machdep.c revision 296258
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_kstack_pages.h"
48#include "opt_platform.h"
49#include "opt_sched.h"
50#include "opt_timer.h"
51
52#include <sys/cdefs.h>
53__FBSDID("$FreeBSD: head/sys/arm/arm/machdep.c 296258 2016-03-01 09:51:36Z andrew $");
54
55#include <sys/param.h>
56#include <sys/proc.h>
57#include <sys/systm.h>
58#include <sys/bio.h>
59#include <sys/buf.h>
60#include <sys/bus.h>
61#include <sys/cons.h>
62#include <sys/cpu.h>
63#include <sys/efi.h>
64#include <sys/exec.h>
65#include <sys/imgact.h>
66#include <sys/kdb.h>
67#include <sys/kernel.h>
68#include <sys/ktr.h>
69#include <sys/linker.h>
70#include <sys/lock.h>
71#include <sys/malloc.h>
72#include <sys/msgbuf.h>
73#include <sys/mutex.h>
74#include <sys/pcpu.h>
75#include <sys/ptrace.h>
76#include <sys/reboot.h>
77#include <sys/rwlock.h>
78#include <sys/sched.h>
79#include <sys/signalvar.h>
80#include <sys/syscallsubr.h>
81#include <sys/sysctl.h>
82#include <sys/sysent.h>
83#include <sys/sysproto.h>
84#include <sys/uio.h>
85#include <sys/vdso.h>
86
87#include <vm/vm.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pager.h>
93
94#include <machine/acle-compat.h>
95#include <machine/armreg.h>
96#include <machine/atags.h>
97#include <machine/cpu.h>
98#include <machine/cpuinfo.h>
99#include <machine/debug_monitor.h>
100#include <machine/db_machdep.h>
101#include <machine/devmap.h>
102#include <machine/frame.h>
103#include <machine/intr.h>
104#include <machine/machdep.h>
105#include <machine/md_var.h>
106#include <machine/metadata.h>
107#include <machine/pcb.h>
108#include <machine/physmem.h>
109#include <machine/platform.h>
110#include <machine/reg.h>
111#include <machine/trap.h>
112#include <machine/undefined.h>
113#include <machine/vfp.h>
114#include <machine/vmparam.h>
115#include <machine/sysarch.h>
116
117#ifdef FDT
118#include <dev/fdt/fdt_common.h>
119#include <dev/ofw/openfirm.h>
120#endif
121
122#ifdef DDB
123#include <ddb/ddb.h>
124
125#if __ARM_ARCH >= 6
126
127DB_SHOW_COMMAND(cp15, db_show_cp15)
128{
129	u_int reg;
130
131	reg = cp15_midr_get();
132	db_printf("Cpu ID: 0x%08x\n", reg);
133	reg = cp15_ctr_get();
134	db_printf("Current Cache Lvl ID: 0x%08x\n",reg);
135
136	reg = cp15_sctlr_get();
137	db_printf("Ctrl: 0x%08x\n",reg);
138	reg = cp15_actlr_get();
139	db_printf("Aux Ctrl: 0x%08x\n",reg);
140
141	reg = cp15_id_pfr0_get();
142	db_printf("Processor Feat 0: 0x%08x\n", reg);
143	reg = cp15_id_pfr1_get();
144	db_printf("Processor Feat 1: 0x%08x\n", reg);
145	reg = cp15_id_dfr0_get();
146	db_printf("Debug Feat 0: 0x%08x\n", reg);
147	reg = cp15_id_afr0_get();
148	db_printf("Auxiliary Feat 0: 0x%08x\n", reg);
149	reg = cp15_id_mmfr0_get();
150	db_printf("Memory Model Feat 0: 0x%08x\n", reg);
151	reg = cp15_id_mmfr1_get();
152	db_printf("Memory Model Feat 1: 0x%08x\n", reg);
153	reg = cp15_id_mmfr2_get();
154	db_printf("Memory Model Feat 2: 0x%08x\n", reg);
155	reg = cp15_id_mmfr3_get();
156	db_printf("Memory Model Feat 3: 0x%08x\n", reg);
157	reg = cp15_ttbr_get();
158	db_printf("TTB0: 0x%08x\n", reg);
159}
160
161DB_SHOW_COMMAND(vtop, db_show_vtop)
162{
163	u_int reg;
164
165	if (have_addr) {
166		cp15_ats1cpr_set(addr);
167		reg = cp15_par_get();
168		db_printf("Physical address reg: 0x%08x\n",reg);
169	} else
170		db_printf("show vtop <virt_addr>\n");
171}
172#endif /* __ARM_ARCH >= 6 */
173#endif /* DDB */
174
175#ifdef DEBUG
176#define	debugf(fmt, args...) printf(fmt, ##args)
177#else
178#define	debugf(fmt, args...)
179#endif
180
181struct pcpu __pcpu[MAXCPU];
182struct pcpu *pcpup = &__pcpu[0];
183
184static struct trapframe proc0_tf;
185uint32_t cpu_reset_address = 0;
186int cold = 1;
187vm_offset_t vector_page;
188
189int (*_arm_memcpy)(void *, void *, int, int) = NULL;
190int (*_arm_bzero)(void *, int, int) = NULL;
191int _min_memcpy_size = 0;
192int _min_bzero_size = 0;
193
194extern int *end;
195
196#ifdef FDT
197static char *loader_envp;
198
199vm_paddr_t pmap_pa;
200
201#if __ARM_ARCH >= 6
202vm_offset_t systempage;
203vm_offset_t irqstack;
204vm_offset_t undstack;
205vm_offset_t abtstack;
206#else
207/*
208 * This is the number of L2 page tables required for covering max
209 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
210 * stacks etc.), uprounded to be divisible by 4.
211 */
212#define KERNEL_PT_MAX	78
213
214static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
215
216struct pv_addr systempage;
217static struct pv_addr msgbufpv;
218struct pv_addr irqstack;
219struct pv_addr undstack;
220struct pv_addr abtstack;
221static struct pv_addr kernelstack;
222#endif
223#endif
224
225#if defined(LINUX_BOOT_ABI)
226#define LBABI_MAX_BANKS	10
227
228uint32_t board_id;
229struct arm_lbabi_tag *atag_list;
230char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
231char atags[LBABI_MAX_COMMAND_LINE * 2];
232uint32_t memstart[LBABI_MAX_BANKS];
233uint32_t memsize[LBABI_MAX_BANKS];
234uint32_t membanks;
235#endif
236
237static uint32_t board_revision;
238/* hex representation of uint64_t */
239static char board_serial[32];
240
241SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
242SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
243    &board_revision, 0, "Board revision");
244SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
245    board_serial, 0, "Board serial");
246
247int vfp_exists;
248SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
249    &vfp_exists, 0, "Floating point support enabled");
250
251void
252board_set_serial(uint64_t serial)
253{
254
255	snprintf(board_serial, sizeof(board_serial)-1,
256		    "%016jx", serial);
257}
258
259void
260board_set_revision(uint32_t revision)
261{
262
263	board_revision = revision;
264}
265
266void
267sendsig(catcher, ksi, mask)
268	sig_t catcher;
269	ksiginfo_t *ksi;
270	sigset_t *mask;
271{
272	struct thread *td;
273	struct proc *p;
274	struct trapframe *tf;
275	struct sigframe *fp, frame;
276	struct sigacts *psp;
277	struct sysentvec *sysent;
278	int onstack;
279	int sig;
280	int code;
281
282	td = curthread;
283	p = td->td_proc;
284	PROC_LOCK_ASSERT(p, MA_OWNED);
285	sig = ksi->ksi_signo;
286	code = ksi->ksi_code;
287	psp = p->p_sigacts;
288	mtx_assert(&psp->ps_mtx, MA_OWNED);
289	tf = td->td_frame;
290	onstack = sigonstack(tf->tf_usr_sp);
291
292	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
293	    catcher, sig);
294
295	/* Allocate and validate space for the signal handler context. */
296	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
297	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
298		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
299		    td->td_sigstk.ss_size);
300#if defined(COMPAT_43)
301		td->td_sigstk.ss_flags |= SS_ONSTACK;
302#endif
303	} else
304		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
305
306	/* make room on the stack */
307	fp--;
308
309	/* make the stack aligned */
310	fp = (struct sigframe *)STACKALIGN(fp);
311	/* Populate the siginfo frame. */
312	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
313	frame.sf_si = ksi->ksi_info;
314	frame.sf_uc.uc_sigmask = *mask;
315	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
316	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
317	frame.sf_uc.uc_stack = td->td_sigstk;
318	mtx_unlock(&psp->ps_mtx);
319	PROC_UNLOCK(td->td_proc);
320
321	/* Copy the sigframe out to the user's stack. */
322	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
323		/* Process has trashed its stack. Kill it. */
324		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
325		PROC_LOCK(p);
326		sigexit(td, SIGILL);
327	}
328
329	/*
330	 * Build context to run handler in.  We invoke the handler
331	 * directly, only returning via the trampoline.  Note the
332	 * trampoline version numbers are coordinated with machine-
333	 * dependent code in libc.
334	 */
335
336	tf->tf_r0 = sig;
337	tf->tf_r1 = (register_t)&fp->sf_si;
338	tf->tf_r2 = (register_t)&fp->sf_uc;
339
340	/* the trampoline uses r5 as the uc address */
341	tf->tf_r5 = (register_t)&fp->sf_uc;
342	tf->tf_pc = (register_t)catcher;
343	tf->tf_usr_sp = (register_t)fp;
344	sysent = p->p_sysent;
345	if (sysent->sv_sigcode_base != 0)
346		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
347	else
348		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
349		    *(sysent->sv_szsigcode));
350	/* Set the mode to enter in the signal handler */
351#if __ARM_ARCH >= 7
352	if ((register_t)catcher & 1)
353		tf->tf_spsr |= PSR_T;
354	else
355		tf->tf_spsr &= ~PSR_T;
356#endif
357
358	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
359	    tf->tf_usr_sp);
360
361	PROC_LOCK(p);
362	mtx_lock(&psp->ps_mtx);
363}
364
365struct kva_md_info kmi;
366
367/*
368 * arm32_vector_init:
369 *
370 *	Initialize the vector page, and select whether or not to
371 *	relocate the vectors.
372 *
373 *	NOTE: We expect the vector page to be mapped at its expected
374 *	destination.
375 */
376
377extern unsigned int page0[], page0_data[];
378void
379arm_vector_init(vm_offset_t va, int which)
380{
381	unsigned int *vectors = (int *) va;
382	unsigned int *vectors_data = vectors + (page0_data - page0);
383	int vec;
384
385	/*
386	 * Loop through the vectors we're taking over, and copy the
387	 * vector's insn and data word.
388	 */
389	for (vec = 0; vec < ARM_NVEC; vec++) {
390		if ((which & (1 << vec)) == 0) {
391			/* Don't want to take over this vector. */
392			continue;
393		}
394		vectors[vec] = page0[vec];
395		vectors_data[vec] = page0_data[vec];
396	}
397
398	/* Now sync the vectors. */
399	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
400
401	vector_page = va;
402
403	if (va == ARM_VECTORS_HIGH) {
404		/*
405		 * Assume the MD caller knows what it's doing here, and
406		 * really does want the vector page relocated.
407		 *
408		 * Note: This has to be done here (and not just in
409		 * cpu_setup()) because the vector page needs to be
410		 * accessible *before* cpu_startup() is called.
411		 * Think ddb(9) ...
412		 *
413		 * NOTE: If the CPU control register is not readable,
414		 * this will totally fail!  We'll just assume that
415		 * any system that has high vector support has a
416		 * readable CPU control register, for now.  If we
417		 * ever encounter one that does not, we'll have to
418		 * rethink this.
419		 */
420		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
421	}
422}
423
424static void
425cpu_startup(void *dummy)
426{
427	struct pcb *pcb = thread0.td_pcb;
428	const unsigned int mbyte = 1024 * 1024;
429#if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
430	vm_page_t m;
431#endif
432
433	identify_arm_cpu();
434
435	vm_ksubmap_init(&kmi);
436
437	/*
438	 * Display the RAM layout.
439	 */
440	printf("real memory  = %ju (%ju MB)\n",
441	    (uintmax_t)arm32_ptob(realmem),
442	    (uintmax_t)arm32_ptob(realmem) / mbyte);
443	printf("avail memory = %ju (%ju MB)\n",
444	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
445	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
446	if (bootverbose) {
447		arm_physmem_print_tables();
448		arm_devmap_print_table();
449	}
450
451	bufinit();
452	vm_pager_bufferinit();
453	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
454	    USPACE_SVC_STACK_TOP;
455	pmap_set_pcb_pagedir(kernel_pmap, pcb);
456#if __ARM_ARCH < 6
457	vector_page_setprot(VM_PROT_READ);
458	pmap_postinit();
459#ifdef ARM_CACHE_LOCK_ENABLE
460	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
461	arm_lock_cache_line(ARM_TP_ADDRESS);
462#else
463	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
464	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
465#endif
466	*(uint32_t *)ARM_RAS_START = 0;
467	*(uint32_t *)ARM_RAS_END = 0xffffffff;
468#endif
469}
470
471SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
472
473/*
474 * Flush the D-cache for non-DMA I/O so that the I-cache can
475 * be made coherent later.
476 */
477void
478cpu_flush_dcache(void *ptr, size_t len)
479{
480
481	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
482}
483
484/* Get current clock frequency for the given cpu id. */
485int
486cpu_est_clockrate(int cpu_id, uint64_t *rate)
487{
488
489	return (ENXIO);
490}
491
492void
493cpu_idle(int busy)
494{
495
496	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
497	spinlock_enter();
498#ifndef NO_EVENTTIMERS
499	if (!busy)
500		cpu_idleclock();
501#endif
502	if (!sched_runnable())
503		cpu_sleep(0);
504#ifndef NO_EVENTTIMERS
505	if (!busy)
506		cpu_activeclock();
507#endif
508	spinlock_exit();
509	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
510}
511
512int
513cpu_idle_wakeup(int cpu)
514{
515
516	return (0);
517}
518
519/*
520 * Most ARM platforms don't need to do anything special to init their clocks
521 * (they get intialized during normal device attachment), and by not defining a
522 * cpu_initclocks() function they get this generic one.  Any platform that needs
523 * to do something special can just provide their own implementation, which will
524 * override this one due to the weak linkage.
525 */
526void
527arm_generic_initclocks(void)
528{
529
530#ifndef NO_EVENTTIMERS
531#ifdef SMP
532	if (PCPU_GET(cpuid) == 0)
533		cpu_initclocks_bsp();
534	else
535		cpu_initclocks_ap();
536#else
537	cpu_initclocks_bsp();
538#endif
539#endif
540}
541__weak_reference(arm_generic_initclocks, cpu_initclocks);
542
543int
544fill_regs(struct thread *td, struct reg *regs)
545{
546	struct trapframe *tf = td->td_frame;
547	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
548	regs->r_sp = tf->tf_usr_sp;
549	regs->r_lr = tf->tf_usr_lr;
550	regs->r_pc = tf->tf_pc;
551	regs->r_cpsr = tf->tf_spsr;
552	return (0);
553}
554int
555fill_fpregs(struct thread *td, struct fpreg *regs)
556{
557	bzero(regs, sizeof(*regs));
558	return (0);
559}
560
561int
562set_regs(struct thread *td, struct reg *regs)
563{
564	struct trapframe *tf = td->td_frame;
565
566	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
567	tf->tf_usr_sp = regs->r_sp;
568	tf->tf_usr_lr = regs->r_lr;
569	tf->tf_pc = regs->r_pc;
570	tf->tf_spsr &=  ~PSR_FLAGS;
571	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
572	return (0);
573}
574
575int
576set_fpregs(struct thread *td, struct fpreg *regs)
577{
578	return (0);
579}
580
581int
582fill_dbregs(struct thread *td, struct dbreg *regs)
583{
584	return (0);
585}
586int
587set_dbregs(struct thread *td, struct dbreg *regs)
588{
589	return (0);
590}
591
592
593static int
594ptrace_read_int(struct thread *td, vm_offset_t addr, uint32_t *v)
595{
596
597	if (proc_readmem(td, td->td_proc, addr, v, sizeof(*v)) != sizeof(*v))
598		return (ENOMEM);
599	return (0);
600}
601
602static int
603ptrace_write_int(struct thread *td, vm_offset_t addr, uint32_t v)
604{
605
606	if (proc_writemem(td, td->td_proc, addr, &v, sizeof(v)) != sizeof(v))
607		return (ENOMEM);
608	return (0);
609}
610
611static u_int
612ptrace_get_usr_reg(void *cookie, int reg)
613{
614	int ret;
615	struct thread *td = cookie;
616
617	KASSERT(((reg >= 0) && (reg <= ARM_REG_NUM_PC)),
618	 ("reg is outside range"));
619
620	switch(reg) {
621	case ARM_REG_NUM_PC:
622		ret = td->td_frame->tf_pc;
623		break;
624	case ARM_REG_NUM_LR:
625		ret = td->td_frame->tf_usr_lr;
626		break;
627	case ARM_REG_NUM_SP:
628		ret = td->td_frame->tf_usr_sp;
629		break;
630	default:
631		ret = *((register_t*)&td->td_frame->tf_r0 + reg);
632		break;
633	}
634
635	return (ret);
636}
637
638static u_int
639ptrace_get_usr_int(void* cookie, vm_offset_t offset, u_int* val)
640{
641	struct thread *td = cookie;
642	u_int error;
643
644	error = ptrace_read_int(td, offset, val);
645
646	return (error);
647}
648
649/**
650 * This function parses current instruction opcode and decodes
651 * any possible jump (change in PC) which might occur after
652 * the instruction is executed.
653 *
654 * @param     td                Thread structure of analysed task
655 * @param     cur_instr         Currently executed instruction
656 * @param     alt_next_address  Pointer to the variable where
657 *                              the destination address of the
658 *                              jump instruction shall be stored.
659 *
660 * @return    <0>               when jump is possible
661 *            <EINVAL>          otherwise
662 */
663static int
664ptrace_get_alternative_next(struct thread *td, uint32_t cur_instr,
665    uint32_t *alt_next_address)
666{
667	int error;
668
669	if (inst_branch(cur_instr) || inst_call(cur_instr) ||
670	    inst_return(cur_instr)) {
671		error = arm_predict_branch(td, cur_instr, td->td_frame->tf_pc,
672		    alt_next_address, ptrace_get_usr_reg, ptrace_get_usr_int);
673
674		return (error);
675	}
676
677	return (EINVAL);
678}
679
680int
681ptrace_single_step(struct thread *td)
682{
683	struct proc *p;
684	int error, error_alt;
685	uint32_t cur_instr, alt_next = 0;
686
687	/* TODO: This needs to be updated for Thumb-2 */
688	if ((td->td_frame->tf_spsr & PSR_T) != 0)
689		return (EINVAL);
690
691	KASSERT(td->td_md.md_ptrace_instr == 0,
692	 ("Didn't clear single step"));
693	KASSERT(td->td_md.md_ptrace_instr_alt == 0,
694	 ("Didn't clear alternative single step"));
695	p = td->td_proc;
696	PROC_UNLOCK(p);
697
698	error = ptrace_read_int(td, td->td_frame->tf_pc,
699	    &cur_instr);
700	if (error)
701		goto out;
702
703	error = ptrace_read_int(td, td->td_frame->tf_pc + INSN_SIZE,
704	    &td->td_md.md_ptrace_instr);
705	if (error == 0) {
706		error = ptrace_write_int(td, td->td_frame->tf_pc + INSN_SIZE,
707		    PTRACE_BREAKPOINT);
708		if (error) {
709			td->td_md.md_ptrace_instr = 0;
710		} else {
711			td->td_md.md_ptrace_addr = td->td_frame->tf_pc +
712			    INSN_SIZE;
713		}
714	}
715
716	error_alt = ptrace_get_alternative_next(td, cur_instr, &alt_next);
717	if (error_alt == 0) {
718		error_alt = ptrace_read_int(td, alt_next,
719		    &td->td_md.md_ptrace_instr_alt);
720		if (error_alt) {
721			td->td_md.md_ptrace_instr_alt = 0;
722		} else {
723			error_alt = ptrace_write_int(td, alt_next,
724			    PTRACE_BREAKPOINT);
725			if (error_alt)
726				td->td_md.md_ptrace_instr_alt = 0;
727			else
728				td->td_md.md_ptrace_addr_alt = alt_next;
729		}
730	}
731
732out:
733	PROC_LOCK(p);
734	return ((error != 0) && (error_alt != 0));
735}
736
737int
738ptrace_clear_single_step(struct thread *td)
739{
740	struct proc *p;
741
742	/* TODO: This needs to be updated for Thumb-2 */
743	if ((td->td_frame->tf_spsr & PSR_T) != 0)
744		return (EINVAL);
745
746	if (td->td_md.md_ptrace_instr != 0) {
747		p = td->td_proc;
748		PROC_UNLOCK(p);
749		ptrace_write_int(td, td->td_md.md_ptrace_addr,
750		    td->td_md.md_ptrace_instr);
751		PROC_LOCK(p);
752		td->td_md.md_ptrace_instr = 0;
753	}
754
755	if (td->td_md.md_ptrace_instr_alt != 0) {
756		p = td->td_proc;
757		PROC_UNLOCK(p);
758		ptrace_write_int(td, td->td_md.md_ptrace_addr_alt,
759		    td->td_md.md_ptrace_instr_alt);
760		PROC_LOCK(p);
761		td->td_md.md_ptrace_instr_alt = 0;
762	}
763
764	return (0);
765}
766
767int
768ptrace_set_pc(struct thread *td, unsigned long addr)
769{
770	td->td_frame->tf_pc = addr;
771	return (0);
772}
773
774void
775cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
776{
777}
778
779void
780spinlock_enter(void)
781{
782	struct thread *td;
783	register_t cspr;
784
785	td = curthread;
786	if (td->td_md.md_spinlock_count == 0) {
787		cspr = disable_interrupts(PSR_I | PSR_F);
788		td->td_md.md_spinlock_count = 1;
789		td->td_md.md_saved_cspr = cspr;
790	} else
791		td->td_md.md_spinlock_count++;
792	critical_enter();
793}
794
795void
796spinlock_exit(void)
797{
798	struct thread *td;
799	register_t cspr;
800
801	td = curthread;
802	critical_exit();
803	cspr = td->td_md.md_saved_cspr;
804	td->td_md.md_spinlock_count--;
805	if (td->td_md.md_spinlock_count == 0)
806		restore_interrupts(cspr);
807}
808
809/*
810 * Clear registers on exec
811 */
812void
813exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
814{
815	struct trapframe *tf = td->td_frame;
816
817	memset(tf, 0, sizeof(*tf));
818	tf->tf_usr_sp = stack;
819	tf->tf_usr_lr = imgp->entry_addr;
820	tf->tf_svc_lr = 0x77777777;
821	tf->tf_pc = imgp->entry_addr;
822	tf->tf_spsr = PSR_USR32_MODE;
823}
824
825/*
826 * Get machine context.
827 */
828int
829get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
830{
831	struct trapframe *tf = td->td_frame;
832	__greg_t *gr = mcp->__gregs;
833
834	if (clear_ret & GET_MC_CLEAR_RET) {
835		gr[_REG_R0] = 0;
836		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
837	} else {
838		gr[_REG_R0]   = tf->tf_r0;
839		gr[_REG_CPSR] = tf->tf_spsr;
840	}
841	gr[_REG_R1]   = tf->tf_r1;
842	gr[_REG_R2]   = tf->tf_r2;
843	gr[_REG_R3]   = tf->tf_r3;
844	gr[_REG_R4]   = tf->tf_r4;
845	gr[_REG_R5]   = tf->tf_r5;
846	gr[_REG_R6]   = tf->tf_r6;
847	gr[_REG_R7]   = tf->tf_r7;
848	gr[_REG_R8]   = tf->tf_r8;
849	gr[_REG_R9]   = tf->tf_r9;
850	gr[_REG_R10]  = tf->tf_r10;
851	gr[_REG_R11]  = tf->tf_r11;
852	gr[_REG_R12]  = tf->tf_r12;
853	gr[_REG_SP]   = tf->tf_usr_sp;
854	gr[_REG_LR]   = tf->tf_usr_lr;
855	gr[_REG_PC]   = tf->tf_pc;
856
857	return (0);
858}
859
860/*
861 * Set machine context.
862 *
863 * However, we don't set any but the user modifiable flags, and we won't
864 * touch the cs selector.
865 */
866int
867set_mcontext(struct thread *td, mcontext_t *mcp)
868{
869	struct trapframe *tf = td->td_frame;
870	const __greg_t *gr = mcp->__gregs;
871
872	tf->tf_r0 = gr[_REG_R0];
873	tf->tf_r1 = gr[_REG_R1];
874	tf->tf_r2 = gr[_REG_R2];
875	tf->tf_r3 = gr[_REG_R3];
876	tf->tf_r4 = gr[_REG_R4];
877	tf->tf_r5 = gr[_REG_R5];
878	tf->tf_r6 = gr[_REG_R6];
879	tf->tf_r7 = gr[_REG_R7];
880	tf->tf_r8 = gr[_REG_R8];
881	tf->tf_r9 = gr[_REG_R9];
882	tf->tf_r10 = gr[_REG_R10];
883	tf->tf_r11 = gr[_REG_R11];
884	tf->tf_r12 = gr[_REG_R12];
885	tf->tf_usr_sp = gr[_REG_SP];
886	tf->tf_usr_lr = gr[_REG_LR];
887	tf->tf_pc = gr[_REG_PC];
888	tf->tf_spsr = gr[_REG_CPSR];
889
890	return (0);
891}
892
893/*
894 * MPSAFE
895 */
896int
897sys_sigreturn(td, uap)
898	struct thread *td;
899	struct sigreturn_args /* {
900		const struct __ucontext *sigcntxp;
901	} */ *uap;
902{
903	ucontext_t uc;
904	int spsr;
905
906	if (uap == NULL)
907		return (EFAULT);
908	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
909		return (EFAULT);
910	/*
911	 * Make sure the processor mode has not been tampered with and
912	 * interrupts have not been disabled.
913	 */
914	spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
915	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
916	    (spsr & (PSR_I | PSR_F)) != 0)
917		return (EINVAL);
918		/* Restore register context. */
919	set_mcontext(td, &uc.uc_mcontext);
920
921	/* Restore signal mask. */
922	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
923
924	return (EJUSTRETURN);
925}
926
927
928/*
929 * Construct a PCB from a trapframe. This is called from kdb_trap() where
930 * we want to start a backtrace from the function that caused us to enter
931 * the debugger. We have the context in the trapframe, but base the trace
932 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
933 * enough for a backtrace.
934 */
935void
936makectx(struct trapframe *tf, struct pcb *pcb)
937{
938	pcb->pcb_regs.sf_r4 = tf->tf_r4;
939	pcb->pcb_regs.sf_r5 = tf->tf_r5;
940	pcb->pcb_regs.sf_r6 = tf->tf_r6;
941	pcb->pcb_regs.sf_r7 = tf->tf_r7;
942	pcb->pcb_regs.sf_r8 = tf->tf_r8;
943	pcb->pcb_regs.sf_r9 = tf->tf_r9;
944	pcb->pcb_regs.sf_r10 = tf->tf_r10;
945	pcb->pcb_regs.sf_r11 = tf->tf_r11;
946	pcb->pcb_regs.sf_r12 = tf->tf_r12;
947	pcb->pcb_regs.sf_pc = tf->tf_pc;
948	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
949	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
950}
951
952/*
953 * Fake up a boot descriptor table
954 */
955vm_offset_t
956fake_preload_metadata(struct arm_boot_params *abp __unused)
957{
958#ifdef DDB
959	vm_offset_t zstart = 0, zend = 0;
960#endif
961	vm_offset_t lastaddr;
962	int i = 0;
963	static uint32_t fake_preload[35];
964
965	fake_preload[i++] = MODINFO_NAME;
966	fake_preload[i++] = strlen("kernel") + 1;
967	strcpy((char*)&fake_preload[i++], "kernel");
968	i += 1;
969	fake_preload[i++] = MODINFO_TYPE;
970	fake_preload[i++] = strlen("elf kernel") + 1;
971	strcpy((char*)&fake_preload[i++], "elf kernel");
972	i += 2;
973	fake_preload[i++] = MODINFO_ADDR;
974	fake_preload[i++] = sizeof(vm_offset_t);
975	fake_preload[i++] = KERNVIRTADDR;
976	fake_preload[i++] = MODINFO_SIZE;
977	fake_preload[i++] = sizeof(uint32_t);
978	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
979#ifdef DDB
980	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
981		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
982		fake_preload[i++] = sizeof(vm_offset_t);
983		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
984		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
985		fake_preload[i++] = sizeof(vm_offset_t);
986		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
987		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
988		zend = lastaddr;
989		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
990		db_fetch_ksymtab(zstart, zend);
991	} else
992#endif
993		lastaddr = (vm_offset_t)&end;
994	fake_preload[i++] = 0;
995	fake_preload[i] = 0;
996	preload_metadata = (void *)fake_preload;
997
998	init_static_kenv(NULL, 0);
999
1000	return (lastaddr);
1001}
1002
1003void
1004pcpu0_init(void)
1005{
1006#if __ARM_ARCH >= 6
1007	set_curthread(&thread0);
1008#endif
1009	pcpu_init(pcpup, 0, sizeof(struct pcpu));
1010	PCPU_SET(curthread, &thread0);
1011}
1012
1013#if defined(LINUX_BOOT_ABI)
1014vm_offset_t
1015linux_parse_boot_param(struct arm_boot_params *abp)
1016{
1017	struct arm_lbabi_tag *walker;
1018	uint32_t revision;
1019	uint64_t serial;
1020
1021	/*
1022	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
1023	 * is atags or dtb pointer.  If all of these aren't satisfied,
1024	 * then punt.
1025	 */
1026	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
1027		return 0;
1028
1029	board_id = abp->abp_r1;
1030	walker = (struct arm_lbabi_tag *)
1031	    (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
1032
1033	/* xxx - Need to also look for binary device tree */
1034	if (ATAG_TAG(walker) != ATAG_CORE)
1035		return 0;
1036
1037	atag_list = walker;
1038	while (ATAG_TAG(walker) != ATAG_NONE) {
1039		switch (ATAG_TAG(walker)) {
1040		case ATAG_CORE:
1041			break;
1042		case ATAG_MEM:
1043			arm_physmem_hardware_region(walker->u.tag_mem.start,
1044			    walker->u.tag_mem.size);
1045			break;
1046		case ATAG_INITRD2:
1047			break;
1048		case ATAG_SERIAL:
1049			serial = walker->u.tag_sn.low |
1050			    ((uint64_t)walker->u.tag_sn.high << 32);
1051			board_set_serial(serial);
1052			break;
1053		case ATAG_REVISION:
1054			revision = walker->u.tag_rev.rev;
1055			board_set_revision(revision);
1056			break;
1057		case ATAG_CMDLINE:
1058			/* XXX open question: Parse this for boothowto? */
1059			bcopy(walker->u.tag_cmd.command, linux_command_line,
1060			      ATAG_SIZE(walker));
1061			break;
1062		default:
1063			break;
1064		}
1065		walker = ATAG_NEXT(walker);
1066	}
1067
1068	/* Save a copy for later */
1069	bcopy(atag_list, atags,
1070	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
1071
1072	init_static_kenv(NULL, 0);
1073
1074	return fake_preload_metadata(abp);
1075}
1076#endif
1077
1078#if defined(FREEBSD_BOOT_LOADER)
1079vm_offset_t
1080freebsd_parse_boot_param(struct arm_boot_params *abp)
1081{
1082	vm_offset_t lastaddr = 0;
1083	void *mdp;
1084	void *kmdp;
1085#ifdef DDB
1086	vm_offset_t ksym_start;
1087	vm_offset_t ksym_end;
1088#endif
1089
1090	/*
1091	 * Mask metadata pointer: it is supposed to be on page boundary. If
1092	 * the first argument (mdp) doesn't point to a valid address the
1093	 * bootloader must have passed us something else than the metadata
1094	 * ptr, so we give up.  Also give up if we cannot find metadta section
1095	 * the loader creates that we get all this data out of.
1096	 */
1097
1098	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
1099		return 0;
1100	preload_metadata = mdp;
1101	kmdp = preload_search_by_type("elf kernel");
1102	if (kmdp == NULL)
1103		return 0;
1104
1105	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1106	loader_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
1107	init_static_kenv(loader_envp, 0);
1108	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
1109#ifdef DDB
1110	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1111	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1112	db_fetch_ksymtab(ksym_start, ksym_end);
1113#endif
1114	return lastaddr;
1115}
1116#endif
1117
1118vm_offset_t
1119default_parse_boot_param(struct arm_boot_params *abp)
1120{
1121	vm_offset_t lastaddr;
1122
1123#if defined(LINUX_BOOT_ABI)
1124	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
1125		return lastaddr;
1126#endif
1127#if defined(FREEBSD_BOOT_LOADER)
1128	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
1129		return lastaddr;
1130#endif
1131	/* Fall back to hardcoded metadata. */
1132	lastaddr = fake_preload_metadata(abp);
1133
1134	return lastaddr;
1135}
1136
1137/*
1138 * Stub version of the boot parameter parsing routine.  We are
1139 * called early in initarm, before even VM has been initialized.
1140 * This routine needs to preserve any data that the boot loader
1141 * has passed in before the kernel starts to grow past the end
1142 * of the BSS, traditionally the place boot-loaders put this data.
1143 *
1144 * Since this is called so early, things that depend on the vm system
1145 * being setup (including access to some SoC's serial ports), about
1146 * all that can be done in this routine is to copy the arguments.
1147 *
1148 * This is the default boot parameter parsing routine.  Individual
1149 * kernels/boards can override this weak function with one of their
1150 * own.  We just fake metadata...
1151 */
1152__weak_reference(default_parse_boot_param, parse_boot_param);
1153
1154/*
1155 * Initialize proc0
1156 */
1157void
1158init_proc0(vm_offset_t kstack)
1159{
1160	proc_linkup0(&proc0, &thread0);
1161	thread0.td_kstack = kstack;
1162	thread0.td_pcb = (struct pcb *)
1163		(thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
1164	thread0.td_pcb->pcb_flags = 0;
1165	thread0.td_pcb->pcb_vfpcpu = -1;
1166	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
1167	thread0.td_frame = &proc0_tf;
1168	pcpup->pc_curpcb = thread0.td_pcb;
1169}
1170
1171int
1172arm_predict_branch(void *cookie, u_int insn, register_t pc, register_t *new_pc,
1173    u_int (*fetch_reg)(void*, int), u_int (*read_int)(void*, vm_offset_t, u_int*))
1174{
1175	u_int addr, nregs, offset = 0;
1176	int error = 0;
1177
1178	switch ((insn >> 24) & 0xf) {
1179	case 0x2:	/* add pc, reg1, #value */
1180	case 0x0:	/* add pc, reg1, reg2, lsl #offset */
1181		addr = fetch_reg(cookie, (insn >> 16) & 0xf);
1182		if (((insn >> 16) & 0xf) == 15)
1183			addr += 8;
1184		if (insn & 0x0200000) {
1185			offset = (insn >> 7) & 0x1e;
1186			offset = (insn & 0xff) << (32 - offset) |
1187			    (insn & 0xff) >> offset;
1188		} else {
1189
1190			offset = fetch_reg(cookie, insn & 0x0f);
1191			if ((insn & 0x0000ff0) != 0x00000000) {
1192				if (insn & 0x10)
1193					nregs = fetch_reg(cookie,
1194					    (insn >> 8) & 0xf);
1195				else
1196					nregs = (insn >> 7) & 0x1f;
1197				switch ((insn >> 5) & 3) {
1198				case 0:
1199					/* lsl */
1200					offset = offset << nregs;
1201					break;
1202				case 1:
1203					/* lsr */
1204					offset = offset >> nregs;
1205					break;
1206				default:
1207					break; /* XXX */
1208				}
1209
1210			}
1211			*new_pc = addr + offset;
1212			return (0);
1213
1214		}
1215
1216	case 0xa:	/* b ... */
1217	case 0xb:	/* bl ... */
1218		addr = ((insn << 2) & 0x03ffffff);
1219		if (addr & 0x02000000)
1220			addr |= 0xfc000000;
1221		*new_pc = (pc + 8 + addr);
1222		return (0);
1223	case 0x7:	/* ldr pc, [pc, reg, lsl #2] */
1224		addr = fetch_reg(cookie, insn & 0xf);
1225		addr = pc + 8 + (addr << 2);
1226		error = read_int(cookie, addr, &addr);
1227		*new_pc = addr;
1228		return (error);
1229	case 0x1:	/* mov pc, reg */
1230		*new_pc = fetch_reg(cookie, insn & 0xf);
1231		return (0);
1232	case 0x4:
1233	case 0x5:	/* ldr pc, [reg] */
1234		addr = fetch_reg(cookie, (insn >> 16) & 0xf);
1235		/* ldr pc, [reg, #offset] */
1236		if (insn & (1 << 24))
1237			offset = insn & 0xfff;
1238		if (insn & 0x00800000)
1239			addr += offset;
1240		else
1241			addr -= offset;
1242		error = read_int(cookie, addr, &addr);
1243		*new_pc = addr;
1244
1245		return (error);
1246	case 0x8:	/* ldmxx reg, {..., pc} */
1247	case 0x9:
1248		addr = fetch_reg(cookie, (insn >> 16) & 0xf);
1249		nregs = (insn  & 0x5555) + ((insn  >> 1) & 0x5555);
1250		nregs = (nregs & 0x3333) + ((nregs >> 2) & 0x3333);
1251		nregs = (nregs + (nregs >> 4)) & 0x0f0f;
1252		nregs = (nregs + (nregs >> 8)) & 0x001f;
1253		switch ((insn >> 23) & 0x3) {
1254		case 0x0:	/* ldmda */
1255			addr = addr - 0;
1256			break;
1257		case 0x1:	/* ldmia */
1258			addr = addr + 0 + ((nregs - 1) << 2);
1259			break;
1260		case 0x2:	/* ldmdb */
1261			addr = addr - 4;
1262			break;
1263		case 0x3:	/* ldmib */
1264			addr = addr + 4 + ((nregs - 1) << 2);
1265			break;
1266		}
1267		error = read_int(cookie, addr, &addr);
1268		*new_pc = addr;
1269
1270		return (error);
1271	default:
1272		return (EINVAL);
1273	}
1274}
1275
1276#if __ARM_ARCH >= 6
1277void
1278set_stackptrs(int cpu)
1279{
1280
1281	set_stackptr(PSR_IRQ32_MODE,
1282	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1283	set_stackptr(PSR_ABT32_MODE,
1284	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1285	set_stackptr(PSR_UND32_MODE,
1286	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1287}
1288#else
1289void
1290set_stackptrs(int cpu)
1291{
1292
1293	set_stackptr(PSR_IRQ32_MODE,
1294	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1295	set_stackptr(PSR_ABT32_MODE,
1296	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1297	set_stackptr(PSR_UND32_MODE,
1298	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1299}
1300#endif
1301
1302#ifdef EFI
1303#define efi_next_descriptor(ptr, size) \
1304	((struct efi_md *)(((uint8_t *) ptr) + size))
1305
1306static void
1307add_efi_map_entries(struct efi_map_header *efihdr, struct mem_region *mr,
1308    int *mrcnt)
1309{
1310	struct efi_md *map, *p;
1311	const char *type;
1312	size_t efisz, memory_size;
1313	int ndesc, i, j;
1314
1315	static const char *types[] = {
1316		"Reserved",
1317		"LoaderCode",
1318		"LoaderData",
1319		"BootServicesCode",
1320		"BootServicesData",
1321		"RuntimeServicesCode",
1322		"RuntimeServicesData",
1323		"ConventionalMemory",
1324		"UnusableMemory",
1325		"ACPIReclaimMemory",
1326		"ACPIMemoryNVS",
1327		"MemoryMappedIO",
1328		"MemoryMappedIOPortSpace",
1329		"PalCode"
1330	};
1331
1332	*mrcnt = 0;
1333
1334	/*
1335	 * Memory map data provided by UEFI via the GetMemoryMap
1336	 * Boot Services API.
1337	 */
1338	efisz = roundup2(sizeof(struct efi_map_header), 0x10);
1339	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1340
1341	if (efihdr->descriptor_size == 0)
1342		return;
1343	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1344
1345	if (boothowto & RB_VERBOSE)
1346		printf("%23s %12s %12s %8s %4s\n",
1347		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1348
1349	memory_size = 0;
1350	for (i = 0, j = 0, p = map; i < ndesc; i++,
1351	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1352		if (boothowto & RB_VERBOSE) {
1353			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1354				type = types[p->md_type];
1355			else
1356				type = "<INVALID>";
1357			printf("%23s %012llx %12p %08llx ", type, p->md_phys,
1358			    p->md_virt, p->md_pages);
1359			if (p->md_attr & EFI_MD_ATTR_UC)
1360				printf("UC ");
1361			if (p->md_attr & EFI_MD_ATTR_WC)
1362				printf("WC ");
1363			if (p->md_attr & EFI_MD_ATTR_WT)
1364				printf("WT ");
1365			if (p->md_attr & EFI_MD_ATTR_WB)
1366				printf("WB ");
1367			if (p->md_attr & EFI_MD_ATTR_UCE)
1368				printf("UCE ");
1369			if (p->md_attr & EFI_MD_ATTR_WP)
1370				printf("WP ");
1371			if (p->md_attr & EFI_MD_ATTR_RP)
1372				printf("RP ");
1373			if (p->md_attr & EFI_MD_ATTR_XP)
1374				printf("XP ");
1375			if (p->md_attr & EFI_MD_ATTR_RT)
1376				printf("RUNTIME");
1377			printf("\n");
1378		}
1379
1380		switch (p->md_type) {
1381		case EFI_MD_TYPE_CODE:
1382		case EFI_MD_TYPE_DATA:
1383		case EFI_MD_TYPE_BS_CODE:
1384		case EFI_MD_TYPE_BS_DATA:
1385		case EFI_MD_TYPE_FREE:
1386			/*
1387			 * We're allowed to use any entry with these types.
1388			 */
1389			break;
1390		default:
1391			continue;
1392		}
1393
1394		j++;
1395		if (j >= FDT_MEM_REGIONS)
1396			break;
1397
1398		mr[j].mr_start = p->md_phys;
1399		mr[j].mr_size = p->md_pages * PAGE_SIZE;
1400		memory_size += mr[j].mr_size;
1401	}
1402
1403	*mrcnt = j;
1404}
1405#endif /* EFI */
1406
1407#ifdef FDT
1408static char *
1409kenv_next(char *cp)
1410{
1411
1412	if (cp != NULL) {
1413		while (*cp != 0)
1414			cp++;
1415		cp++;
1416		if (*cp == 0)
1417			cp = NULL;
1418	}
1419	return (cp);
1420}
1421
1422static void
1423print_kenv(void)
1424{
1425	char *cp;
1426
1427	debugf("loader passed (static) kenv:\n");
1428	if (loader_envp == NULL) {
1429		debugf(" no env, null ptr\n");
1430		return;
1431	}
1432	debugf(" loader_envp = 0x%08x\n", (uint32_t)loader_envp);
1433
1434	for (cp = loader_envp; cp != NULL; cp = kenv_next(cp))
1435		debugf(" %x %s\n", (uint32_t)cp, cp);
1436}
1437
1438#if __ARM_ARCH < 6
1439void *
1440initarm(struct arm_boot_params *abp)
1441{
1442	struct mem_region mem_regions[FDT_MEM_REGIONS];
1443	struct pv_addr kernel_l1pt;
1444	struct pv_addr dpcpu;
1445	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1446	u_long memsize;
1447	uint32_t l2size;
1448	char *env;
1449	void *kmdp;
1450	u_int l1pagetable;
1451	int i, j, err_devmap, mem_regions_sz;
1452
1453	lastaddr = parse_boot_param(abp);
1454	arm_physmem_kernaddr = abp->abp_physaddr;
1455
1456	memsize = 0;
1457
1458	cpuinfo_init();
1459	set_cpufuncs();
1460
1461	/*
1462	 * Find the dtb passed in by the boot loader.
1463	 */
1464	kmdp = preload_search_by_type("elf kernel");
1465	if (kmdp != NULL)
1466		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1467	else
1468		dtbp = (vm_offset_t)NULL;
1469
1470#if defined(FDT_DTB_STATIC)
1471	/*
1472	 * In case the device tree blob was not retrieved (from metadata) try
1473	 * to use the statically embedded one.
1474	 */
1475	if (dtbp == (vm_offset_t)NULL)
1476		dtbp = (vm_offset_t)&fdt_static_dtb;
1477#endif
1478
1479	if (OF_install(OFW_FDT, 0) == FALSE)
1480		panic("Cannot install FDT");
1481
1482	if (OF_init((void *)dtbp) != 0)
1483		panic("OF_init failed with the found device tree");
1484
1485	/* Grab physical memory regions information from device tree. */
1486	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
1487		panic("Cannot get physical memory regions");
1488	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1489
1490	/* Grab reserved memory regions information from device tree. */
1491	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1492		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1493		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1494
1495	/* Platform-specific initialisation */
1496	platform_probe_and_attach();
1497
1498	pcpu0_init();
1499
1500	/* Do basic tuning, hz etc */
1501	init_param1();
1502
1503	/* Calculate number of L2 tables needed for mapping vm_page_array */
1504	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1505	l2size = (l2size >> L1_S_SHIFT) + 1;
1506
1507	/*
1508	 * Add one table for end of kernel map, one for stacks, msgbuf and
1509	 * L1 and L2 tables map and one for vectors map.
1510	 */
1511	l2size += 3;
1512
1513	/* Make it divisible by 4 */
1514	l2size = (l2size + 3) & ~3;
1515
1516	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1517
1518	/* Define a macro to simplify memory allocation */
1519#define valloc_pages(var, np)						\
1520	alloc_pages((var).pv_va, (np));					\
1521	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
1522
1523#define alloc_pages(var, np)						\
1524	(var) = freemempos;						\
1525	freemempos += (np * PAGE_SIZE);					\
1526	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1527
1528	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1529		freemempos += PAGE_SIZE;
1530	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1531
1532	for (i = 0, j = 0; i < l2size; ++i) {
1533		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1534			valloc_pages(kernel_pt_table[i],
1535			    L2_TABLE_SIZE / PAGE_SIZE);
1536			j = i;
1537		} else {
1538			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1539			    L2_TABLE_SIZE_REAL * (i - j);
1540			kernel_pt_table[i].pv_pa =
1541			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1542			    abp->abp_physaddr;
1543
1544		}
1545	}
1546	/*
1547	 * Allocate a page for the system page mapped to 0x00000000
1548	 * or 0xffff0000. This page will just contain the system vectors
1549	 * and can be shared by all processes.
1550	 */
1551	valloc_pages(systempage, 1);
1552
1553	/* Allocate dynamic per-cpu area. */
1554	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1555	dpcpu_init((void *)dpcpu.pv_va, 0);
1556
1557	/* Allocate stacks for all modes */
1558	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1559	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1560	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1561	valloc_pages(kernelstack, kstack_pages * MAXCPU);
1562	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1563
1564	/*
1565	 * Now we start construction of the L1 page table
1566	 * We start by mapping the L2 page tables into the L1.
1567	 * This means that we can replace L1 mappings later on if necessary
1568	 */
1569	l1pagetable = kernel_l1pt.pv_va;
1570
1571	/*
1572	 * Try to map as much as possible of kernel text and data using
1573	 * 1MB section mapping and for the rest of initial kernel address
1574	 * space use L2 coarse tables.
1575	 *
1576	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1577	 * and kernel structures
1578	 */
1579	l2_start = lastaddr & ~(L1_S_OFFSET);
1580	for (i = 0 ; i < l2size - 1; i++)
1581		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1582		    &kernel_pt_table[i]);
1583
1584	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1585
1586	/* Map kernel code and data */
1587	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
1588	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1589	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1590
1591	/* Map L1 directory and allocated L2 page tables */
1592	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1593	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1594
1595	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1596	    kernel_pt_table[0].pv_pa,
1597	    L2_TABLE_SIZE_REAL * l2size,
1598	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1599
1600	/* Map allocated DPCPU, stacks and msgbuf */
1601	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1602	    freemempos - dpcpu.pv_va,
1603	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1604
1605	/* Link and map the vector page */
1606	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1607	    &kernel_pt_table[l2size - 1]);
1608	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1609	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1610
1611	/* Establish static device mappings. */
1612	err_devmap = platform_devmap_init();
1613	arm_devmap_bootstrap(l1pagetable, NULL);
1614	vm_max_kernel_address = platform_lastaddr();
1615
1616	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1617	pmap_pa = kernel_l1pt.pv_pa;
1618	cpu_setttb(kernel_l1pt.pv_pa);
1619	cpu_tlb_flushID();
1620	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1621
1622	/*
1623	 * Now that proper page tables are installed, call cpu_setup() to enable
1624	 * instruction and data caches and other chip-specific features.
1625	 */
1626	cpu_setup();
1627
1628	/*
1629	 * Only after the SOC registers block is mapped we can perform device
1630	 * tree fixups, as they may attempt to read parameters from hardware.
1631	 */
1632	OF_interpret("perform-fixup", 0);
1633
1634	platform_gpio_init();
1635
1636	cninit();
1637
1638	debugf("initarm: console initialized\n");
1639	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1640	debugf(" boothowto = 0x%08x\n", boothowto);
1641	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1642	print_kenv();
1643
1644	env = kern_getenv("kernelname");
1645	if (env != NULL) {
1646		strlcpy(kernelname, env, sizeof(kernelname));
1647		freeenv(env);
1648	}
1649
1650	if (err_devmap != 0)
1651		printf("WARNING: could not fully configure devmap, error=%d\n",
1652		    err_devmap);
1653
1654	platform_late_init();
1655
1656	/*
1657	 * Pages were allocated during the secondary bootstrap for the
1658	 * stacks for different CPU modes.
1659	 * We must now set the r13 registers in the different CPU modes to
1660	 * point to these stacks.
1661	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1662	 * of the stack memory.
1663	 */
1664	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1665
1666	set_stackptrs(0);
1667
1668	/*
1669	 * We must now clean the cache again....
1670	 * Cleaning may be done by reading new data to displace any
1671	 * dirty data in the cache. This will have happened in cpu_setttb()
1672	 * but since we are boot strapping the addresses used for the read
1673	 * may have just been remapped and thus the cache could be out
1674	 * of sync. A re-clean after the switch will cure this.
1675	 * After booting there are no gross relocations of the kernel thus
1676	 * this problem will not occur after initarm().
1677	 */
1678	cpu_idcache_wbinv_all();
1679
1680	undefined_init();
1681
1682	init_proc0(kernelstack.pv_va);
1683
1684	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1685	pmap_bootstrap(freemempos, &kernel_l1pt);
1686	msgbufp = (void *)msgbufpv.pv_va;
1687	msgbufinit(msgbufp, msgbufsize);
1688	mutex_init();
1689
1690	/*
1691	 * Exclude the kernel (and all the things we allocated which immediately
1692	 * follow the kernel) from the VM allocation pool but not from crash
1693	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1694	 * "allocated" while setting up pmaps.
1695	 *
1696	 * Prepare the list of physical memory available to the vm subsystem.
1697	 */
1698	arm_physmem_exclude_region(abp->abp_physaddr,
1699	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1700	arm_physmem_init_kernel_globals();
1701
1702	init_param2(physmem);
1703	dbg_monitor_init();
1704	kdb_init();
1705
1706	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1707	    sizeof(struct pcb)));
1708}
1709#else /* __ARM_ARCH < 6 */
1710void *
1711initarm(struct arm_boot_params *abp)
1712{
1713	struct mem_region mem_regions[FDT_MEM_REGIONS];
1714	vm_paddr_t lastaddr;
1715	vm_offset_t dtbp, kernelstack, dpcpu;
1716	char *env;
1717	void *kmdp;
1718	int err_devmap, mem_regions_sz;
1719#ifdef EFI
1720	struct efi_map_header *efihdr;
1721#endif
1722
1723	/* get last allocated physical address */
1724	arm_physmem_kernaddr = abp->abp_physaddr;
1725	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
1726
1727	set_cpufuncs();
1728	cpuinfo_init();
1729
1730	/*
1731	 * Find the dtb passed in by the boot loader.
1732	 */
1733	kmdp = preload_search_by_type("elf kernel");
1734	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1735#if defined(FDT_DTB_STATIC)
1736	/*
1737	 * In case the device tree blob was not retrieved (from metadata) try
1738	 * to use the statically embedded one.
1739	 */
1740	if (dtbp == (vm_offset_t)NULL)
1741		dtbp = (vm_offset_t)&fdt_static_dtb;
1742#endif
1743
1744	if (OF_install(OFW_FDT, 0) == FALSE)
1745		panic("Cannot install FDT");
1746
1747	if (OF_init((void *)dtbp) != 0)
1748		panic("OF_init failed with the found device tree");
1749
1750#ifdef EFI
1751	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1752	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1753	if (efihdr != NULL) {
1754		add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
1755	} else
1756#endif
1757	{
1758		/* Grab physical memory regions information from device tree. */
1759		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
1760			panic("Cannot get physical memory regions");
1761	}
1762	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1763
1764	/* Grab reserved memory regions information from device tree. */
1765	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1766		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1767		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1768
1769	/*
1770	 * Set TEX remapping registers.
1771	 * Setup kernel page tables and switch to kernel L1 page table.
1772	 */
1773	pmap_set_tex();
1774	pmap_bootstrap_prepare(lastaddr);
1775
1776	/*
1777	 * Now that proper page tables are installed, call cpu_setup() to enable
1778	 * instruction and data caches and other chip-specific features.
1779	 */
1780	cpu_setup();
1781
1782	/* Platform-specific initialisation */
1783	platform_probe_and_attach();
1784	pcpu0_init();
1785
1786	/* Do basic tuning, hz etc */
1787	init_param1();
1788
1789	/*
1790	 * Allocate a page for the system page mapped to 0xffff0000
1791	 * This page will just contain the system vectors and can be
1792	 * shared by all processes.
1793	 */
1794	systempage = pmap_preboot_get_pages(1);
1795
1796	/* Map the vector page. */
1797	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
1798	if (virtual_end >= ARM_VECTORS_HIGH)
1799		virtual_end = ARM_VECTORS_HIGH - 1;
1800
1801	/* Allocate dynamic per-cpu area. */
1802	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
1803	dpcpu_init((void *)dpcpu, 0);
1804
1805	/* Allocate stacks for all modes */
1806	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
1807	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
1808	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
1809	kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
1810
1811	/* Allocate message buffer. */
1812	msgbufp = (void *)pmap_preboot_get_vpages(
1813	    round_page(msgbufsize) / PAGE_SIZE);
1814
1815	/*
1816	 * Pages were allocated during the secondary bootstrap for the
1817	 * stacks for different CPU modes.
1818	 * We must now set the r13 registers in the different CPU modes to
1819	 * point to these stacks.
1820	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1821	 * of the stack memory.
1822	 */
1823	set_stackptrs(0);
1824	mutex_init();
1825
1826	/* Establish static device mappings. */
1827	err_devmap = platform_devmap_init();
1828	arm_devmap_bootstrap(0, NULL);
1829	vm_max_kernel_address = platform_lastaddr();
1830
1831	/*
1832	 * Only after the SOC registers block is mapped we can perform device
1833	 * tree fixups, as they may attempt to read parameters from hardware.
1834	 */
1835	OF_interpret("perform-fixup", 0);
1836	platform_gpio_init();
1837	cninit();
1838
1839	debugf("initarm: console initialized\n");
1840	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1841	debugf(" boothowto = 0x%08x\n", boothowto);
1842	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1843	debugf(" lastaddr1: 0x%08x\n", lastaddr);
1844	print_kenv();
1845
1846	env = kern_getenv("kernelname");
1847	if (env != NULL)
1848		strlcpy(kernelname, env, sizeof(kernelname));
1849
1850	if (err_devmap != 0)
1851		printf("WARNING: could not fully configure devmap, error=%d\n",
1852		    err_devmap);
1853
1854	platform_late_init();
1855
1856	/*
1857	 * We must now clean the cache again....
1858	 * Cleaning may be done by reading new data to displace any
1859	 * dirty data in the cache. This will have happened in cpu_setttb()
1860	 * but since we are boot strapping the addresses used for the read
1861	 * may have just been remapped and thus the cache could be out
1862	 * of sync. A re-clean after the switch will cure this.
1863	 * After booting there are no gross relocations of the kernel thus
1864	 * this problem will not occur after initarm().
1865	 */
1866	/* Set stack for exception handlers */
1867	undefined_init();
1868	init_proc0(kernelstack);
1869	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1870	enable_interrupts(PSR_A);
1871	pmap_bootstrap(0);
1872
1873	/* Exclude the kernel (and all the things we allocated which immediately
1874	 * follow the kernel) from the VM allocation pool but not from crash
1875	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1876	 * "allocated" while setting up pmaps.
1877	 *
1878	 * Prepare the list of physical memory available to the vm subsystem.
1879	 */
1880	arm_physmem_exclude_region(abp->abp_physaddr,
1881		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
1882	arm_physmem_init_kernel_globals();
1883
1884	init_param2(physmem);
1885	/* Init message buffer. */
1886	msgbufinit(msgbufp, msgbufsize);
1887	dbg_monitor_init();
1888	kdb_init();
1889	return ((void *)STACKALIGN(thread0.td_pcb));
1890
1891}
1892
1893#endif /* __ARM_ARCH < 6 */
1894#endif /* FDT */
1895
1896uint32_t (*arm_cpu_fill_vdso_timehands)(struct vdso_timehands *,
1897    struct timecounter *);
1898
1899uint32_t
1900cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
1901{
1902
1903	return (arm_cpu_fill_vdso_timehands != NULL ?
1904	    arm_cpu_fill_vdso_timehands(vdso_th, tc) : 0);
1905}
1906