)
1776{
1777	vm_offset_t va;
1778
1779	va = sva;
1780	while (count-- > 0) {
1781		pmap_kremove(va);
1782		va += PAGE_SIZE;
1783	}
1784	tlb_flush_range(sva, va - sva);
1785}
1786
1787/*
1788 *  Are we current address space or kernel?
1789 */
1790static __inline int
1791pmap_is_current(pmap_t pmap)
1792{
1793
1794	return (pmap == kernel_pmap ||
1795		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1796}
1797
1798/*
1799 *  If the given pmap is not the current or kernel pmap, the returned
1800 *  pte2 must be released by passing it to pmap_pte2_release().
1801 */
1802static pt2_entry_t *
1803pmap_pte2(pmap_t pmap, vm_offset_t va)
1804{
1805	pt1_entry_t pte1;
1806	vm_paddr_t pt2pg_pa;
1807
1808	pte1 = pte1_load(pmap_pte1(pmap, va));
1809	if (pte1_is_section(pte1))
1810		panic("%s: attempt to map PTE1", __func__);
1811	if (pte1_is_link(pte1)) {
1812		/* Are we current address space or kernel? */
1813		if (pmap_is_current(pmap))
1814			return (pt2map_entry(va));
1815		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1816		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1817		mtx_lock(&PMAP2mutex);
1818		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1819			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1820			tlb_flush((vm_offset_t)PADDR2);
1821		}
1822		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1823	}
1824	return (NULL);
1825}
1826
1827/*
1828 *  Releases a pte2 that was obtained from pmap_pte2().
1829 *  Be prepared for the pte2p being NULL.
1830 */
1831static __inline void
1832pmap_pte2_release(pt2_entry_t *pte2p)
1833{
1834
1835	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1836		mtx_unlock(&PMAP2mutex);
1837	}
1838}
1839
1840/*
1841 *  Super fast pmap_pte2 routine best used when scanning
1842 *  the pv lists.  This eliminates many coarse-grained
1843 *  invltlb calls.  Note that many of the pv list
1844 *  scans are across different pmaps.  It is very wasteful
1845 *  to do an entire tlb flush for checking a single mapping.
1846 *
1847 *  If the given pmap is not the current pmap, pvh_global_lock
1848 *  must be held and curthread pinned to a CPU.
1849 */
1850static pt2_entry_t *
1851pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1852{
1853	pt1_entry_t pte1;
1854	vm_paddr_t pt2pg_pa;
1855
1856	pte1 = pte1_load(pmap_pte1(pmap, va));
1857	if (pte1_is_section(pte1))
1858		panic("%s: attempt to map PTE1", __func__);
1859	if (pte1_is_link(pte1)) {
1860		/* Are we current address space or kernel? */
1861		if (pmap_is_current(pmap))
1862			return (pt2map_entry(va));
1863		rw_assert(&pvh_global_lock, RA_WLOCKED);
1864		KASSERT(curthread->td_pinned > 0,
1865		    ("%s: curthread not pinned", __func__));
1866		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1867		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1868		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1869			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1870#ifdef SMP
1871			PMAP1cpu = PCPU_GET(cpuid);
1872#endif
1873			tlb_flush_local((vm_offset_t)PADDR1);
1874			PMAP1changed++;
1875		} else
1876#ifdef SMP
1877		if (PMAP1cpu != PCPU_GET(cpuid)) {
1878			PMAP1cpu = PCPU_GET(cpuid);
1879			tlb_flush_local((vm_offset_t)PADDR1);
1880			PMAP1changedcpu++;
1881		} else
1882#endif
1883			PMAP1unchanged++;
1884		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1885	}
1886	return (NULL);
1887}
1888
1889/*
1890 *  Routine: pmap_extract
1891 *  Function:
1892 * 	Extract the physical page address associated
1893 *	with the given map/virtual_address pair.
1894 */
1895vm_paddr_t
1896pmap_extract(pmap_t pmap, vm_offset_t va)
1897{
1898	vm_paddr_t pa;
1899	pt1_entry_t pte1;
1900	pt2_entry_t *pte2p;
1901
1902	PMAP_LOCK(pmap);
1903	pte1 = pte1_load(pmap_pte1(pmap, va));
1904	if (pte1_is_section(pte1))
1905		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1906	else if (pte1_is_link(pte1)) {
1907		pte2p = pmap_pte2(pmap, va);
1908		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1909		pmap_pte2_release(pte2p);
1910	} else
1911		pa = 0;
1912	PMAP_UNLOCK(pmap);
1913	return (pa);
1914}
1915
1916/*
1917 *  Routine: pmap_extract_and_hold
1918 *  Function:
1919 *	Atomically extract and hold the physical page
1920 *	with the given pmap and virtual address pair
1921 *	if that mapping permits the given protection.
1922 */
1923vm_page_t
1924pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1925{
1926	vm_paddr_t pa, lockpa;
1927	pt1_entry_t pte1;
1928	pt2_entry_t pte2, *pte2p;
1929	vm_page_t m;
1930
1931	lockpa = 0;
1932	m = NULL;
1933	PMAP_LOCK(pmap);
1934retry:
1935	pte1 = pte1_load(pmap_pte1(pmap, va));
1936	if (pte1_is_section(pte1)) {
1937		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1938			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1939			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1940				goto retry;
1941			m = PHYS_TO_VM_PAGE(pa);
1942			vm_page_hold(m);
1943		}
1944	} else if (pte1_is_link(pte1)) {
1945		pte2p = pmap_pte2(pmap, va);
1946		pte2 = pte2_load(pte2p);
1947		pmap_pte2_release(pte2p);
1948		if (pte2_is_valid(pte2) &&
1949		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1950			pa = pte2_pa(pte2);
1951			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1952				goto retry;
1953			m = PHYS_TO_VM_PAGE(pa);
1954			vm_page_hold(m);
1955		}
1956	}
1957	PA_UNLOCK_COND(lockpa);
1958	PMAP_UNLOCK(pmap);
1959	return (m);
1960}
1961
1962/*
1963 *  Grow the number of kernel L2 page table entries, if needed.
1964 */
1965void
1966pmap_growkernel(vm_offset_t addr)
1967{
1968	vm_page_t m;
1969	vm_paddr_t pt2pg_pa, pt2_pa;
1970	pt1_entry_t pte1;
1971	pt2_entry_t pte2;
1972
1973	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
1974	/*
1975	 * All the time kernel_vm_end is first KVA for which underlying
1976	 * L2 page table is either not allocated or linked from L1 page table
1977	 * (not considering sections). Except for two possible cases:
1978	 *
1979	 *   (1) in the very beginning as long as pmap_growkernel() was
1980	 *       not called, it could be first unused KVA (which is not
1981	 *       rounded up to PTE1_SIZE),
1982	 *
1983	 *   (2) when all KVA space is mapped and kernel_map->max_offset
1984	 *       address is not rounded up to PTE1_SIZE. (For example,
1985	 *       it could be 0xFFFFFFFF.)
1986	 */
1987	kernel_vm_end = pte1_roundup(kernel_vm_end);
1988	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1989	addr = roundup2(addr, PTE1_SIZE);
1990	if (addr - 1 >= kernel_map->max_offset)
1991		addr = kernel_map->max_offset;
1992	while (kernel_vm_end < addr) {
1993		pte1 = pte1_load(kern_pte1(kernel_vm_end));
1994		if (pte1_is_valid(pte1)) {
1995			kernel_vm_end += PTE1_SIZE;
1996			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1997				kernel_vm_end = kernel_map->max_offset;
1998				break;
1999			}
2000			continue;
2001		}
2002
2003		/*
2004		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2005		 * mappings are entered to new pmap all at once to avoid race
2006		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2007		 * The same aplies to pmap_kenter_pt2tab().
2008		 */
2009		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2010
2011		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2012		if (!pte2_is_valid(pte2)) {
2013			/*
2014			 * Install new PT2s page into kernel PT2TAB.
2015			 */
2016			m = vm_page_alloc(NULL,
2017			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2018			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2019			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2020			if (m == NULL)
2021				panic("%s: no memory to grow kernel", __func__);
2022			/*
2023			 * QQQ: To link all new L2 page tables from L1 page
2024			 *      table now and so pmap_kenter_pte1() them
2025			 *      at once together with pmap_kenter_pt2tab()
2026			 *      could be nice speed up. However,
2027			 *      pmap_growkernel() does not happen so often...
2028			 * QQQ: The other TTBR is another option.
2029			 */
2030			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2031			    m);
2032		} else
2033			pt2pg_pa = pte2_pa(pte2);
2034
2035		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2036		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2037
2038		kernel_vm_end = kernel_vm_end_new;
2039		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2040			kernel_vm_end = kernel_map->max_offset;
2041			break;
2042		}
2043	}
2044}
2045
2046static int
2047kvm_size(SYSCTL_HANDLER_ARGS)
2048{
2049	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2050
2051	return (sysctl_handle_long(oidp, &ksize, 0, req));
2052}
2053SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2054    0, 0, kvm_size, "IU", "Size of KVM");
2055
2056static int
2057kvm_free(SYSCTL_HANDLER_ARGS)
2058{
2059	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2060
2061	return (sysctl_handle_long(oidp, &kfree, 0, req));
2062}
2063SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2064    0, 0, kvm_free, "IU", "Amount of KVM free");
2065
2066/***********************************************
2067 *
2068 *  Pmap allocation/deallocation routines.
2069 *
2070 ***********************************************/
2071
2072/*
2073 *  Initialize the pmap for the swapper process.
2074 */
2075void
2076pmap_pinit0(pmap_t pmap)
2077{
2078	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2079
2080	PMAP_LOCK_INIT(pmap);
2081
2082	/*
2083	 * Kernel page table directory and pmap stuff around is already
2084	 * initialized, we are using it right now and here. So, finish
2085	 * only PMAP structures initialization for process0 ...
2086	 *
2087	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2088	 * which is already included in the list "allpmaps", this pmap does
2089	 * not need to be inserted into that list.
2090	 */
2091	pmap->pm_pt1 = kern_pt1;
2092	pmap->pm_pt2tab = kern_pt2tab;
2093	CPU_ZERO(&pmap->pm_active);
2094	PCPU_SET(curpmap, pmap);
2095	TAILQ_INIT(&pmap->pm_pvchunk);
2096	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2097	CPU_SET(0, &pmap->pm_active);
2098}
2099
2100static __inline void
2101pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2102    vm_offset_t eva)
2103{
2104	u_int idx, count;
2105
2106	idx = pte1_index(sva);
2107	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2108	bcopy(spte1p + idx, dpte1p + idx, count);
2109}
2110
2111static __inline void
2112pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2113    vm_offset_t eva)
2114{
2115	u_int idx, count;
2116
2117	idx = pt2tab_index(sva);
2118	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2119	bcopy(spte2p + idx, dpte2p + idx, count);
2120}
2121
2122/*
2123 *  Initialize a preallocated and zeroed pmap structure,
2124 *  such as one in a vmspace structure.
2125 */
2126int
2127pmap_pinit(pmap_t pmap)
2128{
2129	pt1_entry_t *pte1p;
2130	pt2_entry_t *pte2p;
2131	vm_paddr_t pa, pt2tab_pa;
2132	u_int i;
2133
2134	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2135	    pmap->pm_pt1));
2136
2137	/*
2138	 * No need to allocate L2 page table space yet but we do need
2139	 * a valid L1 page table and PT2TAB table.
2140	 *
2141	 * Install shared kernel mappings to these tables. It's a little
2142	 * tricky as some parts of KVA are reserved for vectors, devices,
2143	 * and whatever else. These parts are supposed to be above
2144	 * vm_max_kernel_address. Thus two regions should be installed:
2145	 *
2146	 *   (1) <KERNBASE, kernel_vm_end),
2147	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2148	 *
2149	 * QQQ: The second region should be stable enough to be installed
2150	 *      only once in time when the tables are allocated.
2151	 * QQQ: Maybe copy of both regions at once could be faster ...
2152	 * QQQ: Maybe the other TTBR is an option.
2153	 *
2154	 * Finally, install own PT2TAB table to these tables.
2155	 */
2156
2157	if (pmap->pm_pt1 == NULL) {
2158		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2159		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2160		    pt_memattr);
2161		if (pmap->pm_pt1 == NULL)
2162			return (0);
2163	}
2164	if (pmap->pm_pt2tab == NULL) {
2165		/*
2166		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2167		 *      only, what should be the only size for 32 bit systems,
2168		 *      then we could allocate it with vm_page_alloc() and all
2169		 *      the stuff needed as other L2 page table pages.
2170		 *      (2) Note that a process PT2TAB is special L2 page table
2171		 *      page. Its mapping in kernel_arena is permanent and can
2172		 *      be used no matter which process is current. Its mapping
2173		 *      in PT2MAP can be used only for current process.
2174		 */
2175		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2176		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2177		if (pmap->pm_pt2tab == NULL) {
2178			/*
2179			 * QQQ: As struct pmap is allocated from UMA with
2180			 *      UMA_ZONE_NOFREE flag, it's important to leave
2181			 *      no allocation in pmap if initialization failed.
2182			 */
2183			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2184			    NB_IN_PT1);
2185			pmap->pm_pt1 = NULL;
2186			return (0);
2187		}
2188		/*
2189		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2190		 *      pte1 index of virtual address mapped by this page.
2191		 *      It's not valid for non kernel PT2TABs themselves.
2192		 *      The pindex of these pages can not be altered because
2193		 *      of the way how they are allocated now. However, it
2194		 *      should not be a problem.
2195		 */
2196	}
2197
2198	mtx_lock_spin(&allpmaps_lock);
2199	/*
2200	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2201	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2202	 */
2203	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2204	    kernel_vm_end_new - 1);
2205	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2206	    0xFFFFFFFF);
2207	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2208	    kernel_vm_end_new - 1);
2209	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2210	    0xFFFFFFFF);
2211	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2212	mtx_unlock_spin(&allpmaps_lock);
2213
2214	/*
2215	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2216	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2217	 * into shared PT2MAP space, so the mapping should be not global.
2218	 */
2219	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2220	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2221	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2222		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2223	}
2224
2225	/* Insert PT2MAP PT2s into pmap PT1. */
2226	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2227	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2228		pte1_store(pte1p++, PTE1_LINK(pa));
2229	}
2230
2231	/*
2232	 * Now synchronize new mapping which was made above.
2233	 */
2234	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2235	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2236
2237	CPU_ZERO(&pmap->pm_active);
2238	TAILQ_INIT(&pmap->pm_pvchunk);
2239	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2240
2241	return (1);
2242}
2243
2244#ifdef INVARIANTS
2245static boolean_t
2246pt2tab_user_is_empty(pt2_entry_t *tab)
2247{
2248	u_int i, end;
2249
2250	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2251	for (i = 0; i < end; i++)
2252		if (tab[i] != 0) return (FALSE);
2253	return (TRUE);
2254}
2255#endif
2256/*
2257 *  Release any resources held by the given physical map.
2258 *  Called when a pmap initialized by pmap_pinit is being released.
2259 *  Should only be called if the map contains no valid mappings.
2260 */
2261void
2262pmap_release(pmap_t pmap)
2263{
2264#ifdef INVARIANTS
2265	vm_offset_t start, end;
2266#endif
2267	KASSERT(pmap->pm_stats.resident_count == 0,
2268	    ("%s: pmap resident count %ld != 0", __func__,
2269	    pmap->pm_stats.resident_count));
2270	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2271	    ("%s: has allocated user PT2(s)", __func__));
2272	KASSERT(CPU_EMPTY(&pmap->pm_active),
2273	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2274
2275	mtx_lock_spin(&allpmaps_lock);
2276	LIST_REMOVE(pmap, pm_list);
2277	mtx_unlock_spin(&allpmaps_lock);
2278
2279#ifdef INVARIANTS
2280	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2281	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2282	bzero((char *)pmap->pm_pt1 + start, end - start);
2283
2284	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2285	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2286	bzero((char *)pmap->pm_pt2tab + start, end - start);
2287#endif
2288	/*
2289	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2290	 * so hopefully UMA vmspace_zone will always be inited with
2291	 * UMA_ZONE_NOFREE flag.
2292	 */
2293}
2294
2295/*********************************************************
2296 *
2297 *  L2 table pages and their pages management routines.
2298 *
2299 *********************************************************/
2300
2301/*
2302 *  Virtual interface for L2 page table wire counting.
2303 *
2304 *  Each L2 page table in a page has own counter which counts a number of
2305 *  valid mappings in a table. Global page counter counts mappings in all
2306 *  tables in a page plus a single itself mapping in PT2TAB.
2307 *
2308 *  During a promotion we leave the associated L2 page table counter
2309 *  untouched, so the table (strictly speaking a page which holds it)
2310 *  is never freed if promoted.
2311 *
2312 *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2313 *  table in the page and the page itself is only mapped in PT2TAB.
2314 */
2315
2316static __inline void
2317pt2_wirecount_init(vm_page_t m)
2318{
2319	u_int i;
2320
2321	/*
2322	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2323	 *       m->wire_count should be already set correctly.
2324	 *       So, there is no need to set it again herein.
2325	 */
2326	for (i = 0; i < NPT2_IN_PG; i++)
2327		m->md.pt2_wirecount[i] = 0;
2328}
2329
2330static __inline void
2331pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2332{
2333
2334	/*
2335	 * Note: A just modificated pte2 (i.e. already allocated)
2336	 *       is acquiring one extra reference which must be
2337	 *       explicitly cleared. It influences the KASSERTs herein.
2338	 *       All L2 page tables in a page always belong to the same
2339	 *       pmap, so we allow only one extra reference for the page.
2340	 */
2341	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2342	    ("%s: PT2 is overflowing ...", __func__));
2343	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2344	    ("%s: PT2PG is overflowing ...", __func__));
2345
2346	m->wire_count++;
2347	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2348}
2349
2350static __inline void
2351pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2352{
2353
2354	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2355	    ("%s: PT2 is underflowing ...", __func__));
2356	KASSERT(m->wire_count > 1,
2357	    ("%s: PT2PG is underflowing ...", __func__));
2358
2359	m->wire_count--;
2360	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2361}
2362
2363static __inline void
2364pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2365{
2366
2367	KASSERT(count <= NPTE2_IN_PT2,
2368	    ("%s: invalid count %u", __func__, count));
2369	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2370	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2371	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2372
2373	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2374	m->wire_count += count;
2375	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2376
2377	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2378	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2379}
2380
2381static __inline uint32_t
2382pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2383{
2384
2385	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2386}
2387
2388static __inline boolean_t
2389pt2_is_empty(vm_page_t m, vm_offset_t va)
2390{
2391
2392	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2393}
2394
2395static __inline boolean_t
2396pt2_is_full(vm_page_t m, vm_offset_t va)
2397{
2398
2399	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2400	    NPTE2_IN_PT2);
2401}
2402
2403static __inline boolean_t
2404pt2pg_is_empty(vm_page_t m)
2405{
2406
2407	return (m->wire_count == 1);
2408}
2409
2410/*
2411 *  This routine is called if the L2 page table
2412 *  is not mapped correctly.
2413 */
2414static vm_page_t
2415_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2416{
2417	uint32_t pte1_idx;
2418	pt1_entry_t *pte1p;
2419	pt2_entry_t pte2;
2420	vm_page_t  m;
2421	vm_paddr_t pt2pg_pa, pt2_pa;
2422
2423	pte1_idx = pte1_index(va);
2424	pte1p = pmap->pm_pt1 + pte1_idx;
2425
2426	KASSERT(pte1_load(pte1p) == 0,
2427	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2428	    pte1_load(pte1p)));
2429
2430	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2431	if (!pte2_is_valid(pte2)) {
2432		/*
2433		 * Install new PT2s page into pmap PT2TAB.
2434		 */
2435		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2436		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2437		if (m == NULL) {
2438			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2439				PMAP_UNLOCK(pmap);
2440				rw_wunlock(&pvh_global_lock);
2441				VM_WAIT;
2442				rw_wlock(&pvh_global_lock);
2443				PMAP_LOCK(pmap);
2444			}
2445
2446			/*
2447			 * Indicate the need to retry.  While waiting,
2448			 * the L2 page table page may have been allocated.
2449			 */
2450			return (NULL);
2451		}
2452		pmap->pm_stats.resident_count++;
2453		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2454	} else {
2455		pt2pg_pa = pte2_pa(pte2);
2456		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2457	}
2458
2459	pt2_wirecount_inc(m, pte1_idx);
2460	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2461	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2462
2463	return (m);
2464}
2465
2466static vm_page_t
2467pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2468{
2469	u_int pte1_idx;
2470	pt1_entry_t *pte1p, pte1;
2471	vm_page_t m;
2472
2473	pte1_idx = pte1_index(va);
2474retry:
2475	pte1p = pmap->pm_pt1 + pte1_idx;
2476	pte1 = pte1_load(pte1p);
2477
2478	/*
2479	 * This supports switching from a 1MB page to a
2480	 * normal 4K page.
2481	 */
2482	if (pte1_is_section(pte1)) {
2483		(void)pmap_demote_pte1(pmap, pte1p, va);
2484		/*
2485		 * Reload pte1 after demotion.
2486		 *
2487		 * Note: Demotion can even fail as either PT2 is not find for
2488		 *       the virtual address or PT2PG can not be allocated.
2489		 */
2490		pte1 = pte1_load(pte1p);
2491	}
2492
2493	/*
2494	 * If the L2 page table page is mapped, we just increment the
2495	 * hold count, and activate it.
2496	 */
2497	if (pte1_is_link(pte1)) {
2498		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2499		pt2_wirecount_inc(m, pte1_idx);
2500	} else  {
2501		/*
2502		 * Here if the PT2 isn't mapped, or if it has
2503		 * been deallocated.
2504		 */
2505		m = _pmap_allocpte2(pmap, va, flags);
2506		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2507			goto retry;
2508	}
2509
2510	return (m);
2511}
2512
2513static __inline void
2514pmap_free_zero_pages(struct spglist *free)
2515{
2516	vm_page_t m;
2517
2518	while ((m = SLIST_FIRST(free)) != NULL) {
2519		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2520		/* Preserve the page's PG_ZERO setting. */
2521		vm_page_free_toq(m);
2522	}
2523}
2524
2525/*
2526 *  Schedule the specified unused L2 page table page to be freed. Specifically,
2527 *  add the page to the specified list of pages that will be released to the
2528 *  physical memory manager after the TLB has been updated.
2529 */
2530static __inline void
2531pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2532{
2533
2534	/*
2535	 * Put page on a list so that it is released after
2536	 * *ALL* TLB shootdown is done
2537	 */
2538#ifdef PMAP_DEBUG
2539	pmap_zero_page_check(m);
2540#endif
2541	m->flags |= PG_ZERO;
2542	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2543}
2544
2545/*
2546 *  Unwire L2 page tables page.
2547 */
2548static void
2549pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2550{
2551	pt1_entry_t *pte1p, opte1 __unused;
2552	pt2_entry_t *pte2p;
2553	uint32_t i;
2554
2555	KASSERT(pt2pg_is_empty(m),
2556	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2557
2558	/*
2559	 * Unmap all L2 page tables in the page from L1 page table.
2560	 *
2561	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2562	 * earlier. However, we are doing that this way.
2563	 */
2564	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2565	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2566	pte1p = pmap->pm_pt1 + m->pindex;
2567	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2568		KASSERT(m->md.pt2_wirecount[i] == 0,
2569		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2570		opte1 = pte1_load(pte1p);
2571		if (pte1_is_link(opte1)) {
2572			pte1_clear(pte1p);
2573			/*
2574			 * Flush intermediate TLB cache.
2575			 */
2576			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2577		}
2578#ifdef INVARIANTS
2579		else
2580			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2581			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2582			    pmap, va, opte1, i));
2583#endif
2584	}
2585
2586	/*
2587	 * Unmap the page from PT2TAB.
2588	 */
2589	pte2p = pmap_pt2tab_entry(pmap, va);
2590	(void)pt2tab_load_clear(pte2p);
2591	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2592
2593	m->wire_count = 0;
2594	pmap->pm_stats.resident_count--;
2595
2596	/*
2597	 * This is a release store so that the ordinary store unmapping
2598	 * the L2 page table page is globally performed before TLB shoot-
2599	 * down is begun.
2600	 */
2601	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2602}
2603
2604/*
2605 *  Decrements a L2 page table page's wire count, which is used to record the
2606 *  number of valid page table entries within the page.  If the wire count
2607 *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2608 *  page table page was unmapped and FALSE otherwise.
2609 */
2610static __inline boolean_t
2611pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2612{
2613	pt2_wirecount_dec(m, pte1_index(va));
2614	if (pt2pg_is_empty(m)) {
2615		/*
2616		 * QQQ: Wire count is zero, so whole page should be zero and
2617		 *      we can set PG_ZERO flag to it.
2618		 *      Note that when promotion is enabled, it takes some
2619		 *      more efforts. See pmap_unwire_pt2_all() below.
2620		 */
2621		pmap_unwire_pt2pg(pmap, va, m);
2622		pmap_add_delayed_free_list(m, free);
2623		return (TRUE);
2624	} else
2625		return (FALSE);
2626}
2627
2628/*
2629 *  Drop a L2 page table page's wire count at once, which is used to record
2630 *  the number of valid L2 page table entries within the page. If the wire
2631 *  count drops to zero, then the L2 page table page is unmapped.
2632 */
2633static __inline void
2634pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2635    struct spglist *free)
2636{
2637	u_int pte1_idx = pte1_index(va);
2638
2639	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2640		("%s: PT2 page's pindex is wrong", __func__));
2641	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2642	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2643	    pt2_wirecount_get(m, pte1_idx)));
2644
2645	/*
2646	 * It's possible that the L2 page table was never used.
2647	 * It happened in case that a section was created without promotion.
2648	 */
2649	if (pt2_is_full(m, va)) {
2650		pt2_wirecount_set(m, pte1_idx, 0);
2651
2652		/*
2653		 * QQQ: We clear L2 page table now, so when L2 page table page
2654		 *      is going to be freed, we can set it PG_ZERO flag ...
2655		 *      This function is called only on section mappings, so
2656		 *      hopefully it's not to big overload.
2657		 *
2658		 * XXX: If pmap is current, existing PT2MAP mapping could be
2659		 *      used for zeroing.
2660		 */
2661		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2662	}
2663#ifdef INVARIANTS
2664	else
2665		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2666		    __func__, pt2_wirecount_get(m, pte1_idx)));
2667#endif
2668	if (pt2pg_is_empty(m)) {
2669		pmap_unwire_pt2pg(pmap, va, m);
2670		pmap_add_delayed_free_list(m, free);
2671	}
2672}
2673
2674/*
2675 *  After removing a L2 page table entry, this routine is used to
2676 *  conditionally free the page, and manage the hold/wire counts.
2677 */
2678static boolean_t
2679pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2680{
2681	pt1_entry_t pte1;
2682	vm_page_t mpte;
2683
2684	if (va >= VM_MAXUSER_ADDRESS)
2685		return (FALSE);
2686	pte1 = pte1_load(pmap_pte1(pmap, va));
2687	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2688	return (pmap_unwire_pt2(pmap, va, mpte, free));
2689}
2690
2691/*************************************
2692 *
2693 *  Page management routines.
2694 *
2695 *************************************/
2696
2697CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2698CTASSERT(_NPCM == 11);
2699CTASSERT(_NPCPV == 336);
2700
2701static __inline struct pv_chunk *
2702pv_to_chunk(pv_entry_t pv)
2703{
2704
2705	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2706}
2707
2708#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2709
2710#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2711#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2712
2713static const uint32_t pc_freemask[_NPCM] = {
2714	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2715	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2716	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2717	PC_FREE0_9, PC_FREE10
2718};
2719
2720SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2721	"Current number of pv entries");
2722
2723#ifdef PV_STATS
2724static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2725
2726SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2727    "Current number of pv entry chunks");
2728SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2729    "Current number of pv entry chunks allocated");
2730SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2731    "Current number of pv entry chunks frees");
2732SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2733    0, "Number of times tried to get a chunk page but failed.");
2734
2735static long pv_entry_frees, pv_entry_allocs;
2736static int pv_entry_spare;
2737
2738SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2739    "Current number of pv entry frees");
2740SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2741    0, "Current number of pv entry allocs");
2742SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2743    "Current number of spare pv entries");
2744#endif
2745
2746/*
2747 *  Is given page managed?
2748 */
2749static __inline boolean_t
2750is_managed(vm_paddr_t pa)
2751{
2752	vm_offset_t pgnum;
2753	vm_page_t m;
2754
2755	pgnum = atop(pa);
2756	if (pgnum >= first_page) {
2757		m = PHYS_TO_VM_PAGE(pa);
2758		if (m == NULL)
2759			return (FALSE);
2760		if ((m->oflags & VPO_UNMANAGED) == 0)
2761			return (TRUE);
2762	}
2763	return (FALSE);
2764}
2765
2766static __inline boolean_t
2767pte1_is_managed(pt1_entry_t pte1)
2768{
2769
2770	return (is_managed(pte1_pa(pte1)));
2771}
2772
2773static __inline boolean_t
2774pte2_is_managed(pt2_entry_t pte2)
2775{
2776
2777	return (is_managed(pte2_pa(pte2)));
2778}
2779
2780/*
2781 *  We are in a serious low memory condition.  Resort to
2782 *  drastic measures to free some pages so we can allocate
2783 *  another pv entry chunk.
2784 */
2785static vm_page_t
2786pmap_pv_reclaim(pmap_t locked_pmap)
2787{
2788	struct pch newtail;
2789	struct pv_chunk *pc;
2790	struct md_page *pvh;
2791	pt1_entry_t *pte1p;
2792	pmap_t pmap;
2793	pt2_entry_t *pte2p, tpte2;
2794	pv_entry_t pv;
2795	vm_offset_t va;
2796	vm_page_t m, m_pc;
2797	struct spglist free;
2798	uint32_t inuse;
2799	int bit, field, freed;
2800
2801	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2802	pmap = NULL;
2803	m_pc = NULL;
2804	SLIST_INIT(&free);
2805	TAILQ_INIT(&newtail);
2806	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2807	    SLIST_EMPTY(&free))) {
2808		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2809		if (pmap != pc->pc_pmap) {
2810			if (pmap != NULL) {
2811				if (pmap != locked_pmap)
2812					PMAP_UNLOCK(pmap);
2813			}
2814			pmap = pc->pc_pmap;
2815			/* Avoid deadlock and lock recursion. */
2816			if (pmap > locked_pmap)
2817				PMAP_LOCK(pmap);
2818			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2819				pmap = NULL;
2820				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2821				continue;
2822			}
2823		}
2824
2825		/*
2826		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2827		 */
2828		freed = 0;
2829		for (field = 0; field < _NPCM; field++) {
2830			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2831			    inuse != 0; inuse &= ~(1UL << bit)) {
2832				bit = ffs(inuse) - 1;
2833				pv = &pc->pc_pventry[field * 32 + bit];
2834				va = pv->pv_va;
2835				pte1p = pmap_pte1(pmap, va);
2836				if (pte1_is_section(pte1_load(pte1p)))
2837					continue;
2838				pte2p = pmap_pte2(pmap, va);
2839				tpte2 = pte2_load(pte2p);
2840				if ((tpte2 & PTE2_W) == 0)
2841					tpte2 = pte2_load_clear(pte2p);
2842				pmap_pte2_release(pte2p);
2843				if ((tpte2 & PTE2_W) != 0)
2844					continue;
2845				KASSERT(tpte2 != 0,
2846				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2847				    pmap, va));
2848				pmap_tlb_flush(pmap, va);
2849				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2850				if (pte2_is_dirty(tpte2))
2851					vm_page_dirty(m);
2852				if ((tpte2 & PTE2_A) != 0)
2853					vm_page_aflag_set(m, PGA_REFERENCED);
2854				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2855				if (TAILQ_EMPTY(&m->md.pv_list) &&
2856				    (m->flags & PG_FICTITIOUS) == 0) {
2857					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2858					if (TAILQ_EMPTY(&pvh->pv_list)) {
2859						vm_page_aflag_clear(m,
2860						    PGA_WRITEABLE);
2861					}
2862				}
2863				pc->pc_map[field] |= 1UL << bit;
2864				pmap_unuse_pt2(pmap, va, &free);
2865				freed++;
2866			}
2867		}
2868		if (freed == 0) {
2869			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2870			continue;
2871		}
2872		/* Every freed mapping is for a 4 KB page. */
2873		pmap->pm_stats.resident_count -= freed;
2874		PV_STAT(pv_entry_frees += freed);
2875		PV_STAT(pv_entry_spare += freed);
2876		pv_entry_count -= freed;
2877		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2878		for (field = 0; field < _NPCM; field++)
2879			if (pc->pc_map[field] != pc_freemask[field]) {
2880				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2881				    pc_list);
2882				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2883
2884				/*
2885				 * One freed pv entry in locked_pmap is
2886				 * sufficient.
2887				 */
2888				if (pmap == locked_pmap)
2889					goto out;
2890				break;
2891			}
2892		if (field == _NPCM) {
2893			PV_STAT(pv_entry_spare -= _NPCPV);
2894			PV_STAT(pc_chunk_count--);
2895			PV_STAT(pc_chunk_frees++);
2896			/* Entire chunk is free; return it. */
2897			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2898			pmap_qremove((vm_offset_t)pc, 1);
2899			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2900			break;
2901		}
2902	}
2903out:
2904	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2905	if (pmap != NULL) {
2906		if (pmap != locked_pmap)
2907			PMAP_UNLOCK(pmap);
2908	}
2909	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2910		m_pc = SLIST_FIRST(&free);
2911		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2912		/* Recycle a freed page table page. */
2913		m_pc->wire_count = 1;
2914		atomic_add_int(&vm_cnt.v_wire_count, 1);
2915	}
2916	pmap_free_zero_pages(&free);
2917	return (m_pc);
2918}
2919
2920static void
2921free_pv_chunk(struct pv_chunk *pc)
2922{
2923	vm_page_t m;
2924
2925	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2926	PV_STAT(pv_entry_spare -= _NPCPV);
2927	PV_STAT(pc_chunk_count--);
2928	PV_STAT(pc_chunk_frees++);
2929	/* entire chunk is free, return it */
2930	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2931	pmap_qremove((vm_offset_t)pc, 1);
2932	vm_page_unwire(m, PQ_NONE);
2933	vm_page_free(m);
2934	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2935}
2936
2937/*
2938 *  Free the pv_entry back to the free list.
2939 */
2940static void
2941free_pv_entry(pmap_t pmap, pv_entry_t pv)
2942{
2943	struct pv_chunk *pc;
2944	int idx, field, bit;
2945
2946	rw_assert(&pvh_global_lock, RA_WLOCKED);
2947	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2948	PV_STAT(pv_entry_frees++);
2949	PV_STAT(pv_entry_spare++);
2950	pv_entry_count--;
2951	pc = pv_to_chunk(pv);
2952	idx = pv - &pc->pc_pventry[0];
2953	field = idx / 32;
2954	bit = idx % 32;
2955	pc->pc_map[field] |= 1ul << bit;
2956	for (idx = 0; idx < _NPCM; idx++)
2957		if (pc->pc_map[idx] != pc_freemask[idx]) {
2958			/*
2959			 * 98% of the time, pc is already at the head of the
2960			 * list.  If it isn't already, move it to the head.
2961			 */
2962			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2963			    pc)) {
2964				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2965				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2966				    pc_list);
2967			}
2968			return;
2969		}
2970	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2971	free_pv_chunk(pc);
2972}
2973
2974/*
2975 *  Get a new pv_entry, allocating a block from the system
2976 *  when needed.
2977 */
2978static pv_entry_t
2979get_pv_entry(pmap_t pmap, boolean_t try)
2980{
2981	static const struct timeval printinterval = { 60, 0 };
2982	static struct timeval lastprint;
2983	int bit, field;
2984	pv_entry_t pv;
2985	struct pv_chunk *pc;
2986	vm_page_t m;
2987
2988	rw_assert(&pvh_global_lock, RA_WLOCKED);
2989	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2990	PV_STAT(pv_entry_allocs++);
2991	pv_entry_count++;
2992	if (pv_entry_count > pv_entry_high_water)
2993		if (ratecheck(&lastprint, &printinterval))
2994			printf("Approaching the limit on PV entries, consider "
2995			    "increasing either the vm.pmap.shpgperproc or the "
2996			    "vm.pmap.pv_entry_max tunable.\n");
2997retry:
2998	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2999	if (pc != NULL) {
3000		for (field = 0; field < _NPCM; field++) {
3001			if (pc->pc_map[field]) {
3002				bit = ffs(pc->pc_map[field]) - 1;
3003				break;
3004			}
3005		}
3006		if (field < _NPCM) {
3007			pv = &pc->pc_pventry[field * 32 + bit];
3008			pc->pc_map[field] &= ~(1ul << bit);
3009			/* If this was the last item, move it to tail */
3010			for (field = 0; field < _NPCM; field++)
3011				if (pc->pc_map[field] != 0) {
3012					PV_STAT(pv_entry_spare--);
3013					return (pv);	/* not full, return */
3014				}
3015			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3016			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3017			PV_STAT(pv_entry_spare--);
3018			return (pv);
3019		}
3020	}
3021	/*
3022	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3023	 * global lock.  If "pv_vafree" is currently non-empty, it will
3024	 * remain non-empty until pmap_pte2list_alloc() completes.
3025	 */
3026	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3027	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3028		if (try) {
3029			pv_entry_count--;
3030			PV_STAT(pc_chunk_tryfail++);
3031			return (NULL);
3032		}
3033		m = pmap_pv_reclaim(pmap);
3034		if (m == NULL)
3035			goto retry;
3036	}
3037	PV_STAT(pc_chunk_count++);
3038	PV_STAT(pc_chunk_allocs++);
3039	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3040	pmap_qenter((vm_offset_t)pc, &m, 1);
3041	pc->pc_pmap = pmap;
3042	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3043	for (field = 1; field < _NPCM; field++)
3044		pc->pc_map[field] = pc_freemask[field];
3045	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3046	pv = &pc->pc_pventry[0];
3047	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3048	PV_STAT(pv_entry_spare += _NPCPV - 1);
3049	return (pv);
3050}
3051
3052/*
3053 *  Create a pv entry for page at pa for
3054 *  (pmap, va).
3055 */
3056static void
3057pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3058{
3059	pv_entry_t pv;
3060
3061	rw_assert(&pvh_global_lock, RA_WLOCKED);
3062	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3063	pv = get_pv_entry(pmap, FALSE);
3064	pv->pv_va = va;
3065	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3066}
3067
3068static __inline pv_entry_t
3069pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3070{
3071	pv_entry_t pv;
3072
3073	rw_assert(&pvh_global_lock, RA_WLOCKED);
3074	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3075		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3076			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3077			break;
3078		}
3079	}
3080	return (pv);
3081}
3082
3083static void
3084pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3085{
3086	pv_entry_t pv;
3087
3088	pv = pmap_pvh_remove(pvh, pmap, va);
3089	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3090	free_pv_entry(pmap, pv);
3091}
3092
3093static void
3094pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3095{
3096	struct md_page *pvh;
3097
3098	rw_assert(&pvh_global_lock, RA_WLOCKED);
3099	pmap_pvh_free(&m->md, pmap, va);
3100	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3101		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3102		if (TAILQ_EMPTY(&pvh->pv_list))
3103			vm_page_aflag_clear(m, PGA_WRITEABLE);
3104	}
3105}
3106
3107static void
3108pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3109{
3110	struct md_page *pvh;
3111	pv_entry_t pv;
3112	vm_offset_t va_last;
3113	vm_page_t m;
3114
3115	rw_assert(&pvh_global_lock, RA_WLOCKED);
3116	KASSERT((pa & PTE1_OFFSET) == 0,
3117	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3118
3119	/*
3120	 * Transfer the 1mpage's pv entry for this mapping to the first
3121	 * page's pv list.
3122	 */
3123	pvh = pa_to_pvh(pa);
3124	va = pte1_trunc(va);
3125	pv = pmap_pvh_remove(pvh, pmap, va);
3126	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3127	m = PHYS_TO_VM_PAGE(pa);
3128	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3129	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3130	va_last = va + PTE1_SIZE - PAGE_SIZE;
3131	do {
3132		m++;
3133		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3134		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3135		va += PAGE_SIZE;
3136		pmap_insert_entry(pmap, va, m);
3137	} while (va < va_last);
3138}
3139
3140static void
3141pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3142{
3143	struct md_page *pvh;
3144	pv_entry_t pv;
3145	vm_offset_t va_last;
3146	vm_page_t m;
3147
3148	rw_assert(&pvh_global_lock, RA_WLOCKED);
3149	KASSERT((pa & PTE1_OFFSET) == 0,
3150	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3151
3152	/*
3153	 * Transfer the first page's pv entry for this mapping to the
3154	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3155	 * to get_pv_entry(), a transfer avoids the possibility that
3156	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3157	 * removes one of the mappings that is being promoted.
3158	 */
3159	m = PHYS_TO_VM_PAGE(pa);
3160	va = pte1_trunc(va);
3161	pv = pmap_pvh_remove(&m->md, pmap, va);
3162	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3163	pvh = pa_to_pvh(pa);
3164	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3165	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3166	va_last = va + PTE1_SIZE - PAGE_SIZE;
3167	do {
3168		m++;
3169		va += PAGE_SIZE;
3170		pmap_pvh_free(&m->md, pmap, va);
3171	} while (va < va_last);
3172}
3173
3174/*
3175 *  Conditionally create a pv entry.
3176 */
3177static boolean_t
3178pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3179{
3180	pv_entry_t pv;
3181
3182	rw_assert(&pvh_global_lock, RA_WLOCKED);
3183	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3184	if (pv_entry_count < pv_entry_high_water &&
3185	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3186		pv->pv_va = va;
3187		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3188		return (TRUE);
3189	} else
3190		return (FALSE);
3191}
3192
3193/*
3194 *  Create the pv entries for each of the pages within a section.
3195 */
3196static boolean_t
3197pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3198{
3199	struct md_page *pvh;
3200	pv_entry_t pv;
3201
3202	rw_assert(&pvh_global_lock, RA_WLOCKED);
3203	if (pv_entry_count < pv_entry_high_water &&
3204	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3205		pv->pv_va = va;
3206		pvh = pa_to_pvh(pa);
3207		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3208		return (TRUE);
3209	} else
3210		return (FALSE);
3211}
3212
3213static inline void
3214pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3215{
3216
3217	/* Kill all the small mappings or the big one only. */
3218	if (pte1_is_section(npte1))
3219		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3220	else
3221		pmap_tlb_flush(pmap, pte1_trunc(va));
3222}
3223
3224/*
3225 *  Update kernel pte1 on all pmaps.
3226 *
3227 *  The following function is called only on one cpu with disabled interrupts.
3228 *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3229 *  nobody can invoke explicit hardware table walk during the update of pte1.
3230 *  Unsolicited hardware table walk can still happen, invoked by speculative
3231 *  data or instruction prefetch or even by speculative hardware table walk.
3232 *
3233 *  The break-before-make approach should be implemented here. However, it's
3234 *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3235 *  itself unexpectedly but voluntarily.
3236 */
3237static void
3238pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3239{
3240	pmap_t pmap;
3241	pt1_entry_t *pte1p;
3242
3243	/*
3244	 * Get current pmap. Interrupts should be disabled here
3245	 * so PCPU_GET() is done atomically.
3246	 */
3247	pmap = PCPU_GET(curpmap);
3248	if (pmap == NULL)
3249		pmap = kernel_pmap;
3250
3251	/*
3252	 * (1) Change pte1 on current pmap.
3253	 * (2) Flush all obsolete TLB entries on current CPU.
3254	 * (3) Change pte1 on all pmaps.
3255	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3256	 */
3257
3258	pte1p = pmap_pte1(pmap, va);
3259	pte1_store(pte1p, npte1);
3260
3261	/* Kill all the small mappings or the big one only. */
3262	if (pte1_is_section(npte1)) {
3263		pmap_pte1_kern_promotions++;
3264		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3265	} else {
3266		pmap_pte1_kern_demotions++;
3267		tlb_flush_local(pte1_trunc(va));
3268	}
3269
3270	/*
3271	 * In SMP case, this function is called when all cpus are at smp
3272	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3273	 * In UP case, the function is called with this lock locked.
3274	 */
3275	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3276		pte1p = pmap_pte1(pmap, va);
3277		pte1_store(pte1p, npte1);
3278	}
3279
3280#ifdef SMP
3281	/* Kill all the small mappings or the big one only. */
3282	if (pte1_is_section(npte1))
3283		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3284	else
3285		tlb_flush(pte1_trunc(va));
3286#endif
3287}
3288
3289#ifdef SMP
3290struct pte1_action {
3291	vm_offset_t va;
3292	pt1_entry_t npte1;
3293	u_int update;		/* CPU that updates the PTE1 */
3294};
3295
3296static void
3297pmap_update_pte1_action(void *arg)
3298{
3299	struct pte1_action *act = arg;
3300
3301	if (act->update == PCPU_GET(cpuid))
3302		pmap_update_pte1_kernel(act->va, act->npte1);
3303}
3304
3305/*
3306 *  Change pte1 on current pmap.
3307 *  Note that kernel pte1 must be changed on all pmaps.
3308 *
3309 *  According to the architecture reference manual published by ARM,
3310 *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3311 *  According to this manual, UNPREDICTABLE behaviours must never happen in
3312 *  a viable system. In contrast, on x86 processors, it is not specified which
3313 *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3314 *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3315 *  Black).
3316 *
3317 *  It's a problem when either promotion or demotion is being done. The pte1
3318 *  update and appropriate TLB flush must be done atomically in general.
3319 */
3320static void
3321pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3322    pt1_entry_t npte1)
3323{
3324
3325	if (pmap == kernel_pmap) {
3326		struct pte1_action act;
3327
3328		sched_pin();
3329		act.va = va;
3330		act.npte1 = npte1;
3331		act.update = PCPU_GET(cpuid);
3332		smp_rendezvous_cpus(all_cpus, smp_no_rendevous_barrier,
3333		    pmap_update_pte1_action, NULL, &act);
3334		sched_unpin();
3335	} else {
3336		register_t cspr;
3337
3338		/*
3339		 * Use break-before-make approach for changing userland
3340		 * mappings. It can cause L1 translation aborts on other
3341		 * cores in SMP case. So, special treatment is implemented
3342		 * in pmap_fault(). To reduce the likelihood that another core
3343		 * will be affected by the broken mapping, disable interrupts
3344		 * until the mapping change is completed.
3345		 */
3346		cspr = disable_interrupts(PSR_I | PSR_F);
3347		pte1_clear(pte1p);
3348		pmap_tlb_flush_pte1(pmap, va, npte1);
3349		pte1_store(pte1p, npte1);
3350		restore_interrupts(cspr);
3351	}
3352}
3353#else
3354static void
3355pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3356    pt1_entry_t npte1)
3357{
3358
3359	if (pmap == kernel_pmap) {
3360		mtx_lock_spin(&allpmaps_lock);
3361		pmap_update_pte1_kernel(va, npte1);
3362		mtx_unlock_spin(&allpmaps_lock);
3363	} else {
3364		register_t cspr;
3365
3366		/*
3367		 * Use break-before-make approach for changing userland
3368		 * mappings. It's absolutely safe in UP case when interrupts
3369		 * are disabled.
3370		 */
3371		cspr = disable_interrupts(PSR_I | PSR_F);
3372		pte1_clear(pte1p);
3373		pmap_tlb_flush_pte1(pmap, va, npte1);
3374		pte1_store(pte1p, npte1);
3375		restore_interrupts(cspr);
3376	}
3377}
3378#endif
3379
3380/*
3381 *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3382 *  within a single page table page (PT2) to a single 1MB page mapping.
3383 *  For promotion to occur, two conditions must be met: (1) the 4KB page
3384 *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3385 *  mappings must have identical characteristics.
3386 *
3387 *  Managed (PG_MANAGED) mappings within the kernel address space are not
3388 *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3389 *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3390 *  read the PTE1 from the kernel pmap.
3391 */
3392static void
3393pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3394{
3395	pt1_entry_t npte1;
3396	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3397	pt2_entry_t *pte2p, pte2;
3398	vm_offset_t pteva __unused;
3399	vm_page_t m __unused;
3400
3401	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3402	    pmap, va, pte1_load(pte1p), pte1p));
3403
3404	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3405
3406	/*
3407	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3408	 * either invalid, unused, or does not map the first 4KB physical page
3409	 * within a 1MB page.
3410	 */
3411	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3412	fpte2 = pte2_load(fpte2p);
3413	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3414	    (PTE2_A | PTE2_V)) {
3415		pmap_pte1_p_failures++;
3416		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3417		    __func__, va, pmap);
3418		return;
3419	}
3420	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3421		pmap_pte1_p_failures++;
3422		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3423		    __func__, va, pmap);
3424		return;
3425	}
3426	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3427		/*
3428		 * When page is not modified, PTE2_RO can be set without
3429		 * a TLB invalidation.
3430		 */
3431		fpte2 |= PTE2_RO;
3432		pte2_store(fpte2p, fpte2);
3433	}
3434
3435	/*
3436	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3437	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3438	 * characteristics to the first PTE2.
3439	 */
3440	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3441	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3442	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3443		pte2 = pte2_load(pte2p);
3444		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3445			pmap_pte1_p_failures++;
3446			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3447			    __func__, va, pmap);
3448			return;
3449		}
3450		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3451			/*
3452			 * When page is not modified, PTE2_RO can be set
3453			 * without a TLB invalidation. See note above.
3454			 */
3455			pte2 |= PTE2_RO;
3456			pte2_store(pte2p, pte2);
3457			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3458			    PTE2_FRAME);
3459			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3460			    __func__, pteva, pmap);
3461		}
3462		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3463			pmap_pte1_p_failures++;
3464			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3465			    __func__, va, pmap);
3466			return;
3467		}
3468
3469		fpte2_fav -= PTE2_SIZE;
3470	}
3471	/*
3472	 * The page table page in its current state will stay in PT2TAB
3473	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3474	 * or destroyed by pmap_remove_pte1().
3475	 *
3476	 * Note that L2 page table size is not equal to PAGE_SIZE.
3477	 */
3478	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3479	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3480	    ("%s: PT2 page is out of range", __func__));
3481	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3482	    ("%s: PT2 page's pindex is wrong", __func__));
3483
3484	/*
3485	 * Get pte1 from pte2 format.
3486	 */
3487	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3488
3489	/*
3490	 * Promote the pv entries.
3491	 */
3492	if (pte2_is_managed(fpte2))
3493		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3494
3495	/*
3496	 * Promote the mappings.
3497	 */
3498	pmap_change_pte1(pmap, pte1p, va, npte1);
3499
3500	pmap_pte1_promotions++;
3501	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3502	    __func__, va, pmap);
3503
3504	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3505	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3506}
3507
3508/*
3509 *  Zero L2 page table page.
3510 */
3511static __inline void
3512pmap_clear_pt2(pt2_entry_t *fpte2p)
3513{
3514	pt2_entry_t *pte2p;
3515
3516	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3517		pte2_clear(pte2p);
3518
3519}
3520
3521/*
3522 *  Removes a 1MB page mapping from the kernel pmap.
3523 */
3524static void
3525pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3526{
3527	vm_page_t m;
3528	uint32_t pte1_idx;
3529	pt2_entry_t *fpte2p;
3530	vm_paddr_t pt2_pa;
3531
3532	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3533	m = pmap_pt2_page(pmap, va);
3534	if (m == NULL)
3535		/*
3536		 * QQQ: Is this function called only on promoted pte1?
3537		 *      We certainly do section mappings directly
3538		 *      (without promotion) in kernel !!!
3539		 */
3540		panic("%s: missing pt2 page", __func__);
3541
3542	pte1_idx = pte1_index(va);
3543
3544	/*
3545	 * Initialize the L2 page table.
3546	 */
3547	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3548	pmap_clear_pt2(fpte2p);
3549
3550	/*
3551	 * Remove the mapping.
3552	 */
3553	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3554	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3555
3556	/*
3557	 * QQQ: We do not need to invalidate PT2MAP mapping
3558	 * as we did not change it. I.e. the L2 page table page
3559	 * was and still is mapped the same way.
3560	 */
3561}
3562
3563/*
3564 *  Do the things to unmap a section in a process
3565 */
3566static void
3567pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3568    struct spglist *free)
3569{
3570	pt1_entry_t opte1;
3571	struct md_page *pvh;
3572	vm_offset_t eva, va;
3573	vm_page_t m;
3574
3575	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3576	    pte1_load(pte1p), pte1p));
3577
3578	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3579	KASSERT((sva & PTE1_OFFSET) == 0,
3580	    ("%s: sva is not 1mpage aligned", __func__));
3581
3582	/*
3583	 * Clear and invalidate the mapping. It should occupy one and only TLB
3584	 * entry. So, pmap_tlb_flush() called with aligned address should be
3585	 * sufficient.
3586	 */
3587	opte1 = pte1_load_clear(pte1p);
3588	pmap_tlb_flush(pmap, sva);
3589
3590	if (pte1_is_wired(opte1))
3591		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3592	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3593	if (pte1_is_managed(opte1)) {
3594		pvh = pa_to_pvh(pte1_pa(opte1));
3595		pmap_pvh_free(pvh, pmap, sva);
3596		eva = sva + PTE1_SIZE;
3597		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3598		    va < eva; va += PAGE_SIZE, m++) {
3599			if (pte1_is_dirty(opte1))
3600				vm_page_dirty(m);
3601			if (opte1 & PTE1_A)
3602				vm_page_aflag_set(m, PGA_REFERENCED);
3603			if (TAILQ_EMPTY(&m->md.pv_list) &&
3604			    TAILQ_EMPTY(&pvh->pv_list))
3605				vm_page_aflag_clear(m, PGA_WRITEABLE);
3606		}
3607	}
3608	if (pmap == kernel_pmap) {
3609		/*
3610		 * L2 page table(s) can't be removed from kernel map as
3611		 * kernel counts on it (stuff around pmap_growkernel()).
3612		 */
3613		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3614	} else {
3615		/*
3616		 * Get associated L2 page table page.
3617		 * It's possible that the page was never allocated.
3618		 */
3619		m = pmap_pt2_page(pmap, sva);
3620		if (m != NULL)
3621			pmap_unwire_pt2_all(pmap, sva, m, free);
3622	}
3623}
3624
3625/*
3626 *  Fills L2 page table page with mappings to consecutive physical pages.
3627 */
3628static __inline void
3629pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3630{
3631	pt2_entry_t *pte2p;
3632
3633	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3634		pte2_store(pte2p, npte2);
3635		npte2 += PTE2_SIZE;
3636	}
3637}
3638
3639/*
3640 *  Tries to demote a 1MB page mapping. If demotion fails, the
3641 *  1MB page mapping is invalidated.
3642 */
3643static boolean_t
3644pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3645{
3646	pt1_entry_t opte1, npte1;
3647	pt2_entry_t *fpte2p, npte2;
3648	vm_paddr_t pt2pg_pa, pt2_pa;
3649	vm_page_t m;
3650	struct spglist free;
3651	uint32_t pte1_idx, isnew = 0;
3652
3653	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3654	    pmap, va, pte1_load(pte1p), pte1p));
3655
3656	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3657
3658	opte1 = pte1_load(pte1p);
3659	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3660
3661	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3662		KASSERT(!pte1_is_wired(opte1),
3663		    ("%s: PT2 page for a wired mapping is missing", __func__));
3664
3665		/*
3666		 * Invalidate the 1MB page mapping and return
3667		 * "failure" if the mapping was never accessed or the
3668		 * allocation of the new page table page fails.
3669		 */
3670		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3671		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3672		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3673			SLIST_INIT(&free);
3674			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3675			pmap_free_zero_pages(&free);
3676			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3677			    __func__, va, pmap);
3678			return (FALSE);
3679		}
3680		if (va < VM_MAXUSER_ADDRESS)
3681			pmap->pm_stats.resident_count++;
3682
3683		isnew = 1;
3684
3685		/*
3686		 * We init all L2 page tables in the page even if
3687		 * we are going to change everything for one L2 page
3688		 * table in a while.
3689		 */
3690		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3691	} else {
3692		if (va < VM_MAXUSER_ADDRESS) {
3693			if (pt2_is_empty(m, va))
3694				isnew = 1; /* Demoting section w/o promotion. */
3695#ifdef INVARIANTS
3696			else
3697				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3698				    " count %u", __func__,
3699				    pt2_wirecount_get(m, pte1_index(va))));
3700#endif
3701		}
3702	}
3703
3704	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3705	pte1_idx = pte1_index(va);
3706	/*
3707	 * If the pmap is current, then the PT2MAP can provide access to
3708	 * the page table page (promoted L2 page tables are not unmapped).
3709	 * Otherwise, temporarily map the L2 page table page (m) into
3710	 * the kernel's address space at either PADDR1 or PADDR2.
3711	 *
3712	 * Note that L2 page table size is not equal to PAGE_SIZE.
3713	 */
3714	if (pmap_is_current(pmap))
3715		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3716	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3717		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3718			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3719#ifdef SMP
3720			PMAP1cpu = PCPU_GET(cpuid);
3721#endif
3722			tlb_flush_local((vm_offset_t)PADDR1);
3723			PMAP1changed++;
3724		} else
3725#ifdef SMP
3726		if (PMAP1cpu != PCPU_GET(cpuid)) {
3727			PMAP1cpu = PCPU_GET(cpuid);
3728			tlb_flush_local((vm_offset_t)PADDR1);
3729			PMAP1changedcpu++;
3730		} else
3731#endif
3732			PMAP1unchanged++;
3733		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3734	} else {
3735		mtx_lock(&PMAP2mutex);
3736		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3737			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3738			tlb_flush((vm_offset_t)PADDR2);
3739		}
3740		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3741	}
3742	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3743	npte1 = PTE1_LINK(pt2_pa);
3744
3745	KASSERT((opte1 & PTE1_A) != 0,
3746	    ("%s: opte1 is missing PTE1_A", __func__));
3747	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3748	    ("%s: opte1 has PTE1_NM", __func__));
3749
3750	/*
3751	 *  Get pte2 from pte1 format.
3752	*/
3753	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3754
3755	/*
3756	 * If the L2 page table page is new, initialize it. If the mapping
3757	 * has changed attributes, update the page table entries.
3758	 */
3759	if (isnew != 0) {
3760		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3761		pmap_fill_pt2(fpte2p, npte2);
3762	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3763		    (npte2 & PTE2_PROMOTE))
3764		pmap_fill_pt2(fpte2p, npte2);
3765
3766	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3767	    ("%s: fpte2p and npte2 map different physical addresses",
3768	    __func__));
3769
3770	if (fpte2p == PADDR2)
3771		mtx_unlock(&PMAP2mutex);
3772
3773	/*
3774	 * Demote the mapping. This pmap is locked. The old PTE1 has
3775	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3776	 * has not PTE1_NM set. Thus, there is no danger of a race with
3777	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3778	 * between the read above and the store below.
3779	 */
3780	pmap_change_pte1(pmap, pte1p, va, npte1);
3781
3782	/*
3783	 * Demote the pv entry. This depends on the earlier demotion
3784	 * of the mapping. Specifically, the (re)creation of a per-
3785	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3786	 * which might reclaim a newly (re)created per-page pv entry
3787	 * and destroy the associated mapping. In order to destroy
3788	 * the mapping, the PTE1 must have already changed from mapping
3789	 * the 1mpage to referencing the page table page.
3790	 */
3791	if (pte1_is_managed(opte1))
3792		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3793
3794	pmap_pte1_demotions++;
3795	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3796	    __func__, va, pmap);
3797
3798	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3799	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3800	return (TRUE);
3801}
3802
3803/*
3804 *	Insert the given physical page (p) at
3805 *	the specified virtual address (v) in the
3806 *	target physical map with the protection requested.
3807 *
3808 *	If specified, the page will be wired down, meaning
3809 *	that the related pte can not be reclaimed.
3810 *
3811 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3812 *	or lose information.  That is, this routine must actually
3813 *	insert this page into the given map NOW.
3814 */
3815int
3816pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3817    u_int flags, int8_t psind)
3818{
3819	pt1_entry_t *pte1p;
3820	pt2_entry_t *pte2p;
3821	pt2_entry_t npte2, opte2;
3822	pv_entry_t pv;
3823	vm_paddr_t opa, pa;
3824	vm_page_t mpte2, om;
3825	boolean_t wired;
3826
3827	va = trunc_page(va);
3828	mpte2 = NULL;
3829	wired = (flags & PMAP_ENTER_WIRED) != 0;
3830
3831	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3832	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3833	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3834	    va));
3835	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3836		VM_OBJECT_ASSERT_LOCKED(m->object);
3837
3838	rw_wlock(&pvh_global_lock);
3839	PMAP_LOCK(pmap);
3840	sched_pin();
3841
3842	/*
3843	 * In the case that a page table page is not
3844	 * resident, we are creating it here.
3845	 */
3846	if (va < VM_MAXUSER_ADDRESS) {
3847		mpte2 = pmap_allocpte2(pmap, va, flags);
3848		if (mpte2 == NULL) {
3849			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3850			    ("pmap_allocpte2 failed with sleep allowed"));
3851			sched_unpin();
3852			rw_wunlock(&pvh_global_lock);
3853			PMAP_UNLOCK(pmap);
3854			return (KERN_RESOURCE_SHORTAGE);
3855		}
3856	}
3857	pte1p = pmap_pte1(pmap, va);
3858	if (pte1_is_section(pte1_load(pte1p)))
3859		panic("%s: attempted on 1MB page", __func__);
3860	pte2p = pmap_pte2_quick(pmap, va);
3861	if (pte2p == NULL)
3862		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3863
3864	om = NULL;
3865	pa = VM_PAGE_TO_PHYS(m);
3866	opte2 = pte2_load(pte2p);
3867	opa = pte2_pa(opte2);
3868	/*
3869	 * Mapping has not changed, must be protection or wiring change.
3870	 */
3871	if (pte2_is_valid(opte2) && (opa == pa)) {
3872		/*
3873		 * Wiring change, just update stats. We don't worry about
3874		 * wiring PT2 pages as they remain resident as long as there
3875		 * are valid mappings in them. Hence, if a user page is wired,
3876		 * the PT2 page will be also.
3877		 */
3878		if (wired && !pte2_is_wired(opte2))
3879			pmap->pm_stats.wired_count++;
3880		else if (!wired && pte2_is_wired(opte2))
3881			pmap->pm_stats.wired_count--;
3882
3883		/*
3884		 * Remove extra pte2 reference
3885		 */
3886		if (mpte2)
3887			pt2_wirecount_dec(mpte2, pte1_index(va));
3888		if (pte2_is_managed(opte2))
3889			om = m;
3890		goto validate;
3891	}
3892
3893	/*
3894	 * QQQ: We think that changing physical address on writeable mapping
3895	 *      is not safe. Well, maybe on kernel address space with correct
3896	 *      locking, it can make a sense. However, we have no idea why
3897	 *      anyone should do that on user address space. Are we wrong?
3898	 */
3899	KASSERT((opa == 0) || (opa == pa) ||
3900	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3901	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3902	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3903
3904	pv = NULL;
3905
3906	/*
3907	 * Mapping has changed, invalidate old range and fall through to
3908	 * handle validating new mapping.
3909	 */
3910	if (opa) {
3911		if (pte2_is_wired(opte2))
3912			pmap->pm_stats.wired_count--;
3913		if (pte2_is_managed(opte2)) {
3914			om = PHYS_TO_VM_PAGE(opa);
3915			pv = pmap_pvh_remove(&om->md, pmap, va);
3916		}
3917		/*
3918		 * Remove extra pte2 reference
3919		 */
3920		if (mpte2 != NULL)
3921			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3922	} else
3923		pmap->pm_stats.resident_count++;
3924
3925	/*
3926	 * Enter on the PV list if part of our managed memory.
3927	 */
3928	if ((m->oflags & VPO_UNMANAGED) == 0) {
3929		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3930		    ("%s: managed mapping within the clean submap", __func__));
3931		if (pv == NULL)
3932			pv = get_pv_entry(pmap, FALSE);
3933		pv->pv_va = va;
3934		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3935	} else if (pv != NULL)
3936		free_pv_entry(pmap, pv);
3937
3938	/*
3939	 * Increment counters
3940	 */
3941	if (wired)
3942		pmap->pm_stats.wired_count++;
3943
3944validate:
3945	/*
3946	 * Now validate mapping with desired protection/wiring.
3947	 */
3948	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3949	if (prot & VM_PROT_WRITE) {
3950		if (pte2_is_managed(npte2))
3951			vm_page_aflag_set(m, PGA_WRITEABLE);
3952	}
3953	else
3954		npte2 |= PTE2_RO;
3955	if ((prot & VM_PROT_EXECUTE) == 0)
3956		npte2 |= PTE2_NX;
3957	if (wired)
3958		npte2 |= PTE2_W;
3959	if (va < VM_MAXUSER_ADDRESS)
3960		npte2 |= PTE2_U;
3961	if (pmap != kernel_pmap)
3962		npte2 |= PTE2_NG;
3963
3964	/*
3965	 * If the mapping or permission bits are different, we need
3966	 * to update the pte2.
3967	 *
3968	 * QQQ: Think again and again what to do
3969	 *      if the mapping is going to be changed!
3970	 */
3971	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
3972		/*
3973		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
3974		 * is set. Do it now, before the mapping is stored and made
3975		 * valid for hardware table walk. If done later, there is a race
3976		 * for other threads of current process in lazy loading case.
3977		 * Don't do it for kernel memory which is mapped with exec
3978		 * permission even if the memory isn't going to hold executable
3979		 * code. The only time when icache sync is needed is after
3980		 * kernel module is loaded and the relocation info is processed.
3981		 * And it's done in elf_cpu_load_file().
3982		 *
3983		 * QQQ: (1) Does it exist any better way where
3984		 *          or how to sync icache?
3985		 *      (2) Now, we do it on a page basis.
3986		 */
3987		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
3988		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
3989		    (opa != pa || (opte2 & PTE2_NX)))
3990			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
3991
3992		npte2 |= PTE2_A;
3993		if (flags & VM_PROT_WRITE)
3994			npte2 &= ~PTE2_NM;
3995		if (opte2 & PTE2_V) {
3996			/* Change mapping with break-before-make approach. */
3997			opte2 = pte2_load_clear(pte2p);
3998			pmap_tlb_flush(pmap, va);
3999			pte2_store(pte2p, npte2);
4000			if (opte2 & PTE2_A) {
4001				if (pte2_is_managed(opte2))
4002					vm_page_aflag_set(om, PGA_REFERENCED);
4003			}
4004			if (pte2_is_dirty(opte2)) {
4005				if (pte2_is_managed(opte2))
4006					vm_page_dirty(om);
4007			}
4008			if (pte2_is_managed(opte2) &&
4009			    TAILQ_EMPTY(&om->md.pv_list) &&
4010			    ((om->flags & PG_FICTITIOUS) != 0 ||
4011			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4012				vm_page_aflag_clear(om, PGA_WRITEABLE);
4013		} else
4014			pte2_store(pte2p, npte2);
4015	}
4016#if 0
4017	else {
4018		/*
4019		 * QQQ: In time when both access and not mofified bits are
4020		 *      emulated by software, this should not happen. Some
4021		 *      analysis is need, if this really happen. Missing
4022		 *      tlb flush somewhere could be the reason.
4023		 */
4024		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4025		    va, opte2, npte2);
4026	}
4027#endif
4028	/*
4029	 * If both the L2 page table page and the reservation are fully
4030	 * populated, then attempt promotion.
4031	 */
4032	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4033	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4034	    vm_reserv_level_iffullpop(m) == 0)
4035		pmap_promote_pte1(pmap, pte1p, va);
4036	sched_unpin();
4037	rw_wunlock(&pvh_global_lock);
4038	PMAP_UNLOCK(pmap);
4039	return (KERN_SUCCESS);
4040}
4041
4042/*
4043 *  Do the things to unmap a page in a process.
4044 */
4045static int
4046pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4047    struct spglist *free)
4048{
4049	pt2_entry_t opte2;
4050	vm_page_t m;
4051
4052	rw_assert(&pvh_global_lock, RA_WLOCKED);
4053	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4054
4055	/* Clear and invalidate the mapping. */
4056	opte2 = pte2_load_clear(pte2p);
4057	pmap_tlb_flush(pmap, va);
4058
4059	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4060	    __func__, pmap, va, opte2));
4061
4062	if (opte2 & PTE2_W)
4063		pmap->pm_stats.wired_count -= 1;
4064	pmap->pm_stats.resident_count -= 1;
4065	if (pte2_is_managed(opte2)) {
4066		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4067		if (pte2_is_dirty(opte2))
4068			vm_page_dirty(m);
4069		if (opte2 & PTE2_A)
4070			vm_page_aflag_set(m, PGA_REFERENCED);
4071		pmap_remove_entry(pmap, m, va);
4072	}
4073	return (pmap_unuse_pt2(pmap, va, free));
4074}
4075
4076/*
4077 *  Remove a single page from a process address space.
4078 */
4079static void
4080pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4081{
4082	pt2_entry_t *pte2p;
4083
4084	rw_assert(&pvh_global_lock, RA_WLOCKED);
4085	KASSERT(curthread->td_pinned > 0,
4086	    ("%s: curthread not pinned", __func__));
4087	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4088	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4089	    !pte2_is_valid(pte2_load(pte2p)))
4090		return;
4091	pmap_remove_pte2(pmap, pte2p, va, free);
4092}
4093
4094/*
4095 *  Remove the given range of addresses from the specified map.
4096 *
4097 *  It is assumed that the start and end are properly
4098 *  rounded to the page size.
4099 */
4100void
4101pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4102{
4103	vm_offset_t nextva;
4104	pt1_entry_t *pte1p, pte1;
4105	pt2_entry_t *pte2p, pte2;
4106	struct spglist free;
4107
4108	/*
4109	 * Perform an unsynchronized read. This is, however, safe.
4110	 */
4111	if (pmap->pm_stats.resident_count == 0)
4112		return;
4113
4114	SLIST_INIT(&free);
4115
4116	rw_wlock(&pvh_global_lock);
4117	sched_pin();
4118	PMAP_LOCK(pmap);
4119
4120	/*
4121	 * Special handling of removing one page. A very common
4122	 * operation and easy to short circuit some code.
4123	 */
4124	if (sva + PAGE_SIZE == eva) {
4125		pte1 = pte1_load(pmap_pte1(pmap, sva));
4126		if (pte1_is_link(pte1)) {
4127			pmap_remove_page(pmap, sva, &free);
4128			goto out;
4129		}
4130	}
4131
4132	for (; sva < eva; sva = nextva) {
4133		/*
4134		 * Calculate address for next L2 page table.
4135		 */
4136		nextva = pte1_trunc(sva + PTE1_SIZE);
4137		if (nextva < sva)
4138			nextva = eva;
4139		if (pmap->pm_stats.resident_count == 0)
4140			break;
4141
4142		pte1p = pmap_pte1(pmap, sva);
4143		pte1 = pte1_load(pte1p);
4144
4145		/*
4146		 * Weed out invalid mappings. Note: we assume that the L1 page
4147		 * table is always allocated, and in kernel virtual.
4148		 */
4149		if (pte1 == 0)
4150			continue;
4151
4152		if (pte1_is_section(pte1)) {
4153			/*
4154			 * Are we removing the entire large page?  If not,
4155			 * demote the mapping and fall through.
4156			 */
4157			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4158				pmap_remove_pte1(pmap, pte1p, sva, &free);
4159				continue;
4160			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4161				/* The large page mapping was destroyed. */
4162				continue;
4163			}
4164#ifdef INVARIANTS
4165			else {
4166				/* Update pte1 after demotion. */
4167				pte1 = pte1_load(pte1p);
4168			}
4169#endif
4170		}
4171
4172		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4173		    " is not link", __func__, pmap, sva, pte1, pte1p));
4174
4175		/*
4176		 * Limit our scan to either the end of the va represented
4177		 * by the current L2 page table page, or to the end of the
4178		 * range being removed.
4179		 */
4180		if (nextva > eva)
4181			nextva = eva;
4182
4183		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4184		    pte2p++, sva += PAGE_SIZE) {
4185			pte2 = pte2_load(pte2p);
4186			if (!pte2_is_valid(pte2))
4187				continue;
4188			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4189				break;
4190		}
4191	}
4192out:
4193	sched_unpin();
4194	rw_wunlock(&pvh_global_lock);
4195	PMAP_UNLOCK(pmap);
4196	pmap_free_zero_pages(&free);
4197}
4198
4199/*
4200 *	Routine:	pmap_remove_all
4201 *	Function:
4202 *		Removes this physical page from
4203 *		all physical maps in which it resides.
4204 *		Reflects back modify bits to the pager.
4205 *
4206 *	Notes:
4207 *		Original versions of this routine were very
4208 *		inefficient because they iteratively called
4209 *		pmap_remove (slow...)
4210 */
4211
4212void
4213pmap_remove_all(vm_page_t m)
4214{
4215	struct md_page *pvh;
4216	pv_entry_t pv;
4217	pmap_t pmap;
4218	pt2_entry_t *pte2p, opte2;
4219	pt1_entry_t *pte1p;
4220	vm_offset_t va;
4221	struct spglist free;
4222
4223	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4224	    ("%s: page %p is not managed", __func__, m));
4225	SLIST_INIT(&free);
4226	rw_wlock(&pvh_global_lock);
4227	sched_pin();
4228	if ((m->flags & PG_FICTITIOUS) != 0)
4229		goto small_mappings;
4230	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4231	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4232		va = pv->pv_va;
4233		pmap = PV_PMAP(pv);
4234		PMAP_LOCK(pmap);
4235		pte1p = pmap_pte1(pmap, va);
4236		(void)pmap_demote_pte1(pmap, pte1p, va);
4237		PMAP_UNLOCK(pmap);
4238	}
4239small_mappings:
4240	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4241		pmap = PV_PMAP(pv);
4242		PMAP_LOCK(pmap);
4243		pmap->pm_stats.resident_count--;
4244		pte1p = pmap_pte1(pmap, pv->pv_va);
4245		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4246		    "a 1mpage in page %p's pv list", __func__, m));
4247		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4248		opte2 = pte2_load_clear(pte2p);
4249		pmap_tlb_flush(pmap, pv->pv_va);
4250		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4251		    __func__, pmap, pv->pv_va));
4252		if (pte2_is_wired(opte2))
4253			pmap->pm_stats.wired_count--;
4254		if (opte2 & PTE2_A)
4255			vm_page_aflag_set(m, PGA_REFERENCED);
4256
4257		/*
4258		 * Update the vm_page_t clean and reference bits.
4259		 */
4260		if (pte2_is_dirty(opte2))
4261			vm_page_dirty(m);
4262		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4263		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4264		free_pv_entry(pmap, pv);
4265		PMAP_UNLOCK(pmap);
4266	}
4267	vm_page_aflag_clear(m, PGA_WRITEABLE);
4268	sched_unpin();
4269	rw_wunlock(&pvh_global_lock);
4270	pmap_free_zero_pages(&free);
4271}
4272
4273/*
4274 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4275 *  good coding style, a.k.a. 80 character line width limit hell.
4276 */
4277static __inline void
4278pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4279    struct spglist *free)
4280{
4281	vm_paddr_t pa;
4282	vm_page_t m, mt, mpt2pg;
4283	struct md_page *pvh;
4284
4285	pa = pte1_pa(pte1);
4286	m = PHYS_TO_VM_PAGE(pa);
4287
4288	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4289	    __func__, m, m->phys_addr, pa));
4290	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4291	    m < &vm_page_array[vm_page_array_size],
4292	    ("%s: bad pte1 %#x", __func__, pte1));
4293
4294	if (pte1_is_dirty(pte1)) {
4295		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4296			vm_page_dirty(mt);
4297	}
4298
4299	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4300	pvh = pa_to_pvh(pa);
4301	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4302	if (TAILQ_EMPTY(&pvh->pv_list)) {
4303		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4304			if (TAILQ_EMPTY(&mt->md.pv_list))
4305				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4306	}
4307	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4308	if (mpt2pg != NULL)
4309		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4310}
4311
4312/*
4313 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4314 *  good coding style, a.k.a. 80 character line width limit hell.
4315 */
4316static __inline void
4317pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4318    struct spglist *free)
4319{
4320	vm_paddr_t pa;
4321	vm_page_t m;
4322	struct md_page *pvh;
4323
4324	pa = pte2_pa(pte2);
4325	m = PHYS_TO_VM_PAGE(pa);
4326
4327	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4328	    __func__, m, m->phys_addr, pa));
4329	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4330	    m < &vm_page_array[vm_page_array_size],
4331	    ("%s: bad pte2 %#x", __func__, pte2));
4332
4333	if (pte2_is_dirty(pte2))
4334		vm_page_dirty(m);
4335
4336	pmap->pm_stats.resident_count--;
4337	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4338	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4339		pvh = pa_to_pvh(pa);
4340		if (TAILQ_EMPTY(&pvh->pv_list))
4341			vm_page_aflag_clear(m, PGA_WRITEABLE);
4342	}
4343	pmap_unuse_pt2(pmap, pv->pv_va, free);
4344}
4345
4346/*
4347 *  Remove all pages from specified address space this aids process
4348 *  exit speeds. Also, this code is special cased for current process
4349 *  only, but can have the more generic (and slightly slower) mode enabled.
4350 *  This is much faster than pmap_remove in the case of running down
4351 *  an entire address space.
4352 */
4353void
4354pmap_remove_pages(pmap_t pmap)
4355{
4356	pt1_entry_t *pte1p, pte1;
4357	pt2_entry_t *pte2p, pte2;
4358	pv_entry_t pv;
4359	struct pv_chunk *pc, *npc;
4360	struct spglist free;
4361	int field, idx;
4362	int32_t bit;
4363	uint32_t inuse, bitmask;
4364	boolean_t allfree;
4365
4366	/*
4367	 * Assert that the given pmap is only active on the current
4368	 * CPU.  Unfortunately, we cannot block another CPU from
4369	 * activating the pmap while this function is executing.
4370	 */
4371	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4372	    ("%s: non-current pmap %p", __func__, pmap));
4373#if defined(SMP) && defined(INVARIANTS)
4374	{
4375		cpuset_t other_cpus;
4376
4377		sched_pin();
4378		other_cpus = pmap->pm_active;
4379		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4380		sched_unpin();
4381		KASSERT(CPU_EMPTY(&other_cpus),
4382		    ("%s: pmap %p active on other cpus", __func__, pmap));
4383	}
4384#endif
4385	SLIST_INIT(&free);
4386	rw_wlock(&pvh_global_lock);
4387	PMAP_LOCK(pmap);
4388	sched_pin();
4389	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4390		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4391		    __func__, pmap, pc->pc_pmap));
4392		allfree = TRUE;
4393		for (field = 0; field < _NPCM; field++) {
4394			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4395			while (inuse != 0) {
4396				bit = ffs(inuse) - 1;
4397				bitmask = 1UL << bit;
4398				idx = field * 32 + bit;
4399				pv = &pc->pc_pventry[idx];
4400				inuse &= ~bitmask;
4401
4402				/*
4403				 * Note that we cannot remove wired pages
4404				 * from a process' mapping at this time
4405				 */
4406				pte1p = pmap_pte1(pmap, pv->pv_va);
4407				pte1 = pte1_load(pte1p);
4408				if (pte1_is_section(pte1)) {
4409					if (pte1_is_wired(pte1))  {
4410						allfree = FALSE;
4411						continue;
4412					}
4413					pte1_clear(pte1p);
4414					pmap_remove_pte1_quick(pmap, pte1, pv,
4415					    &free);
4416				}
4417				else if (pte1_is_link(pte1)) {
4418					pte2p = pt2map_entry(pv->pv_va);
4419					pte2 = pte2_load(pte2p);
4420
4421					if (!pte2_is_valid(pte2)) {
4422						printf("%s: pmap %p va %#x "
4423						    "pte2 %#x\n", __func__,
4424						    pmap, pv->pv_va, pte2);
4425						panic("bad pte2");
4426					}
4427
4428					if (pte2_is_wired(pte2))   {
4429						allfree = FALSE;
4430						continue;
4431					}
4432					pte2_clear(pte2p);
4433					pmap_remove_pte2_quick(pmap, pte2, pv,
4434					    &free);
4435				} else {
4436					printf("%s: pmap %p va %#x pte1 %#x\n",
4437					    __func__, pmap, pv->pv_va, pte1);
4438					panic("bad pte1");
4439				}
4440
4441				/* Mark free */
4442				PV_STAT(pv_entry_frees++);
4443				PV_STAT(pv_entry_spare++);
4444				pv_entry_count--;
4445				pc->pc_map[field] |= bitmask;
4446			}
4447		}
4448		if (allfree) {
4449			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4450			free_pv_chunk(pc);
4451		}
4452	}
4453	tlb_flush_all_ng_local();
4454	sched_unpin();
4455	rw_wunlock(&pvh_global_lock);
4456	PMAP_UNLOCK(pmap);
4457	pmap_free_zero_pages(&free);
4458}
4459
4460/*
4461 *  This code makes some *MAJOR* assumptions:
4462 *  1. Current pmap & pmap exists.
4463 *  2. Not wired.
4464 *  3. Read access.
4465 *  4. No L2 page table pages.
4466 *  but is *MUCH* faster than pmap_enter...
4467 */
4468static vm_page_t
4469pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4470    vm_prot_t prot, vm_page_t mpt2pg)
4471{
4472	pt2_entry_t *pte2p, pte2;
4473	vm_paddr_t pa;
4474	struct spglist free;
4475	uint32_t l2prot;
4476
4477	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4478	    (m->oflags & VPO_UNMANAGED) != 0,
4479	    ("%s: managed mapping within the clean submap", __func__));
4480	rw_assert(&pvh_global_lock, RA_WLOCKED);
4481	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4482
4483	/*
4484	 * In the case that a L2 page table page is not
4485	 * resident, we are creating it here.
4486	 */
4487	if (va < VM_MAXUSER_ADDRESS) {
4488		u_int pte1_idx;
4489		pt1_entry_t pte1, *pte1p;
4490		vm_paddr_t pt2_pa;
4491
4492		/*
4493		 * Get L1 page table things.
4494		 */
4495		pte1_idx = pte1_index(va);
4496		pte1p = pmap_pte1(pmap, va);
4497		pte1 = pte1_load(pte1p);
4498
4499		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4500			/*
4501			 * Each of NPT2_IN_PG L2 page tables on the page can
4502			 * come here. Make sure that associated L1 page table
4503			 * link is established.
4504			 *
4505			 * QQQ: It comes that we don't establish all links to
4506			 *      L2 page tables for newly allocated L2 page
4507			 *      tables page.
4508			 */
4509			KASSERT(!pte1_is_section(pte1),
4510			    ("%s: pte1 %#x is section", __func__, pte1));
4511			if (!pte1_is_link(pte1)) {
4512				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4513				    pte1_idx);
4514				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4515			}
4516			pt2_wirecount_inc(mpt2pg, pte1_idx);
4517		} else {
4518			/*
4519			 * If the L2 page table page is mapped, we just
4520			 * increment the hold count, and activate it.
4521			 */
4522			if (pte1_is_section(pte1)) {
4523				return (NULL);
4524			} else if (pte1_is_link(pte1)) {
4525				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4526				pt2_wirecount_inc(mpt2pg, pte1_idx);
4527			} else {
4528				mpt2pg = _pmap_allocpte2(pmap, va,
4529				    PMAP_ENTER_NOSLEEP);
4530				if (mpt2pg == NULL)
4531					return (NULL);
4532			}
4533		}
4534	} else {
4535		mpt2pg = NULL;
4536	}
4537
4538	/*
4539	 * This call to pt2map_entry() makes the assumption that we are
4540	 * entering the page into the current pmap.  In order to support
4541	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4542	 * But that isn't as quick as pt2map_entry().
4543	 */
4544	pte2p = pt2map_entry(va);
4545	pte2 = pte2_load(pte2p);
4546	if (pte2_is_valid(pte2)) {
4547		if (mpt2pg != NULL) {
4548			/*
4549			 * Remove extra pte2 reference
4550			 */
4551			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4552			mpt2pg = NULL;
4553		}
4554		return (NULL);
4555	}
4556
4557	/*
4558	 * Enter on the PV list if part of our managed memory.
4559	 */
4560	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4561	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4562		if (mpt2pg != NULL) {
4563			SLIST_INIT(&free);
4564			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4565				pmap_tlb_flush(pmap, va);
4566				pmap_free_zero_pages(&free);
4567			}
4568
4569			mpt2pg = NULL;
4570		}
4571		return (NULL);
4572	}
4573
4574	/*
4575	 * Increment counters
4576	 */
4577	pmap->pm_stats.resident_count++;
4578
4579	/*
4580	 * Now validate mapping with RO protection
4581	 */
4582	pa = VM_PAGE_TO_PHYS(m);
4583	l2prot = PTE2_RO | PTE2_NM;
4584	if (va < VM_MAXUSER_ADDRESS)
4585		l2prot |= PTE2_U | PTE2_NG;
4586	if ((prot & VM_PROT_EXECUTE) == 0)
4587		l2prot |= PTE2_NX;
4588	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4589		/*
4590		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4591		 * is set. QQQ: For more info, see comments in pmap_enter().
4592		 */
4593		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4594	}
4595	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4596
4597	return (mpt2pg);
4598}
4599
4600void
4601pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4602{
4603
4604	rw_wlock(&pvh_global_lock);
4605	PMAP_LOCK(pmap);
4606	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4607	rw_wunlock(&pvh_global_lock);
4608	PMAP_UNLOCK(pmap);
4609}
4610
4611/*
4612 *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4613 *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4614 *  blocking, (2) a mapping already exists at the specified virtual address, or
4615 *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4616 */
4617static boolean_t
4618pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4619{
4620	pt1_entry_t *pte1p;
4621	vm_paddr_t pa;
4622	uint32_t l1prot;
4623
4624	rw_assert(&pvh_global_lock, RA_WLOCKED);
4625	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4626	pte1p = pmap_pte1(pmap, va);
4627	if (pte1_is_valid(pte1_load(pte1p))) {
4628		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4629		    va, pmap);
4630		return (FALSE);
4631	}
4632	if ((m->oflags & VPO_UNMANAGED) == 0) {
4633		/*
4634		 * Abort this mapping if its PV entry could not be created.
4635		 */
4636		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4637			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4638			    __func__, va, pmap);
4639			return (FALSE);
4640		}
4641	}
4642	/*
4643	 * Increment counters.
4644	 */
4645	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4646
4647	/*
4648	 * Map the section.
4649	 *
4650	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4651	 *      made readonly?
4652	 */
4653	pa = VM_PAGE_TO_PHYS(m);
4654	l1prot = PTE1_RO | PTE1_NM;
4655	if (va < VM_MAXUSER_ADDRESS)
4656		l1prot |= PTE1_U | PTE1_NG;
4657	if ((prot & VM_PROT_EXECUTE) == 0)
4658		l1prot |= PTE1_NX;
4659	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4660		/*
4661		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4662		 * is set. QQQ: For more info, see comments in pmap_enter().
4663		 */
4664		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4665	}
4666	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4667
4668	pmap_pte1_mappings++;
4669	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4670	    pmap);
4671	return (TRUE);
4672}
4673
4674/*
4675 *  Maps a sequence of resident pages belonging to the same object.
4676 *  The sequence begins with the given page m_start.  This page is
4677 *  mapped at the given virtual address start.  Each subsequent page is
4678 *  mapped at a virtual address that is offset from start by the same
4679 *  amount as the page is offset from m_start within the object.  The
4680 *  last page in the sequence is the page with the largest offset from
4681 *  m_start that can be mapped at a virtual address less than the given
4682 *  virtual address end.  Not every virtual page between start and end
4683 *  is mapped; only those for which a resident page exists with the
4684 *  corresponding offset from m_start are mapped.
4685 */
4686void
4687pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4688    vm_page_t m_start, vm_prot_t prot)
4689{
4690	vm_offset_t va;
4691	vm_page_t m, mpt2pg;
4692	vm_pindex_t diff, psize;
4693
4694	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4695	    __func__, pmap, start, end, m_start, prot));
4696
4697	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4698	psize = atop(end - start);
4699	mpt2pg = NULL;
4700	m = m_start;
4701	rw_wlock(&pvh_global_lock);
4702	PMAP_LOCK(pmap);
4703	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4704		va = start + ptoa(diff);
4705		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4706		    m->psind == 1 && sp_enabled &&
4707		    pmap_enter_pte1(pmap, va, m, prot))
4708			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4709		else
4710			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4711			    mpt2pg);
4712		m = TAILQ_NEXT(m, listq);
4713	}
4714	rw_wunlock(&pvh_global_lock);
4715	PMAP_UNLOCK(pmap);
4716}
4717
4718/*
4719 *  This code maps large physical mmap regions into the
4720 *  processor address space.  Note that some shortcuts
4721 *  are taken, but the code works.
4722 */
4723void
4724pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4725    vm_pindex_t pindex, vm_size_t size)
4726{
4727	pt1_entry_t *pte1p;
4728	vm_paddr_t pa, pte2_pa;
4729	vm_page_t p;
4730	vm_memattr_t pat_mode;
4731	u_int l1attr, l1prot;
4732
4733	VM_OBJECT_ASSERT_WLOCKED(object);
4734	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4735	    ("%s: non-device object", __func__));
4736	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4737		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4738			return;
4739		p = vm_page_lookup(object, pindex);
4740		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4741		    ("%s: invalid page %p", __func__, p));
4742		pat_mode = p->md.pat_mode;
4743
4744		/*
4745		 * Abort the mapping if the first page is not physically
4746		 * aligned to a 1MB page boundary.
4747		 */
4748		pte2_pa = VM_PAGE_TO_PHYS(p);
4749		if (pte2_pa & PTE1_OFFSET)
4750			return;
4751
4752		/*
4753		 * Skip the first page. Abort the mapping if the rest of
4754		 * the pages are not physically contiguous or have differing
4755		 * memory attributes.
4756		 */
4757		p = TAILQ_NEXT(p, listq);
4758		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4759		    pa += PAGE_SIZE) {
4760			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4761			    ("%s: invalid page %p", __func__, p));
4762			if (pa != VM_PAGE_TO_PHYS(p) ||
4763			    pat_mode != p->md.pat_mode)
4764				return;
4765			p = TAILQ_NEXT(p, listq);
4766		}
4767
4768		/*
4769		 * Map using 1MB pages.
4770		 *
4771		 * QQQ: Well, we are mapping a section, so same condition must
4772		 * be hold like during promotion. It looks that only RW mapping
4773		 * is done here, so readonly mapping must be done elsewhere.
4774		 */
4775		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4776		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4777		PMAP_LOCK(pmap);
4778		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4779			pte1p = pmap_pte1(pmap, addr);
4780			if (!pte1_is_valid(pte1_load(pte1p))) {
4781				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4782				pmap->pm_stats.resident_count += PTE1_SIZE /
4783				    PAGE_SIZE;
4784				pmap_pte1_mappings++;
4785			}
4786			/* Else continue on if the PTE1 is already valid. */
4787			addr += PTE1_SIZE;
4788		}
4789		PMAP_UNLOCK(pmap);
4790	}
4791}
4792
4793/*
4794 *  Do the things to protect a 1mpage in a process.
4795 */
4796static void
4797pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4798    vm_prot_t prot)
4799{
4800	pt1_entry_t npte1, opte1;
4801	vm_offset_t eva, va;
4802	vm_page_t m;
4803
4804	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4805	KASSERT((sva & PTE1_OFFSET) == 0,
4806	    ("%s: sva is not 1mpage aligned", __func__));
4807
4808	opte1 = npte1 = pte1_load(pte1p);
4809	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4810		eva = sva + PTE1_SIZE;
4811		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4812		    va < eva; va += PAGE_SIZE, m++)
4813			vm_page_dirty(m);
4814	}
4815	if ((prot & VM_PROT_WRITE) == 0)
4816		npte1 |= PTE1_RO | PTE1_NM;
4817	if ((prot & VM_PROT_EXECUTE) == 0)
4818		npte1 |= PTE1_NX;
4819
4820	/*
4821	 * QQQ: Herein, execute permission is never set.
4822	 *      It only can be cleared. So, no icache
4823	 *      syncing is needed.
4824	 */
4825
4826	if (npte1 != opte1) {
4827		pte1_store(pte1p, npte1);
4828		pmap_tlb_flush(pmap, sva);
4829	}
4830}
4831
4832/*
4833 *	Set the physical protection on the
4834 *	specified range of this map as requested.
4835 */
4836void
4837pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4838{
4839	boolean_t pv_lists_locked;
4840	vm_offset_t nextva;
4841	pt1_entry_t *pte1p, pte1;
4842	pt2_entry_t *pte2p, opte2, npte2;
4843
4844	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4845	if (prot == VM_PROT_NONE) {
4846		pmap_remove(pmap, sva, eva);
4847		return;
4848	}
4849
4850	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4851	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4852		return;
4853
4854	if (pmap_is_current(pmap))
4855		pv_lists_locked = FALSE;
4856	else {
4857		pv_lists_locked = TRUE;
4858resume:
4859		rw_wlock(&pvh_global_lock);
4860		sched_pin();
4861	}
4862
4863	PMAP_LOCK(pmap);
4864	for (; sva < eva; sva = nextva) {
4865		/*
4866		 * Calculate address for next L2 page table.
4867		 */
4868		nextva = pte1_trunc(sva + PTE1_SIZE);
4869		if (nextva < sva)
4870			nextva = eva;
4871
4872		pte1p = pmap_pte1(pmap, sva);
4873		pte1 = pte1_load(pte1p);
4874
4875		/*
4876		 * Weed out invalid mappings. Note: we assume that L1 page
4877		 * page table is always allocated, and in kernel virtual.
4878		 */
4879		if (pte1 == 0)
4880			continue;
4881
4882		if (pte1_is_section(pte1)) {
4883			/*
4884			 * Are we protecting the entire large page?  If not,
4885			 * demote the mapping and fall through.
4886			 */
4887			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4888				pmap_protect_pte1(pmap, pte1p, sva, prot);
4889				continue;
4890			} else {
4891				if (!pv_lists_locked) {
4892					pv_lists_locked = TRUE;
4893					if (!rw_try_wlock(&pvh_global_lock)) {
4894						PMAP_UNLOCK(pmap);
4895						goto resume;
4896					}
4897					sched_pin();
4898				}
4899				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4900					/*
4901					 * The large page mapping
4902					 * was destroyed.
4903					 */
4904					continue;
4905				}
4906#ifdef INVARIANTS
4907				else {
4908					/* Update pte1 after demotion */
4909					pte1 = pte1_load(pte1p);
4910				}
4911#endif
4912			}
4913		}
4914
4915		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4916		    " is not link", __func__, pmap, sva, pte1, pte1p));
4917
4918		/*
4919		 * Limit our scan to either the end of the va represented
4920		 * by the current L2 page table page, or to the end of the
4921		 * range being protected.
4922		 */
4923		if (nextva > eva)
4924			nextva = eva;
4925
4926		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4927		    sva += PAGE_SIZE) {
4928			vm_page_t m;
4929
4930			opte2 = npte2 = pte2_load(pte2p);
4931			if (!pte2_is_valid(opte2))
4932				continue;
4933
4934			if ((prot & VM_PROT_WRITE) == 0) {
4935				if (pte2_is_managed(opte2) &&
4936				    pte2_is_dirty(opte2)) {
4937					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4938					vm_page_dirty(m);
4939				}
4940				npte2 |= PTE2_RO | PTE2_NM;
4941			}
4942
4943			if ((prot & VM_PROT_EXECUTE) == 0)
4944				npte2 |= PTE2_NX;
4945
4946			/*
4947			 * QQQ: Herein, execute permission is never set.
4948			 *      It only can be cleared. So, no icache
4949			 *      syncing is needed.
4950			 */
4951
4952			if (npte2 != opte2) {
4953				pte2_store(pte2p, npte2);
4954				pmap_tlb_flush(pmap, sva);
4955			}
4956		}
4957	}
4958	if (pv_lists_locked) {
4959		sched_unpin();
4960		rw_wunlock(&pvh_global_lock);
4961	}
4962	PMAP_UNLOCK(pmap);
4963}
4964
4965/*
4966 *	pmap_pvh_wired_mappings:
4967 *
4968 *	Return the updated number "count" of managed mappings that are wired.
4969 */
4970static int
4971pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4972{
4973	pmap_t pmap;
4974	pt1_entry_t pte1;
4975	pt2_entry_t pte2;
4976	pv_entry_t pv;
4977
4978	rw_assert(&pvh_global_lock, RA_WLOCKED);
4979	sched_pin();
4980	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4981		pmap = PV_PMAP(pv);
4982		PMAP_LOCK(pmap);
4983		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
4984		if (pte1_is_section(pte1)) {
4985			if (pte1_is_wired(pte1))
4986				count++;
4987		} else {
4988			KASSERT(pte1_is_link(pte1),
4989			    ("%s: pte1 %#x is not link", __func__, pte1));
4990			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
4991			if (pte2_is_wired(pte2))
4992				count++;
4993		}
4994		PMAP_UNLOCK(pmap);
4995	}
4996	sched_unpin();
4997	return (count);
4998}
4999
5000/*
5001 *	pmap_page_wired_mappings:
5002 *
5003 *	Return the number of managed mappings to the given physical page
5004 *	that are wired.
5005 */
5006int
5007pmap_page_wired_mappings(vm_page_t m)
5008{
5009	int count;
5010
5011	count = 0;
5012	if ((m->oflags & VPO_UNMANAGED) != 0)
5013		return (count);
5014	rw_wlock(&pvh_global_lock);
5015	count = pmap_pvh_wired_mappings(&m->md, count);
5016	if ((m->flags & PG_FICTITIOUS) == 0) {
5017		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5018		    count);
5019	}
5020	rw_wunlock(&pvh_global_lock);
5021	return (count);
5022}
5023
5024/*
5025 *  Returns TRUE if any of the given mappings were used to modify
5026 *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5027 *  mappings are supported.
5028 */
5029static boolean_t
5030pmap_is_modified_pvh(struct md_page *pvh)
5031{
5032	pv_entry_t pv;
5033	pt1_entry_t pte1;
5034	pt2_entry_t pte2;
5035	pmap_t pmap;
5036	boolean_t rv;
5037
5038	rw_assert(&pvh_global_lock, RA_WLOCKED);
5039	rv = FALSE;
5040	sched_pin();
5041	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5042		pmap = PV_PMAP(pv);
5043		PMAP_LOCK(pmap);
5044		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5045		if (pte1_is_section(pte1)) {
5046			rv = pte1_is_dirty(pte1);
5047		} else {
5048			KASSERT(pte1_is_link(pte1),
5049			    ("%s: pte1 %#x is not link", __func__, pte1));
5050			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5051			rv = pte2_is_dirty(pte2);
5052		}
5053		PMAP_UNLOCK(pmap);
5054		if (rv)
5055			break;
5056	}
5057	sched_unpin();
5058	return (rv);
5059}
5060
5061/*
5062 *	pmap_is_modified:
5063 *
5064 *	Return whether or not the specified physical page was modified
5065 *	in any physical maps.
5066 */
5067boolean_t
5068pmap_is_modified(vm_page_t m)
5069{
5070	boolean_t rv;
5071
5072	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5073	    ("%s: page %p is not managed", __func__, m));
5074
5075	/*
5076	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5077	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5078	 * is clear, no PTE2s can have PG_M set.
5079	 */
5080	VM_OBJECT_ASSERT_WLOCKED(m->object);
5081	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5082		return (FALSE);
5083	rw_wlock(&pvh_global_lock);
5084	rv = pmap_is_modified_pvh(&m->md) ||
5085	    ((m->flags & PG_FICTITIOUS) == 0 &&
5086	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5087	rw_wunlock(&pvh_global_lock);
5088	return (rv);
5089}
5090
5091/*
5092 *	pmap_is_prefaultable:
5093 *
5094 *	Return whether or not the specified virtual address is eligible
5095 *	for prefault.
5096 */
5097boolean_t
5098pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5099{
5100	pt1_entry_t pte1;
5101	pt2_entry_t pte2;
5102	boolean_t rv;
5103
5104	rv = FALSE;
5105	PMAP_LOCK(pmap);
5106	pte1 = pte1_load(pmap_pte1(pmap, addr));
5107	if (pte1_is_link(pte1)) {
5108		pte2 = pte2_load(pt2map_entry(addr));
5109		rv = !pte2_is_valid(pte2) ;
5110	}
5111	PMAP_UNLOCK(pmap);
5112	return (rv);
5113}
5114
5115/*
5116 *  Returns TRUE if any of the given mappings were referenced and FALSE
5117 *  otherwise. Both page and 1mpage mappings are supported.
5118 */
5119static boolean_t
5120pmap_is_referenced_pvh(struct md_page *pvh)
5121{
5122
5123	pv_entry_t pv;
5124	pt1_entry_t pte1;
5125	pt2_entry_t pte2;
5126	pmap_t pmap;
5127	boolean_t rv;
5128
5129	rw_assert(&pvh_global_lock, RA_WLOCKED);
5130	rv = FALSE;
5131	sched_pin();
5132	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5133		pmap = PV_PMAP(pv);
5134		PMAP_LOCK(pmap);
5135		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5136		if (pte1_is_section(pte1)) {
5137			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5138		} else {
5139			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5140			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5141		}
5142		PMAP_UNLOCK(pmap);
5143		if (rv)
5144			break;
5145	}
5146	sched_unpin();
5147	return (rv);
5148}
5149
5150/*
5151 *	pmap_is_referenced:
5152 *
5153 *	Return whether or not the specified physical page was referenced
5154 *	in any physical maps.
5155 */
5156boolean_t
5157pmap_is_referenced(vm_page_t m)
5158{
5159	boolean_t rv;
5160
5161	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5162	    ("%s: page %p is not managed", __func__, m));
5163	rw_wlock(&pvh_global_lock);
5164	rv = pmap_is_referenced_pvh(&m->md) ||
5165	    ((m->flags & PG_FICTITIOUS) == 0 &&
5166	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5167	rw_wunlock(&pvh_global_lock);
5168	return (rv);
5169}
5170
5171#define	PMAP_TS_REFERENCED_MAX	5
5172
5173/*
5174 *	pmap_ts_referenced:
5175 *
5176 *	Return a count of reference bits for a page, clearing those bits.
5177 *	It is not necessary for every reference bit to be cleared, but it
5178 *	is necessary that 0 only be returned when there are truly no
5179 *	reference bits set.
5180 *
5181 *	XXX: The exact number of bits to check and clear is a matter that
5182 *	should be tested and standardized at some point in the future for
5183 *	optimal aging of shared pages.
5184 *
5185 *	As an optimization, update the page's dirty field if a modified bit is
5186 *	found while counting reference bits.  This opportunistic update can be
5187 *	performed at low cost and can eliminate the need for some future calls
5188 *	to pmap_is_modified().  However, since this function stops after
5189 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5190 *	dirty pages.  Those dirty pages will only be detected by a future call
5191 *	to pmap_is_modified().
5192 */
5193int
5194pmap_ts_referenced(vm_page_t m)
5195{
5196	struct md_page *pvh;
5197	pv_entry_t pv, pvf;
5198	pmap_t pmap;
5199	pt1_entry_t  *pte1p, opte1;
5200	pt2_entry_t *pte2p, opte2;
5201	vm_paddr_t pa;
5202	int rtval = 0;
5203
5204	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5205	    ("%s: page %p is not managed", __func__, m));
5206	pa = VM_PAGE_TO_PHYS(m);
5207	pvh = pa_to_pvh(pa);
5208	rw_wlock(&pvh_global_lock);
5209	sched_pin();
5210	if ((m->flags & PG_FICTITIOUS) != 0 ||
5211	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5212		goto small_mappings;
5213	pv = pvf;
5214	do {
5215		pmap = PV_PMAP(pv);
5216		PMAP_LOCK(pmap);
5217		pte1p = pmap_pte1(pmap, pv->pv_va);
5218		opte1 = pte1_load(pte1p);
5219		if (pte1_is_dirty(opte1)) {
5220			/*
5221			 * Although "opte1" is mapping a 1MB page, because
5222			 * this function is called at a 4KB page granularity,
5223			 * we only update the 4KB page under test.
5224			 */
5225			vm_page_dirty(m);
5226		}
5227		if ((opte1 & PTE1_A) != 0) {
5228			/*
5229			 * Since this reference bit is shared by 256 4KB pages,
5230			 * it should not be cleared every time it is tested.
5231			 * Apply a simple "hash" function on the physical page
5232			 * number, the virtual section number, and the pmap
5233			 * address to select one 4KB page out of the 256
5234			 * on which testing the reference bit will result
5235			 * in clearing that bit. This function is designed
5236			 * to avoid the selection of the same 4KB page
5237			 * for every 1MB page mapping.
5238			 *
5239			 * On demotion, a mapping that hasn't been referenced
5240			 * is simply destroyed.  To avoid the possibility of a
5241			 * subsequent page fault on a demoted wired mapping,
5242			 * always leave its reference bit set.  Moreover,
5243			 * since the section is wired, the current state of
5244			 * its reference bit won't affect page replacement.
5245			 */
5246			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5247			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5248			    !pte1_is_wired(opte1)) {
5249				pte1_clear_bit(pte1p, PTE1_A);
5250				pmap_tlb_flush(pmap, pv->pv_va);
5251			}
5252			rtval++;
5253		}
5254		PMAP_UNLOCK(pmap);
5255		/* Rotate the PV list if it has more than one entry. */
5256		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5257			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5258			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5259		}
5260		if (rtval >= PMAP_TS_REFERENCED_MAX)
5261			goto out;
5262	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5263small_mappings:
5264	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5265		goto out;
5266	pv = pvf;
5267	do {
5268		pmap = PV_PMAP(pv);
5269		PMAP_LOCK(pmap);
5270		pte1p = pmap_pte1(pmap, pv->pv_va);
5271		KASSERT(pte1_is_link(pte1_load(pte1p)),
5272		    ("%s: not found a link in page %p's pv list", __func__, m));
5273
5274		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5275		opte2 = pte2_load(pte2p);
5276		if (pte2_is_dirty(opte2))
5277			vm_page_dirty(m);
5278		if ((opte2 & PTE2_A) != 0) {
5279			pte2_clear_bit(pte2p, PTE2_A);
5280			pmap_tlb_flush(pmap, pv->pv_va);
5281			rtval++;
5282		}
5283		PMAP_UNLOCK(pmap);
5284		/* Rotate the PV list if it has more than one entry. */
5285		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5286			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5287			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5288		}
5289	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5290	    PMAP_TS_REFERENCED_MAX);
5291out:
5292	sched_unpin();
5293	rw_wunlock(&pvh_global_lock);
5294	return (rtval);
5295}
5296
5297/*
5298 *	Clear the wired attribute from the mappings for the specified range of
5299 *	addresses in the given pmap.  Every valid mapping within that range
5300 *	must have the wired attribute set.  In contrast, invalid mappings
5301 *	cannot have the wired attribute set, so they are ignored.
5302 *
5303 *	The wired attribute of the page table entry is not a hardware feature,
5304 *	so there is no need to invalidate any TLB entries.
5305 */
5306void
5307pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5308{
5309	vm_offset_t nextva;
5310	pt1_entry_t *pte1p, pte1;
5311	pt2_entry_t *pte2p, pte2;
5312	boolean_t pv_lists_locked;
5313
5314	if (pmap_is_current(pmap))
5315		pv_lists_locked = FALSE;
5316	else {
5317		pv_lists_locked = TRUE;
5318resume:
5319		rw_wlock(&pvh_global_lock);
5320		sched_pin();
5321	}
5322	PMAP_LOCK(pmap);
5323	for (; sva < eva; sva = nextva) {
5324		nextva = pte1_trunc(sva + PTE1_SIZE);
5325		if (nextva < sva)
5326			nextva = eva;
5327
5328		pte1p = pmap_pte1(pmap, sva);
5329		pte1 = pte1_load(pte1p);
5330
5331		/*
5332		 * Weed out invalid mappings. Note: we assume that L1 page
5333		 * page table is always allocated, and in kernel virtual.
5334		 */
5335		if (pte1 == 0)
5336			continue;
5337
5338		if (pte1_is_section(pte1)) {
5339			if (!pte1_is_wired(pte1))
5340				panic("%s: pte1 %#x not wired", __func__, pte1);
5341
5342			/*
5343			 * Are we unwiring the entire large page?  If not,
5344			 * demote the mapping and fall through.
5345			 */
5346			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5347				pte1_clear_bit(pte1p, PTE1_W);
5348				pmap->pm_stats.wired_count -= PTE1_SIZE /
5349				    PAGE_SIZE;
5350				continue;
5351			} else {
5352				if (!pv_lists_locked) {
5353					pv_lists_locked = TRUE;
5354					if (!rw_try_wlock(&pvh_global_lock)) {
5355						PMAP_UNLOCK(pmap);
5356						/* Repeat sva. */
5357						goto resume;
5358					}
5359					sched_pin();
5360				}
5361				if (!pmap_demote_pte1(pmap, pte1p, sva))
5362					panic("%s: demotion failed", __func__);
5363#ifdef INVARIANTS
5364				else {
5365					/* Update pte1 after demotion */
5366					pte1 = pte1_load(pte1p);
5367				}
5368#endif
5369			}
5370		}
5371
5372		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5373		    " is not link", __func__, pmap, sva, pte1, pte1p));
5374
5375		/*
5376		 * Limit our scan to either the end of the va represented
5377		 * by the current L2 page table page, or to the end of the
5378		 * range being protected.
5379		 */
5380		if (nextva > eva)
5381			nextva = eva;
5382
5383		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5384		    sva += PAGE_SIZE) {
5385			pte2 = pte2_load(pte2p);
5386			if (!pte2_is_valid(pte2))
5387				continue;
5388			if (!pte2_is_wired(pte2))
5389				panic("%s: pte2 %#x is missing PTE2_W",
5390				    __func__, pte2);
5391
5392			/*
5393			 * PTE2_W must be cleared atomically. Although the pmap
5394			 * lock synchronizes access to PTE2_W, another processor
5395			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5396			 */
5397			pte2_clear_bit(pte2p, PTE2_W);
5398			pmap->pm_stats.wired_count--;
5399		}
5400	}
5401	if (pv_lists_locked) {
5402		sched_unpin();
5403		rw_wunlock(&pvh_global_lock);
5404	}
5405	PMAP_UNLOCK(pmap);
5406}
5407
5408/*
5409 *  Clear the write and modified bits in each of the given page's mappings.
5410 */
5411void
5412pmap_remove_write(vm_page_t m)
5413{
5414	struct md_page *pvh;
5415	pv_entry_t next_pv, pv;
5416	pmap_t pmap;
5417	pt1_entry_t *pte1p;
5418	pt2_entry_t *pte2p, opte2;
5419	vm_offset_t va;
5420
5421	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5422	    ("%s: page %p is not managed", __func__, m));
5423
5424	/*
5425	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5426	 * set by another thread while the object is locked.  Thus,
5427	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5428	 */
5429	VM_OBJECT_ASSERT_WLOCKED(m->object);
5430	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5431		return;
5432	rw_wlock(&pvh_global_lock);
5433	sched_pin();
5434	if ((m->flags & PG_FICTITIOUS) != 0)
5435		goto small_mappings;
5436	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5437	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5438		va = pv->pv_va;
5439		pmap = PV_PMAP(pv);
5440		PMAP_LOCK(pmap);
5441		pte1p = pmap_pte1(pmap, va);
5442		if (!(pte1_load(pte1p) & PTE1_RO))
5443			(void)pmap_demote_pte1(pmap, pte1p, va);
5444		PMAP_UNLOCK(pmap);
5445	}
5446small_mappings:
5447	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5448		pmap = PV_PMAP(pv);
5449		PMAP_LOCK(pmap);
5450		pte1p = pmap_pte1(pmap, pv->pv_va);
5451		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5452		    " a section in page %p's pv list", __func__, m));
5453		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5454		opte2 = pte2_load(pte2p);
5455		if (!(opte2 & PTE2_RO)) {
5456			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5457			if (pte2_is_dirty(opte2))
5458				vm_page_dirty(m);
5459			pmap_tlb_flush(pmap, pv->pv_va);
5460		}
5461		PMAP_UNLOCK(pmap);
5462	}
5463	vm_page_aflag_clear(m, PGA_WRITEABLE);
5464	sched_unpin();
5465	rw_wunlock(&pvh_global_lock);
5466}
5467
5468/*
5469 *	Apply the given advice to the specified range of addresses within the
5470 *	given pmap.  Depending on the advice, clear the referenced and/or
5471 *	modified flags in each mapping and set the mapped page's dirty field.
5472 */
5473void
5474pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5475{
5476	pt1_entry_t *pte1p, opte1;
5477	pt2_entry_t *pte2p, pte2;
5478	vm_offset_t pdnxt;
5479	vm_page_t m;
5480	boolean_t pv_lists_locked;
5481
5482	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5483		return;
5484	if (pmap_is_current(pmap))
5485		pv_lists_locked = FALSE;
5486	else {
5487		pv_lists_locked = TRUE;
5488resume:
5489		rw_wlock(&pvh_global_lock);
5490		sched_pin();
5491	}
5492	PMAP_LOCK(pmap);
5493	for (; sva < eva; sva = pdnxt) {
5494		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5495		if (pdnxt < sva)
5496			pdnxt = eva;
5497		pte1p = pmap_pte1(pmap, sva);
5498		opte1 = pte1_load(pte1p);
5499		if (!pte1_is_valid(opte1)) /* XXX */
5500			continue;
5501		else if (pte1_is_section(opte1)) {
5502			if (!pte1_is_managed(opte1))
5503				continue;
5504			if (!pv_lists_locked) {
5505				pv_lists_locked = TRUE;
5506				if (!rw_try_wlock(&pvh_global_lock)) {
5507					PMAP_UNLOCK(pmap);
5508					goto resume;
5509				}
5510				sched_pin();
5511			}
5512			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5513				/*
5514				 * The large page mapping was destroyed.
5515				 */
5516				continue;
5517			}
5518
5519			/*
5520			 * Unless the page mappings are wired, remove the
5521			 * mapping to a single page so that a subsequent
5522			 * access may repromote.  Since the underlying L2 page
5523			 * table is fully populated, this removal never
5524			 * frees a L2 page table page.
5525			 */
5526			if (!pte1_is_wired(opte1)) {
5527				pte2p = pmap_pte2_quick(pmap, sva);
5528				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5529				    ("%s: invalid PTE2", __func__));
5530				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5531			}
5532		}
5533		if (pdnxt > eva)
5534			pdnxt = eva;
5535		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5536		    sva += PAGE_SIZE) {
5537			pte2 = pte2_load(pte2p);
5538			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5539				continue;
5540			else if (pte2_is_dirty(pte2)) {
5541				if (advice == MADV_DONTNEED) {
5542					/*
5543					 * Future calls to pmap_is_modified()
5544					 * can be avoided by making the page
5545					 * dirty now.
5546					 */
5547					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5548					vm_page_dirty(m);
5549				}
5550				pte2_set_bit(pte2p, PTE2_NM);
5551				pte2_clear_bit(pte2p, PTE2_A);
5552			} else if ((pte2 & PTE2_A) != 0)
5553				pte2_clear_bit(pte2p, PTE2_A);
5554			else
5555				continue;
5556			pmap_tlb_flush(pmap, sva);
5557		}
5558	}
5559	if (pv_lists_locked) {
5560		sched_unpin();
5561		rw_wunlock(&pvh_global_lock);
5562	}
5563	PMAP_UNLOCK(pmap);
5564}
5565
5566/*
5567 *	Clear the modify bits on the specified physical page.
5568 */
5569void
5570pmap_clear_modify(vm_page_t m)
5571{
5572	struct md_page *pvh;
5573	pv_entry_t next_pv, pv;
5574	pmap_t pmap;
5575	pt1_entry_t *pte1p, opte1;
5576	pt2_entry_t *pte2p, opte2;
5577	vm_offset_t va;
5578
5579	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5580	    ("%s: page %p is not managed", __func__, m));
5581	VM_OBJECT_ASSERT_WLOCKED(m->object);
5582	KASSERT(!vm_page_xbusied(m),
5583	    ("%s: page %p is exclusive busy", __func__, m));
5584
5585	/*
5586	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5587	 * cleared. If the object containing the page is locked and the page
5588	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5589	 * set.
5590	 */
5591	if ((m->flags & PGA_WRITEABLE) == 0)
5592		return;
5593	rw_wlock(&pvh_global_lock);
5594	sched_pin();
5595	if ((m->flags & PG_FICTITIOUS) != 0)
5596		goto small_mappings;
5597	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5598	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5599		va = pv->pv_va;
5600		pmap = PV_PMAP(pv);
5601		PMAP_LOCK(pmap);
5602		pte1p = pmap_pte1(pmap, va);
5603		opte1 = pte1_load(pte1p);
5604		if (!(opte1 & PTE1_RO)) {
5605			if (pmap_demote_pte1(pmap, pte1p, va) &&
5606			    !pte1_is_wired(opte1)) {
5607				/*
5608				 * Write protect the mapping to a
5609				 * single page so that a subsequent
5610				 * write access may repromote.
5611				 */
5612				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5613				pte2p = pmap_pte2_quick(pmap, va);
5614				opte2 = pte2_load(pte2p);
5615				if ((opte2 & PTE2_V)) {
5616					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5617					vm_page_dirty(m);
5618					pmap_tlb_flush(pmap, va);
5619				}
5620			}
5621		}
5622		PMAP_UNLOCK(pmap);
5623	}
5624small_mappings:
5625	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5626		pmap = PV_PMAP(pv);
5627		PMAP_LOCK(pmap);
5628		pte1p = pmap_pte1(pmap, pv->pv_va);
5629		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5630		    " a section in page %p's pv list", __func__, m));
5631		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5632		if (pte2_is_dirty(pte2_load(pte2p))) {
5633			pte2_set_bit(pte2p, PTE2_NM);
5634			pmap_tlb_flush(pmap, pv->pv_va);
5635		}
5636		PMAP_UNLOCK(pmap);
5637	}
5638	sched_unpin();
5639	rw_wunlock(&pvh_global_lock);
5640}
5641
5642
5643/*
5644 *  Sets the memory attribute for the specified page.
5645 */
5646void
5647pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5648{
5649	pt2_entry_t *cmap2_pte2p;
5650	vm_memattr_t oma;
5651	vm_paddr_t pa;
5652	struct pcpu *pc;
5653
5654	oma = m->md.pat_mode;
5655	m->md.pat_mode = ma;
5656
5657	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5658	    VM_PAGE_TO_PHYS(m), oma, ma);
5659	if ((m->flags & PG_FICTITIOUS) != 0)
5660		return;
5661#if 0
5662	/*
5663	 * If "m" is a normal page, flush it from the cache.
5664	 *
5665	 * First, try to find an existing mapping of the page by sf
5666	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5667	 * flushes the cache.
5668	 */
5669	if (sf_buf_invalidate_cache(m, oma))
5670		return;
5671#endif
5672	/*
5673	 * If page is not mapped by sf buffer, map the page
5674	 * transient and do invalidation.
5675	 */
5676	if (ma != oma) {
5677		pa = VM_PAGE_TO_PHYS(m);
5678		sched_pin();
5679		pc = get_pcpu();
5680		cmap2_pte2p = pc->pc_cmap2_pte2p;
5681		mtx_lock(&pc->pc_cmap_lock);
5682		if (pte2_load(cmap2_pte2p) != 0)
5683			panic("%s: CMAP2 busy", __func__);
5684		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5685		    vm_memattr_to_pte2(ma)));
5686		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5687		pte2_clear(cmap2_pte2p);
5688		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5689		sched_unpin();
5690		mtx_unlock(&pc->pc_cmap_lock);
5691	}
5692}
5693
5694/*
5695 *  Miscellaneous support routines follow
5696 */
5697
5698/*
5699 *  Returns TRUE if the given page is mapped individually or as part of
5700 *  a 1mpage.  Otherwise, returns FALSE.
5701 */
5702boolean_t
5703pmap_page_is_mapped(vm_page_t m)
5704{
5705	boolean_t rv;
5706
5707	if ((m->oflags & VPO_UNMANAGED) != 0)
5708		return (FALSE);
5709	rw_wlock(&pvh_global_lock);
5710	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5711	    ((m->flags & PG_FICTITIOUS) == 0 &&
5712	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5713	rw_wunlock(&pvh_global_lock);
5714	return (rv);
5715}
5716
5717/*
5718 *  Returns true if the pmap's pv is one of the first
5719 *  16 pvs linked to from this page.  This count may
5720 *  be changed upwards or downwards in the future; it
5721 *  is only necessary that true be returned for a small
5722 *  subset of pmaps for proper page aging.
5723 */
5724boolean_t
5725pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5726{
5727	struct md_page *pvh;
5728	pv_entry_t pv;
5729	int loops = 0;
5730	boolean_t rv;
5731
5732	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5733	    ("%s: page %p is not managed", __func__, m));
5734	rv = FALSE;
5735	rw_wlock(&pvh_global_lock);
5736	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5737		if (PV_PMAP(pv) == pmap) {
5738			rv = TRUE;
5739			break;
5740		}
5741		loops++;
5742		if (loops >= 16)
5743			break;
5744	}
5745	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5746		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5747		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5748			if (PV_PMAP(pv) == pmap) {
5749				rv = TRUE;
5750				break;
5751			}
5752			loops++;
5753			if (loops >= 16)
5754				break;
5755		}
5756	}
5757	rw_wunlock(&pvh_global_lock);
5758	return (rv);
5759}
5760
5761/*
5762 *	pmap_zero_page zeros the specified hardware page by mapping
5763 *	the page into KVM and using bzero to clear its contents.
5764 */
5765void
5766pmap_zero_page(vm_page_t m)
5767{
5768	pt2_entry_t *cmap2_pte2p;
5769	struct pcpu *pc;
5770
5771	sched_pin();
5772	pc = get_pcpu();
5773	cmap2_pte2p = pc->pc_cmap2_pte2p;
5774	mtx_lock(&pc->pc_cmap_lock);
5775	if (pte2_load(cmap2_pte2p) != 0)
5776		panic("%s: CMAP2 busy", __func__);
5777	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5778	    vm_page_pte2_attr(m)));
5779	pagezero(pc->pc_cmap2_addr);
5780	pte2_clear(cmap2_pte2p);
5781	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5782	sched_unpin();
5783	mtx_unlock(&pc->pc_cmap_lock);
5784}
5785
5786/*
5787 *	pmap_zero_page_area zeros the specified hardware page by mapping
5788 *	the page into KVM and using bzero to clear its contents.
5789 *
5790 *	off and size may not cover an area beyond a single hardware page.
5791 */
5792void
5793pmap_zero_page_area(vm_page_t m, int off, int size)
5794{
5795	pt2_entry_t *cmap2_pte2p;
5796	struct pcpu *pc;
5797
5798	sched_pin();
5799	pc = get_pcpu();
5800	cmap2_pte2p = pc->pc_cmap2_pte2p;
5801	mtx_lock(&pc->pc_cmap_lock);
5802	if (pte2_load(cmap2_pte2p) != 0)
5803		panic("%s: CMAP2 busy", __func__);
5804	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5805	    vm_page_pte2_attr(m)));
5806	if (off == 0 && size == PAGE_SIZE)
5807		pagezero(pc->pc_cmap2_addr);
5808	else
5809		bzero(pc->pc_cmap2_addr + off, size);
5810	pte2_clear(cmap2_pte2p);
5811	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5812	sched_unpin();
5813	mtx_unlock(&pc->pc_cmap_lock);
5814}
5815
5816/*
5817 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5818 *	the page into KVM and using bzero to clear its contents.  This
5819 *	is intended to be called from the vm_pagezero process only and
5820 *	outside of Giant.
5821 */
5822void
5823pmap_zero_page_idle(vm_page_t m)
5824{
5825
5826	if (pte2_load(CMAP3) != 0)
5827		panic("%s: CMAP3 busy", __func__);
5828	sched_pin();
5829	pte2_store(CMAP3, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5830	    vm_page_pte2_attr(m)));
5831	pagezero(CADDR3);
5832	pte2_clear(CMAP3);
5833	tlb_flush((vm_offset_t)CADDR3);
5834	sched_unpin();
5835}
5836
5837/*
5838 *	pmap_copy_page copies the specified (machine independent)
5839 *	page by mapping the page into virtual memory and using
5840 *	bcopy to copy the page, one machine dependent page at a
5841 *	time.
5842 */
5843void
5844pmap_copy_page(vm_page_t src, vm_page_t dst)
5845{
5846	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5847	struct pcpu *pc;
5848
5849	sched_pin();
5850	pc = get_pcpu();
5851	cmap1_pte2p = pc->pc_cmap1_pte2p;
5852	cmap2_pte2p = pc->pc_cmap2_pte2p;
5853	mtx_lock(&pc->pc_cmap_lock);
5854	if (pte2_load(cmap1_pte2p) != 0)
5855		panic("%s: CMAP1 busy", __func__);
5856	if (pte2_load(cmap2_pte2p) != 0)
5857		panic("%s: CMAP2 busy", __func__);
5858	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5859	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5860	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5861	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5862	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5863	pte2_clear(cmap1_pte2p);
5864	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5865	pte2_clear(cmap2_pte2p);
5866	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5867	sched_unpin();
5868	mtx_unlock(&pc->pc_cmap_lock);
5869}
5870
5871int unmapped_buf_allowed = 1;
5872
5873void
5874pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5875    vm_offset_t b_offset, int xfersize)
5876{
5877	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5878	vm_page_t a_pg, b_pg;
5879	char *a_cp, *b_cp;
5880	vm_offset_t a_pg_offset, b_pg_offset;
5881	struct pcpu *pc;
5882	int cnt;
5883
5884	sched_pin();
5885	pc = get_pcpu();
5886	cmap1_pte2p = pc->pc_cmap1_pte2p;
5887	cmap2_pte2p = pc->pc_cmap2_pte2p;
5888	mtx_lock(&pc->pc_cmap_lock);
5889	if (pte2_load(cmap1_pte2p) != 0)
5890		panic("pmap_copy_pages: CMAP1 busy");
5891	if (pte2_load(cmap2_pte2p) != 0)
5892		panic("pmap_copy_pages: CMAP2 busy");
5893	while (xfersize > 0) {
5894		a_pg = ma[a_offset >> PAGE_SHIFT];
5895		a_pg_offset = a_offset & PAGE_MASK;
5896		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5897		b_pg = mb[b_offset >> PAGE_SHIFT];
5898		b_pg_offset = b_offset & PAGE_MASK;
5899		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5900		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5901		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5902		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5903		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5904		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5905		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5906		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5907		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5908		bcopy(a_cp, b_cp, cnt);
5909		a_offset += cnt;
5910		b_offset += cnt;
5911		xfersize -= cnt;
5912	}
5913	pte2_clear(cmap1_pte2p);
5914	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5915	pte2_clear(cmap2_pte2p);
5916	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5917	sched_unpin();
5918	mtx_unlock(&pc->pc_cmap_lock);
5919}
5920
5921vm_offset_t
5922pmap_quick_enter_page(vm_page_t m)
5923{
5924	struct pcpu *pc;
5925	pt2_entry_t *pte2p;
5926
5927	critical_enter();
5928	pc = get_pcpu();
5929	pte2p = pc->pc_qmap_pte2p;
5930
5931	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5932
5933	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5934	    vm_page_pte2_attr(m)));
5935	return (pc->pc_qmap_addr);
5936}
5937
5938void
5939pmap_quick_remove_page(vm_offset_t addr)
5940{
5941	struct pcpu *pc;
5942	pt2_entry_t *pte2p;
5943
5944	pc = get_pcpu();
5945	pte2p = pc->pc_qmap_pte2p;
5946
5947	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5948	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5949
5950	pte2_clear(pte2p);
5951	tlb_flush(pc->pc_qmap_addr);
5952	critical_exit();
5953}
5954
5955/*
5956 *	Copy the range specified by src_addr/len
5957 *	from the source map to the range dst_addr/len
5958 *	in the destination map.
5959 *
5960 *	This routine is only advisory and need not do anything.
5961 */
5962void
5963pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
5964    vm_offset_t src_addr)
5965{
5966	struct spglist free;
5967	vm_offset_t addr;
5968	vm_offset_t end_addr = src_addr + len;
5969	vm_offset_t nextva;
5970
5971	if (dst_addr != src_addr)
5972		return;
5973
5974	if (!pmap_is_current(src_pmap))
5975		return;
5976
5977	rw_wlock(&pvh_global_lock);
5978	if (dst_pmap < src_pmap) {
5979		PMAP_LOCK(dst_pmap);
5980		PMAP_LOCK(src_pmap);
5981	} else {
5982		PMAP_LOCK(src_pmap);
5983		PMAP_LOCK(dst_pmap);
5984	}
5985	sched_pin();
5986	for (addr = src_addr; addr < end_addr; addr = nextva) {
5987		pt2_entry_t *src_pte2p, *dst_pte2p;
5988		vm_page_t dst_mpt2pg, src_mpt2pg;
5989		pt1_entry_t src_pte1;
5990		u_int pte1_idx;
5991
5992		KASSERT(addr < VM_MAXUSER_ADDRESS,
5993		    ("%s: invalid to pmap_copy page tables", __func__));
5994
5995		nextva = pte1_trunc(addr + PTE1_SIZE);
5996		if (nextva < addr)
5997			nextva = end_addr;
5998
5999		pte1_idx = pte1_index(addr);
6000		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6001		if (pte1_is_section(src_pte1)) {
6002			if ((addr & PTE1_OFFSET) != 0 ||
6003			    (addr + PTE1_SIZE) > end_addr)
6004				continue;
6005			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6006			    (!pte1_is_managed(src_pte1) ||
6007			    pmap_pv_insert_pte1(dst_pmap, addr,
6008			    pte1_pa(src_pte1)))) {
6009				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6010				    ~PTE1_W;
6011				dst_pmap->pm_stats.resident_count +=
6012				    PTE1_SIZE / PAGE_SIZE;
6013				pmap_pte1_mappings++;
6014			}
6015			continue;
6016		} else if (!pte1_is_link(src_pte1))
6017			continue;
6018
6019		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6020
6021		/*
6022		 * We leave PT2s to be linked from PT1 even if they are not
6023		 * referenced until all PT2s in a page are without reference.
6024		 *
6025		 * QQQ: It could be changed ...
6026		 */
6027#if 0 /* single_pt2_link_is_cleared */
6028		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6029		    ("%s: source page table page is unused", __func__));
6030#else
6031		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6032			continue;
6033#endif
6034		if (nextva > end_addr)
6035			nextva = end_addr;
6036
6037		src_pte2p = pt2map_entry(addr);
6038		while (addr < nextva) {
6039			pt2_entry_t temp_pte2;
6040			temp_pte2 = pte2_load(src_pte2p);
6041			/*
6042			 * we only virtual copy managed pages
6043			 */
6044			if (pte2_is_managed(temp_pte2)) {
6045				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6046				    PMAP_ENTER_NOSLEEP);
6047				if (dst_mpt2pg == NULL)
6048					goto out;
6049				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6050				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6051				    pmap_try_insert_pv_entry(dst_pmap, addr,
6052				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6053					/*
6054					 * Clear the wired, modified, and
6055					 * accessed (referenced) bits
6056					 * during the copy.
6057					 */
6058					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6059					temp_pte2 |= PTE2_NM;
6060					pte2_store(dst_pte2p, temp_pte2);
6061					dst_pmap->pm_stats.resident_count++;
6062				} else {
6063					SLIST_INIT(&free);
6064					if (pmap_unwire_pt2(dst_pmap, addr,
6065					    dst_mpt2pg, &free)) {
6066						pmap_tlb_flush(dst_pmap, addr);
6067						pmap_free_zero_pages(&free);
6068					}
6069					goto out;
6070				}
6071				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6072				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6073					break;
6074			}
6075			addr += PAGE_SIZE;
6076			src_pte2p++;
6077		}
6078	}
6079out:
6080	sched_unpin();
6081	rw_wunlock(&pvh_global_lock);
6082	PMAP_UNLOCK(src_pmap);
6083	PMAP_UNLOCK(dst_pmap);
6084}
6085
6086/*
6087 *	Increase the starting virtual address of the given mapping if a
6088 *	different alignment might result in more section mappings.
6089 */
6090void
6091pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6092    vm_offset_t *addr, vm_size_t size)
6093{
6094	vm_offset_t pte1_offset;
6095
6096	if (size < PTE1_SIZE)
6097		return;
6098	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6099		offset += ptoa(object->pg_color);
6100	pte1_offset = offset & PTE1_OFFSET;
6101	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6102	    (*addr & PTE1_OFFSET) == pte1_offset)
6103		return;
6104	if ((*addr & PTE1_OFFSET) < pte1_offset)
6105		*addr = pte1_trunc(*addr) + pte1_offset;
6106	else
6107		*addr = pte1_roundup(*addr) + pte1_offset;
6108}
6109
6110void
6111pmap_activate(struct thread *td)
6112{
6113	pmap_t pmap, oldpmap;
6114	u_int cpuid, ttb;
6115
6116	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6117
6118	critical_enter();
6119	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6120	oldpmap = PCPU_GET(curpmap);
6121	cpuid = PCPU_GET(cpuid);
6122
6123#if defined(SMP)
6124	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6125	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6126#else
6127	CPU_CLR(cpuid, &oldpmap->pm_active);
6128	CPU_SET(cpuid, &pmap->pm_active);
6129#endif
6130
6131	ttb = pmap_ttb_get(pmap);
6132
6133	/*
6134	 * pmap_activate is for the current thread on the current cpu
6135	 */
6136	td->td_pcb->pcb_pagedir = ttb;
6137	cp15_ttbr_set(ttb);
6138	PCPU_SET(curpmap, pmap);
6139	critical_exit();
6140}
6141
6142/*
6143 *  Perform the pmap work for mincore.
6144 */
6145int
6146pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6147{
6148	pt1_entry_t *pte1p, pte1;
6149	pt2_entry_t *pte2p, pte2;
6150	vm_paddr_t pa;
6151	boolean_t managed;
6152	int val;
6153
6154	PMAP_LOCK(pmap);
6155retry:
6156	pte1p = pmap_pte1(pmap, addr);
6157	pte1 = pte1_load(pte1p);
6158	if (pte1_is_section(pte1)) {
6159		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6160		managed = pte1_is_managed(pte1);
6161		val = MINCORE_SUPER | MINCORE_INCORE;
6162		if (pte1_is_dirty(pte1))
6163			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6164		if (pte1 & PTE1_A)
6165			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6166	} else if (pte1_is_link(pte1)) {
6167		pte2p = pmap_pte2(pmap, addr);
6168		pte2 = pte2_load(pte2p);
6169		pmap_pte2_release(pte2p);
6170		pa = pte2_pa(pte2);
6171		managed = pte2_is_managed(pte2);
6172		val = MINCORE_INCORE;
6173		if (pte2_is_dirty(pte2))
6174			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6175		if (pte2 & PTE2_A)
6176			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6177	} else {
6178		managed = FALSE;
6179		val = 0;
6180	}
6181	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6182	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6183		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6184		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6185			goto retry;
6186	} else
6187		PA_UNLOCK_COND(*locked_pa);
6188	PMAP_UNLOCK(pmap);
6189	return (val);
6190}
6191
6192void
6193pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6194{
6195	vm_offset_t sva;
6196	uint32_t l2attr;
6197
6198	KASSERT((size & PAGE_MASK) == 0,
6199	    ("%s: device mapping not page-sized", __func__));
6200
6201	sva = va;
6202	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6203	while (size != 0) {
6204		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6205		va += PAGE_SIZE;
6206		pa += PAGE_SIZE;
6207		size -= PAGE_SIZE;
6208	}
6209	tlb_flush_range(sva, va - sva);
6210}
6211
6212void
6213pmap_kremove_device(vm_offset_t va, vm_size_t size)
6214{
6215	vm_offset_t sva;
6216
6217	KASSERT((size & PAGE_MASK) == 0,
6218	    ("%s: device mapping not page-sized", __func__));
6219
6220	sva = va;
6221	while (size != 0) {
6222		pmap_kremove(va);
6223		va += PAGE_SIZE;
6224		size -= PAGE_SIZE;
6225	}
6226	tlb_flush_range(sva, va - sva);
6227}
6228
6229void
6230pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6231{
6232
6233	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6234}
6235
6236
6237/*
6238 *  Clean L1 data cache range by physical address.
6239 *  The range must be within a single page.
6240 */
6241static void
6242pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6243{
6244	pt2_entry_t *cmap2_pte2p;
6245	struct pcpu *pc;
6246
6247	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6248	    ("%s: not on single page", __func__));
6249
6250	sched_pin();
6251	pc = get_pcpu();
6252	cmap2_pte2p = pc->pc_cmap2_pte2p;
6253	mtx_lock(&pc->pc_cmap_lock);
6254	if (pte2_load(cmap2_pte2p) != 0)
6255		panic("%s: CMAP2 busy", __func__);
6256	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6257	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6258	pte2_clear(cmap2_pte2p);
6259	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6260	sched_unpin();
6261	mtx_unlock(&pc->pc_cmap_lock);
6262}
6263
6264/*
6265 *  Sync instruction cache range which is not mapped yet.
6266 */
6267void
6268cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6269{
6270	uint32_t len, offset;
6271	vm_page_t m;
6272
6273	/* Write back d-cache on given address range. */
6274	offset = pa & PAGE_MASK;
6275	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6276		len = min(PAGE_SIZE - offset, size);
6277		m = PHYS_TO_VM_PAGE(pa);
6278		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6279		  __func__, pa));
6280		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6281	}
6282	/*
6283	 * I-cache is VIPT. Only way how to flush all virtual mappings
6284	 * on given physical address is to invalidate all i-cache.
6285	 */
6286	icache_inv_all();
6287}
6288
6289void
6290pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6291{
6292
6293	/* Write back d-cache on given address range. */
6294	if (va >= VM_MIN_KERNEL_ADDRESS) {
6295		dcache_wb_pou(va, size);
6296	} else {
6297		uint32_t len, offset;
6298		vm_paddr_t pa;
6299		vm_page_t m;
6300
6301		offset = va & PAGE_MASK;
6302		for ( ; size != 0; size -= len, va += len, offset = 0) {
6303			pa = pmap_extract(pmap, va); /* offset is preserved */
6304			len = min(PAGE_SIZE - offset, size);
6305			m = PHYS_TO_VM_PAGE(pa);
6306			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6307				__func__, pa));
6308			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6309		}
6310	}
6311	/*
6312	 * I-cache is VIPT. Only way how to flush all virtual mappings
6313	 * on given physical address is to invalidate all i-cache.
6314	 */
6315	icache_inv_all();
6316}
6317
6318/*
6319 *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6320 *  depends on the fact that given range size is a power of 2.
6321 */
6322CTASSERT(powerof2(NB_IN_PT1));
6323CTASSERT(powerof2(PT2MAP_SIZE));
6324
6325#define IN_RANGE2(addr, start, size)	\
6326    ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6327
6328/*
6329 *  Handle access and R/W emulation faults.
6330 */
6331int
6332pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6333{
6334	pt1_entry_t *pte1p, pte1;
6335	pt2_entry_t *pte2p, pte2;
6336
6337	if (pmap == NULL)
6338		pmap = kernel_pmap;
6339
6340	/*
6341	 * In kernel, we should never get abort with FAR which is in range of
6342	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6343	 * and print out a useful abort message and even get to the debugger
6344	 * otherwise it likely ends with never ending loop of aborts.
6345	 */
6346	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6347		/*
6348		 * All L1 tables should always be mapped and present.
6349		 * However, we check only current one herein. For user mode,
6350		 * only permission abort from malicious user is not fatal.
6351		 * And alignment abort as it may have higher priority.
6352		 */
6353		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6354			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6355			    __func__, pmap, pmap->pm_pt1, far);
6356			panic("%s: pm_pt1 abort", __func__);
6357		}
6358		return (KERN_INVALID_ADDRESS);
6359	}
6360	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6361		/*
6362		 * PT2MAP should be always mapped and present in current
6363		 * L1 table. However, only existing L2 tables are mapped
6364		 * in PT2MAP. For user mode, only L2 translation abort and
6365		 * permission abort from malicious user is not fatal.
6366		 * And alignment abort as it may have higher priority.
6367		 */
6368		if (!usermode || (idx != FAULT_ALIGN &&
6369		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6370			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6371			    __func__, pmap, PT2MAP, far);
6372			panic("%s: PT2MAP abort", __func__);
6373		}
6374		return (KERN_INVALID_ADDRESS);
6375	}
6376
6377	/*
6378	 * A pmap lock is used below for handling of access and R/W emulation
6379	 * aborts. They were handled by atomic operations before so some
6380	 * analysis of new situation is needed to answer the following question:
6381	 * Is it safe to use the lock even for these aborts?
6382	 *
6383	 * There may happen two cases in general:
6384	 *
6385	 * (1) Aborts while the pmap lock is locked already - this should not
6386	 * happen as pmap lock is not recursive. However, under pmap lock only
6387	 * internal kernel data should be accessed and such data should be
6388	 * mapped with A bit set and NM bit cleared. If double abort happens,
6389	 * then a mapping of data which has caused it must be fixed. Further,
6390	 * all new mappings are always made with A bit set and the bit can be
6391	 * cleared only on managed mappings.
6392	 *
6393	 * (2) Aborts while another lock(s) is/are locked - this already can
6394	 * happen. However, there is no difference here if it's either access or
6395	 * R/W emulation abort, or if it's some other abort.
6396	 */
6397
6398	PMAP_LOCK(pmap);
6399#ifdef SMP
6400	/*
6401	 * Special treatment is due to break-before-make approach done when
6402	 * pte1 is updated for userland mapping during section promotion or
6403	 * demotion. If not caught here, pmap_enter() can find a section
6404	 * mapping on faulting address. That is not allowed.
6405	 */
6406	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6407		PMAP_UNLOCK(pmap);
6408		return (KERN_SUCCESS);
6409	}
6410#endif
6411	/*
6412	 * Accesss bits for page and section. Note that the entry
6413	 * is not in TLB yet, so TLB flush is not necessary.
6414	 *
6415	 * QQQ: This is hardware emulation, we do not call userret()
6416	 *      for aborts from user mode.
6417	 */
6418	if (idx == FAULT_ACCESS_L2) {
6419		pte2p = pt2map_entry(far);
6420		pte2 = pte2_load(pte2p);
6421		if (pte2_is_valid(pte2)) {
6422			pte2_store(pte2p, pte2 | PTE2_A);
6423			PMAP_UNLOCK(pmap);
6424			return (KERN_SUCCESS);
6425		}
6426	}
6427	if (idx == FAULT_ACCESS_L1) {
6428		pte1p = pmap_pte1(pmap, far);
6429		pte1 = pte1_load(pte1p);
6430		if (pte1_is_section(pte1)) {
6431			pte1_store(pte1p, pte1 | PTE1_A);
6432			PMAP_UNLOCK(pmap);
6433			return (KERN_SUCCESS);
6434		}
6435	}
6436
6437	/*
6438	 * Handle modify bits for page and section. Note that the modify
6439	 * bit is emulated by software. So PTEx_RO is software read only
6440	 * bit and PTEx_NM flag is real hardware read only bit.
6441	 *
6442	 * QQQ: This is hardware emulation, we do not call userret()
6443	 *      for aborts from user mode.
6444	 */
6445	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6446		pte2p = pt2map_entry(far);
6447		pte2 = pte2_load(pte2p);
6448		if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6449		    (pte2 & PTE2_NM)) {
6450			pte2_store(pte2p, pte2 & ~PTE2_NM);
6451			tlb_flush(trunc_page(far));
6452			PMAP_UNLOCK(pmap);
6453			return (KERN_SUCCESS);
6454		}
6455	}
6456	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6457		pte1p = pmap_pte1(pmap, far);
6458		pte1 = pte1_load(pte1p);
6459		if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
6460		    (pte1 & PTE1_NM)) {
6461			pte1_store(pte1p, pte1 & ~PTE1_NM);
6462			tlb_flush(pte1_trunc(far));
6463			PMAP_UNLOCK(pmap);
6464			return (KERN_SUCCESS);
6465		}
6466	}
6467
6468	/*
6469	 * QQQ: The previous code, mainly fast handling of access and
6470	 *      modify bits aborts, could be moved to ASM. Now we are
6471	 *      starting to deal with not fast aborts.
6472	 */
6473
6474#ifdef INVARIANTS
6475	/*
6476	 * Read an entry in PT2TAB associated with both pmap and far.
6477	 * It's safe because PT2TAB is always mapped.
6478	 */
6479	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6480	if (pte2_is_valid(pte2)) {
6481		/*
6482		 * Now, when we know that L2 page table is allocated,
6483		 * we can use PT2MAP to get L2 page table entry.
6484		 */
6485		pte2 = pte2_load(pt2map_entry(far));
6486		if (pte2_is_valid(pte2)) {
6487			/*
6488			 * If L2 page table entry is valid, make sure that
6489			 * L1 page table entry is valid too.  Note that we
6490			 * leave L2 page entries untouched when promoted.
6491			 */
6492			pte1 = pte1_load(pmap_pte1(pmap, far));
6493			if (!pte1_is_valid(pte1)) {
6494				panic("%s: missing L1 page entry (%p, %#x)",
6495				    __func__, pmap, far);
6496			}
6497		}
6498	}
6499#endif
6500	PMAP_UNLOCK(pmap);
6501	return (KERN_FAILURE);
6502}
6503
6504#if defined(PMAP_DEBUG)
6505/*
6506 *  Reusing of KVA used in pmap_zero_page function !!!
6507 */
6508static void
6509pmap_zero_page_check(vm_page_t m)
6510{
6511	pt2_entry_t *cmap2_pte2p;
6512	uint32_t *p, *end;
6513	struct pcpu *pc;
6514
6515	sched_pin();
6516	pc = get_pcpu();
6517	cmap2_pte2p = pc->pc_cmap2_pte2p;
6518	mtx_lock(&pc->pc_cmap_lock);
6519	if (pte2_load(cmap2_pte2p) != 0)
6520		panic("%s: CMAP2 busy", __func__);
6521	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6522	    vm_page_pte2_attr(m)));
6523	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6524	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6525		if (*p != 0)
6526			panic("%s: page %p not zero, va: %p", __func__, m,
6527			    pc->pc_cmap2_addr);
6528	pte2_clear(cmap2_pte2p);
6529	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6530	sched_unpin();
6531	mtx_unlock(&pc->pc_cmap_lock);
6532}
6533
6534int
6535pmap_pid_dump(int pid)
6536{
6537	pmap_t pmap;
6538	struct proc *p;
6539	int npte2 = 0;
6540	int i, j, index;
6541
6542	sx_slock(&allproc_lock);
6543	FOREACH_PROC_IN_SYSTEM(p) {
6544		if (p->p_pid != pid || p->p_vmspace == NULL)
6545			continue;
6546		index = 0;
6547		pmap = vmspace_pmap(p->p_vmspace);
6548		for (i = 0; i < NPTE1_IN_PT1; i++) {
6549			pt1_entry_t pte1;
6550			pt2_entry_t *pte2p, pte2;
6551			vm_offset_t base, va;
6552			vm_paddr_t pa;
6553			vm_page_t m;
6554
6555			base = i << PTE1_SHIFT;
6556			pte1 = pte1_load(&pmap->pm_pt1[i]);
6557
6558			if (pte1_is_section(pte1)) {
6559				/*
6560				 * QQQ: Do something here!
6561				 */
6562			} else if (pte1_is_link(pte1)) {
6563				for (j = 0; j < NPTE2_IN_PT2; j++) {
6564					va = base + (j << PAGE_SHIFT);
6565					if (va >= VM_MIN_KERNEL_ADDRESS) {
6566						if (index) {
6567							index = 0;
6568							printf("\n");
6569						}
6570						sx_sunlock(&allproc_lock);
6571						return (npte2);
6572					}
6573					pte2p = pmap_pte2(pmap, va);
6574					pte2 = pte2_load(pte2p);
6575					pmap_pte2_release(pte2p);
6576					if (!pte2_is_valid(pte2))
6577						continue;
6578
6579					pa = pte2_pa(pte2);
6580					m = PHYS_TO_VM_PAGE(pa);
6581					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6582					    " %d, f: 0x%x", va, pa,
6583					    m->hold_count, m->wire_count,
6584					    m->flags);
6585					npte2++;
6586					index++;
6587					if (index >= 2) {
6588						index = 0;
6589						printf("\n");
6590					} else {
6591						printf(" ");
6592					}
6593				}
6594			}
6595		}
6596	}
6597	sx_sunlock(&allproc_lock);
6598	return (npte2);
6599}
6600
6601#endif
6602
6603#ifdef DDB
6604static pt2_entry_t *
6605pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6606{
6607	pt1_entry_t pte1;
6608	vm_paddr_t pt2pg_pa;
6609
6610	pte1 = pte1_load(pmap_pte1(pmap, va));
6611	if (!pte1_is_link(pte1))
6612		return (NULL);
6613
6614	if (pmap_is_current(pmap))
6615		return (pt2map_entry(va));
6616
6617	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6618	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6619	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6620		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6621#ifdef SMP
6622		PMAP3cpu = PCPU_GET(cpuid);
6623#endif
6624		tlb_flush_local((vm_offset_t)PADDR3);
6625	}
6626#ifdef SMP
6627	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6628		PMAP3cpu = PCPU_GET(cpuid);
6629		tlb_flush_local((vm_offset_t)PADDR3);
6630	}
6631#endif
6632	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6633}
6634
6635static void
6636dump_pmap(pmap_t pmap)
6637{
6638
6639	printf("pmap %p\n", pmap);
6640	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6641	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6642	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6643}
6644
6645DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6646{
6647
6648	pmap_t pmap;
6649	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6650		dump_pmap(pmap);
6651	}
6652}
6653
6654static int
6655pte2_class(pt2_entry_t pte2)
6656{
6657	int cls;
6658
6659	cls = (pte2 >> 2) & 0x03;
6660	cls |= (pte2 >> 4) & 0x04;
6661	return (cls);
6662}
6663
6664static void
6665dump_section(pmap_t pmap, uint32_t pte1_idx)
6666{
6667}
6668
6669static void
6670dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6671{
6672	uint32_t i;
6673	vm_offset_t va;
6674	pt2_entry_t *pte2p, pte2;
6675	vm_page_t m;
6676
6677	va = pte1_idx << PTE1_SHIFT;
6678	pte2p = pmap_pte2_ddb(pmap, va);
6679	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6680		pte2 = pte2_load(pte2p);
6681		if (pte2 == 0)
6682			continue;
6683		if (!pte2_is_valid(pte2)) {
6684			printf(" 0x%08X: 0x%08X", va, pte2);
6685			if (!invalid_ok)
6686				printf(" - not valid !!!");
6687			printf("\n");
6688			continue;
6689		}
6690		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6691		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6692		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6693		if (m != NULL) {
6694			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6695			    m->hold_count, m->wire_count, m->flags);
6696		} else {
6697			printf("\n");
6698		}
6699	}
6700}
6701
6702static __inline boolean_t
6703is_pv_chunk_space(vm_offset_t va)
6704{
6705
6706	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6707	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6708		return (TRUE);
6709	return (FALSE);
6710}
6711
6712DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6713{
6714	/* XXX convert args. */
6715	pmap_t pmap = (pmap_t)addr;
6716	pt1_entry_t pte1;
6717	pt2_entry_t pte2;
6718	vm_offset_t va, eva;
6719	vm_page_t m;
6720	uint32_t i;
6721	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6722
6723	if (have_addr) {
6724		pmap_t pm;
6725
6726		LIST_FOREACH(pm, &allpmaps, pm_list)
6727			if (pm == pmap) break;
6728		if (pm == NULL) {
6729			printf("given pmap %p is not in allpmaps list\n", pmap);
6730			return;
6731		}
6732	} else
6733		pmap = PCPU_GET(curpmap);
6734
6735	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6736	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6737
6738	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6739	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6740	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6741
6742	for(i = 0; i < NPTE1_IN_PT1; i++) {
6743		pte1 = pte1_load(&pmap->pm_pt1[i]);
6744		if (pte1 == 0)
6745			continue;
6746		va = i << PTE1_SHIFT;
6747		if (va >= eva)
6748			break;
6749
6750		if (pte1_is_section(pte1)) {
6751			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6752			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6753			dump_section(pmap, i);
6754		} else if (pte1_is_link(pte1)) {
6755			dump_link_ok = TRUE;
6756			invalid_ok = FALSE;
6757			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6758			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6759			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6760			    va, pte1, pte2, m);
6761			if (is_pv_chunk_space(va)) {
6762				printf(" - pv_chunk space");
6763				if (dump_pv_chunk)
6764					invalid_ok = TRUE;
6765				else
6766					dump_link_ok = FALSE;
6767			}
6768			else if (m != NULL)
6769				printf(" w:%d w2:%u", m->wire_count,
6770				    pt2_wirecount_get(m, pte1_index(va)));
6771			if (pte2 == 0)
6772				printf(" !!! pt2tab entry is ZERO");
6773			else if (pte2_pa(pte1) != pte2_pa(pte2))
6774				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6775				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6776			printf("\n");
6777			if (dump_link_ok)
6778				dump_link(pmap, i, invalid_ok);
6779		} else
6780			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6781	}
6782}
6783
6784static void
6785dump_pt2tab(pmap_t pmap)
6786{
6787	uint32_t i;
6788	pt2_entry_t pte2;
6789	vm_offset_t va;
6790	vm_paddr_t pa;
6791	vm_page_t m;
6792
6793	printf("PT2TAB:\n");
6794	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6795		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6796		if (!pte2_is_valid(pte2))
6797			continue;
6798		va = i << PT2TAB_SHIFT;
6799		pa = pte2_pa(pte2);
6800		m = PHYS_TO_VM_PAGE(pa);
6801		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6802		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6803		if (m != NULL)
6804			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6805			    m->hold_count, m->wire_count, m->flags, m->pindex);
6806		printf("\n");
6807	}
6808}
6809
6810DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6811{
6812	/* XXX convert args. */
6813	pmap_t pmap = (pmap_t)addr;
6814	pt1_entry_t pte1;
6815	pt2_entry_t pte2;
6816	vm_offset_t va;
6817	uint32_t i, start;
6818
6819	if (have_addr) {
6820		printf("supported only on current pmap\n");
6821		return;
6822	}
6823
6824	pmap = PCPU_GET(curpmap);
6825	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6826	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6827	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6828
6829	start = pte1_index((vm_offset_t)PT2MAP);
6830	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6831		pte1 = pte1_load(&pmap->pm_pt1[i]);
6832		if (pte1 == 0)
6833			continue;
6834		va = i << PTE1_SHIFT;
6835		if (pte1_is_section(pte1)) {
6836			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6837			    !!(pte1 & PTE1_S));
6838			dump_section(pmap, i);
6839		} else if (pte1_is_link(pte1)) {
6840			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6841			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6842			    pte1, pte2);
6843			if (pte2 == 0)
6844				printf("  !!! pt2tab entry is ZERO\n");
6845		} else
6846			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6847	}
6848	dump_pt2tab(pmap);
6849}
6850#endif
6851