machdep.c revision 276333
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_platform.h"
48#include "opt_sched.h"
49#include "opt_timer.h"
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/arm/arm/machdep.c 276333 2014-12-28 18:12:56Z ian $");
53
54#include <sys/param.h>
55#include <sys/proc.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/bus.h>
60#include <sys/cons.h>
61#include <sys/cpu.h>
62#include <sys/exec.h>
63#include <sys/imgact.h>
64#include <sys/kdb.h>
65#include <sys/kernel.h>
66#include <sys/ktr.h>
67#include <sys/linker.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/msgbuf.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/ptrace.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/syscallsubr.h>
78#include <sys/sysctl.h>
79#include <sys/sysent.h>
80#include <sys/sysproto.h>
81#include <sys/uio.h>
82
83#include <vm/vm.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pager.h>
89
90#include <machine/armreg.h>
91#include <machine/atags.h>
92#include <machine/cpu.h>
93#include <machine/cpuinfo.h>
94#include <machine/devmap.h>
95#include <machine/frame.h>
96#include <machine/intr.h>
97#include <machine/machdep.h>
98#include <machine/md_var.h>
99#include <machine/metadata.h>
100#include <machine/pcb.h>
101#include <machine/physmem.h>
102#include <machine/platform.h>
103#include <machine/reg.h>
104#include <machine/trap.h>
105#include <machine/undefined.h>
106#include <machine/vfp.h>
107#include <machine/vmparam.h>
108#include <machine/sysarch.h>
109
110#ifdef FDT
111#include <dev/fdt/fdt_common.h>
112#include <dev/ofw/openfirm.h>
113#endif
114
115#ifdef DDB
116#include <ddb/ddb.h>
117#endif
118
119#ifdef DEBUG
120#define	debugf(fmt, args...) printf(fmt, ##args)
121#else
122#define	debugf(fmt, args...)
123#endif
124
125struct pcpu __pcpu[MAXCPU];
126struct pcpu *pcpup = &__pcpu[0];
127
128static struct trapframe proc0_tf;
129uint32_t cpu_reset_address = 0;
130int cold = 1;
131vm_offset_t vector_page;
132
133int (*_arm_memcpy)(void *, void *, int, int) = NULL;
134int (*_arm_bzero)(void *, int, int) = NULL;
135int _min_memcpy_size = 0;
136int _min_bzero_size = 0;
137
138extern int *end;
139
140#ifdef FDT
141/*
142 * This is the number of L2 page tables required for covering max
143 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
144 * stacks etc.), uprounded to be divisible by 4.
145 */
146#define KERNEL_PT_MAX	78
147
148static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
149
150vm_paddr_t pmap_pa;
151
152struct pv_addr systempage;
153static struct pv_addr msgbufpv;
154struct pv_addr irqstack;
155struct pv_addr undstack;
156struct pv_addr abtstack;
157static struct pv_addr kernelstack;
158
159#endif
160
161#if defined(LINUX_BOOT_ABI)
162#define LBABI_MAX_BANKS	10
163
164uint32_t board_id;
165struct arm_lbabi_tag *atag_list;
166char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
167char atags[LBABI_MAX_COMMAND_LINE * 2];
168uint32_t memstart[LBABI_MAX_BANKS];
169uint32_t memsize[LBABI_MAX_BANKS];
170uint32_t membanks;
171#endif
172
173static uint32_t board_revision;
174/* hex representation of uint64_t */
175static char board_serial[32];
176
177SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
178SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
179    &board_revision, 0, "Board revision");
180SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
181    board_serial, 0, "Board serial");
182
183int vfp_exists;
184SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
185    &vfp_exists, 0, "Floating point support enabled");
186
187void
188board_set_serial(uint64_t serial)
189{
190
191	snprintf(board_serial, sizeof(board_serial)-1,
192		    "%016jx", serial);
193}
194
195void
196board_set_revision(uint32_t revision)
197{
198
199	board_revision = revision;
200}
201
202void
203sendsig(catcher, ksi, mask)
204	sig_t catcher;
205	ksiginfo_t *ksi;
206	sigset_t *mask;
207{
208	struct thread *td;
209	struct proc *p;
210	struct trapframe *tf;
211	struct sigframe *fp, frame;
212	struct sigacts *psp;
213	int onstack;
214	int sig;
215	int code;
216
217	td = curthread;
218	p = td->td_proc;
219	PROC_LOCK_ASSERT(p, MA_OWNED);
220	sig = ksi->ksi_signo;
221	code = ksi->ksi_code;
222	psp = p->p_sigacts;
223	mtx_assert(&psp->ps_mtx, MA_OWNED);
224	tf = td->td_frame;
225	onstack = sigonstack(tf->tf_usr_sp);
226
227	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
228	    catcher, sig);
229
230	/* Allocate and validate space for the signal handler context. */
231	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
232	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
233		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
234		    td->td_sigstk.ss_size);
235#if defined(COMPAT_43)
236		td->td_sigstk.ss_flags |= SS_ONSTACK;
237#endif
238	} else
239		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
240
241	/* make room on the stack */
242	fp--;
243
244	/* make the stack aligned */
245	fp = (struct sigframe *)STACKALIGN(fp);
246	/* Populate the siginfo frame. */
247	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
248	frame.sf_si = ksi->ksi_info;
249	frame.sf_uc.uc_sigmask = *mask;
250	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
251	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
252	frame.sf_uc.uc_stack = td->td_sigstk;
253	mtx_unlock(&psp->ps_mtx);
254	PROC_UNLOCK(td->td_proc);
255
256	/* Copy the sigframe out to the user's stack. */
257	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
258		/* Process has trashed its stack. Kill it. */
259		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
260		PROC_LOCK(p);
261		sigexit(td, SIGILL);
262	}
263
264	/* Translate the signal if appropriate. */
265	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
266		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
267
268	/*
269	 * Build context to run handler in.  We invoke the handler
270	 * directly, only returning via the trampoline.  Note the
271	 * trampoline version numbers are coordinated with machine-
272	 * dependent code in libc.
273	 */
274
275	tf->tf_r0 = sig;
276	tf->tf_r1 = (register_t)&fp->sf_si;
277	tf->tf_r2 = (register_t)&fp->sf_uc;
278
279	/* the trampoline uses r5 as the uc address */
280	tf->tf_r5 = (register_t)&fp->sf_uc;
281	tf->tf_pc = (register_t)catcher;
282	tf->tf_usr_sp = (register_t)fp;
283	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
284
285	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
286	    tf->tf_usr_sp);
287
288	PROC_LOCK(p);
289	mtx_lock(&psp->ps_mtx);
290}
291
292struct kva_md_info kmi;
293
294/*
295 * arm32_vector_init:
296 *
297 *	Initialize the vector page, and select whether or not to
298 *	relocate the vectors.
299 *
300 *	NOTE: We expect the vector page to be mapped at its expected
301 *	destination.
302 */
303
304extern unsigned int page0[], page0_data[];
305void
306arm_vector_init(vm_offset_t va, int which)
307{
308	unsigned int *vectors = (int *) va;
309	unsigned int *vectors_data = vectors + (page0_data - page0);
310	int vec;
311
312	/*
313	 * Loop through the vectors we're taking over, and copy the
314	 * vector's insn and data word.
315	 */
316	for (vec = 0; vec < ARM_NVEC; vec++) {
317		if ((which & (1 << vec)) == 0) {
318			/* Don't want to take over this vector. */
319			continue;
320		}
321		vectors[vec] = page0[vec];
322		vectors_data[vec] = page0_data[vec];
323	}
324
325	/* Now sync the vectors. */
326	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
327
328	vector_page = va;
329
330	if (va == ARM_VECTORS_HIGH) {
331		/*
332		 * Assume the MD caller knows what it's doing here, and
333		 * really does want the vector page relocated.
334		 *
335		 * Note: This has to be done here (and not just in
336		 * cpu_setup()) because the vector page needs to be
337		 * accessible *before* cpu_startup() is called.
338		 * Think ddb(9) ...
339		 *
340		 * NOTE: If the CPU control register is not readable,
341		 * this will totally fail!  We'll just assume that
342		 * any system that has high vector support has a
343		 * readable CPU control register, for now.  If we
344		 * ever encounter one that does not, we'll have to
345		 * rethink this.
346		 */
347		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
348	}
349}
350
351static void
352cpu_startup(void *dummy)
353{
354	struct pcb *pcb = thread0.td_pcb;
355	const unsigned int mbyte = 1024 * 1024;
356#ifdef ARM_TP_ADDRESS
357#ifndef ARM_CACHE_LOCK_ENABLE
358	vm_page_t m;
359#endif
360#endif
361
362	identify_arm_cpu();
363
364	vm_ksubmap_init(&kmi);
365
366	/*
367	 * Display the RAM layout.
368	 */
369	printf("real memory  = %ju (%ju MB)\n",
370	    (uintmax_t)arm32_ptob(realmem),
371	    (uintmax_t)arm32_ptob(realmem) / mbyte);
372	printf("avail memory = %ju (%ju MB)\n",
373	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
374	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
375	if (bootverbose) {
376		arm_physmem_print_tables();
377		arm_devmap_print_table();
378	}
379
380	bufinit();
381	vm_pager_bufferinit();
382	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
383	    USPACE_SVC_STACK_TOP;
384	vector_page_setprot(VM_PROT_READ);
385	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
386	pmap_postinit();
387#ifdef ARM_TP_ADDRESS
388#ifdef ARM_CACHE_LOCK_ENABLE
389	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
390	arm_lock_cache_line(ARM_TP_ADDRESS);
391#else
392	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
393	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
394#endif
395	*(uint32_t *)ARM_RAS_START = 0;
396	*(uint32_t *)ARM_RAS_END = 0xffffffff;
397#endif
398}
399
400SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
401
402/*
403 * Flush the D-cache for non-DMA I/O so that the I-cache can
404 * be made coherent later.
405 */
406void
407cpu_flush_dcache(void *ptr, size_t len)
408{
409
410	cpu_dcache_wb_range((uintptr_t)ptr, len);
411#ifdef ARM_L2_PIPT
412	cpu_l2cache_wb_range((uintptr_t)vtophys(ptr), len);
413#else
414	cpu_l2cache_wb_range((uintptr_t)ptr, len);
415#endif
416}
417
418/* Get current clock frequency for the given cpu id. */
419int
420cpu_est_clockrate(int cpu_id, uint64_t *rate)
421{
422
423	return (ENXIO);
424}
425
426void
427cpu_idle(int busy)
428{
429
430	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
431	spinlock_enter();
432#ifndef NO_EVENTTIMERS
433	if (!busy)
434		cpu_idleclock();
435#endif
436	if (!sched_runnable())
437		cpu_sleep(0);
438#ifndef NO_EVENTTIMERS
439	if (!busy)
440		cpu_activeclock();
441#endif
442	spinlock_exit();
443	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
444}
445
446int
447cpu_idle_wakeup(int cpu)
448{
449
450	return (0);
451}
452
453/*
454 * Most ARM platforms don't need to do anything special to init their clocks
455 * (they get intialized during normal device attachment), and by not defining a
456 * cpu_initclocks() function they get this generic one.  Any platform that needs
457 * to do something special can just provide their own implementation, which will
458 * override this one due to the weak linkage.
459 */
460void
461arm_generic_initclocks(void)
462{
463
464#ifndef NO_EVENTTIMERS
465#ifdef SMP
466	if (PCPU_GET(cpuid) == 0)
467		cpu_initclocks_bsp();
468	else
469		cpu_initclocks_ap();
470#else
471	cpu_initclocks_bsp();
472#endif
473#endif
474}
475__weak_reference(arm_generic_initclocks, cpu_initclocks);
476
477int
478fill_regs(struct thread *td, struct reg *regs)
479{
480	struct trapframe *tf = td->td_frame;
481	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
482	regs->r_sp = tf->tf_usr_sp;
483	regs->r_lr = tf->tf_usr_lr;
484	regs->r_pc = tf->tf_pc;
485	regs->r_cpsr = tf->tf_spsr;
486	return (0);
487}
488int
489fill_fpregs(struct thread *td, struct fpreg *regs)
490{
491	bzero(regs, sizeof(*regs));
492	return (0);
493}
494
495int
496set_regs(struct thread *td, struct reg *regs)
497{
498	struct trapframe *tf = td->td_frame;
499
500	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
501	tf->tf_usr_sp = regs->r_sp;
502	tf->tf_usr_lr = regs->r_lr;
503	tf->tf_pc = regs->r_pc;
504	tf->tf_spsr &=  ~PSR_FLAGS;
505	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
506	return (0);
507}
508
509int
510set_fpregs(struct thread *td, struct fpreg *regs)
511{
512	return (0);
513}
514
515int
516fill_dbregs(struct thread *td, struct dbreg *regs)
517{
518	return (0);
519}
520int
521set_dbregs(struct thread *td, struct dbreg *regs)
522{
523	return (0);
524}
525
526
527static int
528ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
529{
530	struct iovec iov;
531	struct uio uio;
532
533	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
534	iov.iov_base = (caddr_t) v;
535	iov.iov_len = sizeof(u_int32_t);
536	uio.uio_iov = &iov;
537	uio.uio_iovcnt = 1;
538	uio.uio_offset = (off_t)addr;
539	uio.uio_resid = sizeof(u_int32_t);
540	uio.uio_segflg = UIO_SYSSPACE;
541	uio.uio_rw = UIO_READ;
542	uio.uio_td = td;
543	return proc_rwmem(td->td_proc, &uio);
544}
545
546static int
547ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
548{
549	struct iovec iov;
550	struct uio uio;
551
552	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
553	iov.iov_base = (caddr_t) &v;
554	iov.iov_len = sizeof(u_int32_t);
555	uio.uio_iov = &iov;
556	uio.uio_iovcnt = 1;
557	uio.uio_offset = (off_t)addr;
558	uio.uio_resid = sizeof(u_int32_t);
559	uio.uio_segflg = UIO_SYSSPACE;
560	uio.uio_rw = UIO_WRITE;
561	uio.uio_td = td;
562	return proc_rwmem(td->td_proc, &uio);
563}
564
565int
566ptrace_single_step(struct thread *td)
567{
568	struct proc *p;
569	int error;
570
571	KASSERT(td->td_md.md_ptrace_instr == 0,
572	 ("Didn't clear single step"));
573	p = td->td_proc;
574	PROC_UNLOCK(p);
575	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
576	    &td->td_md.md_ptrace_instr);
577	if (error)
578		goto out;
579	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
580	    PTRACE_BREAKPOINT);
581	if (error)
582		td->td_md.md_ptrace_instr = 0;
583	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
584out:
585	PROC_LOCK(p);
586	return (error);
587}
588
589int
590ptrace_clear_single_step(struct thread *td)
591{
592	struct proc *p;
593
594	if (td->td_md.md_ptrace_instr) {
595		p = td->td_proc;
596		PROC_UNLOCK(p);
597		ptrace_write_int(td, td->td_md.md_ptrace_addr,
598		    td->td_md.md_ptrace_instr);
599		PROC_LOCK(p);
600		td->td_md.md_ptrace_instr = 0;
601	}
602	return (0);
603}
604
605int
606ptrace_set_pc(struct thread *td, unsigned long addr)
607{
608	td->td_frame->tf_pc = addr;
609	return (0);
610}
611
612void
613cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
614{
615}
616
617void
618spinlock_enter(void)
619{
620	struct thread *td;
621	register_t cspr;
622
623	td = curthread;
624	if (td->td_md.md_spinlock_count == 0) {
625		cspr = disable_interrupts(PSR_I | PSR_F);
626		td->td_md.md_spinlock_count = 1;
627		td->td_md.md_saved_cspr = cspr;
628	} else
629		td->td_md.md_spinlock_count++;
630	critical_enter();
631}
632
633void
634spinlock_exit(void)
635{
636	struct thread *td;
637	register_t cspr;
638
639	td = curthread;
640	critical_exit();
641	cspr = td->td_md.md_saved_cspr;
642	td->td_md.md_spinlock_count--;
643	if (td->td_md.md_spinlock_count == 0)
644		restore_interrupts(cspr);
645}
646
647/*
648 * Clear registers on exec
649 */
650void
651exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
652{
653	struct trapframe *tf = td->td_frame;
654
655	memset(tf, 0, sizeof(*tf));
656	tf->tf_usr_sp = stack;
657	tf->tf_usr_lr = imgp->entry_addr;
658	tf->tf_svc_lr = 0x77777777;
659	tf->tf_pc = imgp->entry_addr;
660	tf->tf_spsr = PSR_USR32_MODE;
661}
662
663/*
664 * Get machine context.
665 */
666int
667get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
668{
669	struct trapframe *tf = td->td_frame;
670	__greg_t *gr = mcp->__gregs;
671
672	if (clear_ret & GET_MC_CLEAR_RET)
673		gr[_REG_R0] = 0;
674	else
675		gr[_REG_R0]   = tf->tf_r0;
676	gr[_REG_R1]   = tf->tf_r1;
677	gr[_REG_R2]   = tf->tf_r2;
678	gr[_REG_R3]   = tf->tf_r3;
679	gr[_REG_R4]   = tf->tf_r4;
680	gr[_REG_R5]   = tf->tf_r5;
681	gr[_REG_R6]   = tf->tf_r6;
682	gr[_REG_R7]   = tf->tf_r7;
683	gr[_REG_R8]   = tf->tf_r8;
684	gr[_REG_R9]   = tf->tf_r9;
685	gr[_REG_R10]  = tf->tf_r10;
686	gr[_REG_R11]  = tf->tf_r11;
687	gr[_REG_R12]  = tf->tf_r12;
688	gr[_REG_SP]   = tf->tf_usr_sp;
689	gr[_REG_LR]   = tf->tf_usr_lr;
690	gr[_REG_PC]   = tf->tf_pc;
691	gr[_REG_CPSR] = tf->tf_spsr;
692
693	return (0);
694}
695
696/*
697 * Set machine context.
698 *
699 * However, we don't set any but the user modifiable flags, and we won't
700 * touch the cs selector.
701 */
702int
703set_mcontext(struct thread *td, const mcontext_t *mcp)
704{
705	struct trapframe *tf = td->td_frame;
706	const __greg_t *gr = mcp->__gregs;
707
708	tf->tf_r0 = gr[_REG_R0];
709	tf->tf_r1 = gr[_REG_R1];
710	tf->tf_r2 = gr[_REG_R2];
711	tf->tf_r3 = gr[_REG_R3];
712	tf->tf_r4 = gr[_REG_R4];
713	tf->tf_r5 = gr[_REG_R5];
714	tf->tf_r6 = gr[_REG_R6];
715	tf->tf_r7 = gr[_REG_R7];
716	tf->tf_r8 = gr[_REG_R8];
717	tf->tf_r9 = gr[_REG_R9];
718	tf->tf_r10 = gr[_REG_R10];
719	tf->tf_r11 = gr[_REG_R11];
720	tf->tf_r12 = gr[_REG_R12];
721	tf->tf_usr_sp = gr[_REG_SP];
722	tf->tf_usr_lr = gr[_REG_LR];
723	tf->tf_pc = gr[_REG_PC];
724	tf->tf_spsr = gr[_REG_CPSR];
725
726	return (0);
727}
728
729/*
730 * MPSAFE
731 */
732int
733sys_sigreturn(td, uap)
734	struct thread *td;
735	struct sigreturn_args /* {
736		const struct __ucontext *sigcntxp;
737	} */ *uap;
738{
739	ucontext_t uc;
740	int spsr;
741
742	if (uap == NULL)
743		return (EFAULT);
744	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
745		return (EFAULT);
746	/*
747	 * Make sure the processor mode has not been tampered with and
748	 * interrupts have not been disabled.
749	 */
750	spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
751	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
752	    (spsr & (PSR_I | PSR_F)) != 0)
753		return (EINVAL);
754		/* Restore register context. */
755	set_mcontext(td, &uc.uc_mcontext);
756
757	/* Restore signal mask. */
758	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
759
760	return (EJUSTRETURN);
761}
762
763
764/*
765 * Construct a PCB from a trapframe. This is called from kdb_trap() where
766 * we want to start a backtrace from the function that caused us to enter
767 * the debugger. We have the context in the trapframe, but base the trace
768 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
769 * enough for a backtrace.
770 */
771void
772makectx(struct trapframe *tf, struct pcb *pcb)
773{
774	pcb->pcb_regs.sf_r4 = tf->tf_r4;
775	pcb->pcb_regs.sf_r5 = tf->tf_r5;
776	pcb->pcb_regs.sf_r6 = tf->tf_r6;
777	pcb->pcb_regs.sf_r7 = tf->tf_r7;
778	pcb->pcb_regs.sf_r8 = tf->tf_r8;
779	pcb->pcb_regs.sf_r9 = tf->tf_r9;
780	pcb->pcb_regs.sf_r10 = tf->tf_r10;
781	pcb->pcb_regs.sf_r11 = tf->tf_r11;
782	pcb->pcb_regs.sf_r12 = tf->tf_r12;
783	pcb->pcb_regs.sf_pc = tf->tf_pc;
784	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
785	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
786}
787
788/*
789 * Fake up a boot descriptor table
790 */
791vm_offset_t
792fake_preload_metadata(struct arm_boot_params *abp __unused)
793{
794#ifdef DDB
795	vm_offset_t zstart = 0, zend = 0;
796#endif
797	vm_offset_t lastaddr;
798	int i = 0;
799	static uint32_t fake_preload[35];
800
801	fake_preload[i++] = MODINFO_NAME;
802	fake_preload[i++] = strlen("kernel") + 1;
803	strcpy((char*)&fake_preload[i++], "kernel");
804	i += 1;
805	fake_preload[i++] = MODINFO_TYPE;
806	fake_preload[i++] = strlen("elf kernel") + 1;
807	strcpy((char*)&fake_preload[i++], "elf kernel");
808	i += 2;
809	fake_preload[i++] = MODINFO_ADDR;
810	fake_preload[i++] = sizeof(vm_offset_t);
811	fake_preload[i++] = KERNVIRTADDR;
812	fake_preload[i++] = MODINFO_SIZE;
813	fake_preload[i++] = sizeof(uint32_t);
814	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
815#ifdef DDB
816	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
817		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
818		fake_preload[i++] = sizeof(vm_offset_t);
819		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
820		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
821		fake_preload[i++] = sizeof(vm_offset_t);
822		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
823		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
824		zend = lastaddr;
825		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
826		db_fetch_ksymtab(zstart, zend);
827	} else
828#endif
829		lastaddr = (vm_offset_t)&end;
830	fake_preload[i++] = 0;
831	fake_preload[i] = 0;
832	preload_metadata = (void *)fake_preload;
833
834	return (lastaddr);
835}
836
837void
838pcpu0_init(void)
839{
840#if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
841	set_curthread(&thread0);
842#endif
843	pcpu_init(pcpup, 0, sizeof(struct pcpu));
844	PCPU_SET(curthread, &thread0);
845#ifdef VFP
846	PCPU_SET(cpu, 0);
847#endif
848}
849
850#if defined(LINUX_BOOT_ABI)
851vm_offset_t
852linux_parse_boot_param(struct arm_boot_params *abp)
853{
854	struct arm_lbabi_tag *walker;
855	uint32_t revision;
856	uint64_t serial;
857
858	/*
859	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
860	 * is atags or dtb pointer.  If all of these aren't satisfied,
861	 * then punt.
862	 */
863	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
864		return 0;
865
866	board_id = abp->abp_r1;
867	walker = (struct arm_lbabi_tag *)
868	    (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
869
870	/* xxx - Need to also look for binary device tree */
871	if (ATAG_TAG(walker) != ATAG_CORE)
872		return 0;
873
874	atag_list = walker;
875	while (ATAG_TAG(walker) != ATAG_NONE) {
876		switch (ATAG_TAG(walker)) {
877		case ATAG_CORE:
878			break;
879		case ATAG_MEM:
880			arm_physmem_hardware_region(walker->u.tag_mem.start,
881			    walker->u.tag_mem.size);
882			break;
883		case ATAG_INITRD2:
884			break;
885		case ATAG_SERIAL:
886			serial = walker->u.tag_sn.low |
887			    ((uint64_t)walker->u.tag_sn.high << 32);
888			board_set_serial(serial);
889			break;
890		case ATAG_REVISION:
891			revision = walker->u.tag_rev.rev;
892			board_set_revision(revision);
893			break;
894		case ATAG_CMDLINE:
895			/* XXX open question: Parse this for boothowto? */
896			bcopy(walker->u.tag_cmd.command, linux_command_line,
897			      ATAG_SIZE(walker));
898			break;
899		default:
900			break;
901		}
902		walker = ATAG_NEXT(walker);
903	}
904
905	/* Save a copy for later */
906	bcopy(atag_list, atags,
907	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
908
909	return fake_preload_metadata(abp);
910}
911#endif
912
913#if defined(FREEBSD_BOOT_LOADER)
914vm_offset_t
915freebsd_parse_boot_param(struct arm_boot_params *abp)
916{
917	vm_offset_t lastaddr = 0;
918	void *mdp;
919	void *kmdp;
920#ifdef DDB
921	vm_offset_t ksym_start;
922	vm_offset_t ksym_end;
923#endif
924
925	/*
926	 * Mask metadata pointer: it is supposed to be on page boundary. If
927	 * the first argument (mdp) doesn't point to a valid address the
928	 * bootloader must have passed us something else than the metadata
929	 * ptr, so we give up.  Also give up if we cannot find metadta section
930	 * the loader creates that we get all this data out of.
931	 */
932
933	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
934		return 0;
935	preload_metadata = mdp;
936	kmdp = preload_search_by_type("elf kernel");
937	if (kmdp == NULL)
938		return 0;
939
940	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
941	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
942	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
943#ifdef DDB
944	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
945	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
946	db_fetch_ksymtab(ksym_start, ksym_end);
947#endif
948	preload_addr_relocate = KERNVIRTADDR - abp->abp_physaddr;
949	return lastaddr;
950}
951#endif
952
953vm_offset_t
954default_parse_boot_param(struct arm_boot_params *abp)
955{
956	vm_offset_t lastaddr;
957
958#if defined(LINUX_BOOT_ABI)
959	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
960		return lastaddr;
961#endif
962#if defined(FREEBSD_BOOT_LOADER)
963	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
964		return lastaddr;
965#endif
966	/* Fall back to hardcoded metadata. */
967	lastaddr = fake_preload_metadata(abp);
968
969	return lastaddr;
970}
971
972/*
973 * Stub version of the boot parameter parsing routine.  We are
974 * called early in initarm, before even VM has been initialized.
975 * This routine needs to preserve any data that the boot loader
976 * has passed in before the kernel starts to grow past the end
977 * of the BSS, traditionally the place boot-loaders put this data.
978 *
979 * Since this is called so early, things that depend on the vm system
980 * being setup (including access to some SoC's serial ports), about
981 * all that can be done in this routine is to copy the arguments.
982 *
983 * This is the default boot parameter parsing routine.  Individual
984 * kernels/boards can override this weak function with one of their
985 * own.  We just fake metadata...
986 */
987__weak_reference(default_parse_boot_param, parse_boot_param);
988
989/*
990 * Initialize proc0
991 */
992void
993init_proc0(vm_offset_t kstack)
994{
995	proc_linkup0(&proc0, &thread0);
996	thread0.td_kstack = kstack;
997	thread0.td_pcb = (struct pcb *)
998		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
999	thread0.td_pcb->pcb_flags = 0;
1000	thread0.td_pcb->pcb_vfpcpu = -1;
1001	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN | VFPSCR_FZ;
1002	thread0.td_frame = &proc0_tf;
1003	pcpup->pc_curpcb = thread0.td_pcb;
1004}
1005
1006void
1007set_stackptrs(int cpu)
1008{
1009
1010	set_stackptr(PSR_IRQ32_MODE,
1011	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1012	set_stackptr(PSR_ABT32_MODE,
1013	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1014	set_stackptr(PSR_UND32_MODE,
1015	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1016}
1017
1018#ifdef FDT
1019static char *
1020kenv_next(char *cp)
1021{
1022
1023	if (cp != NULL) {
1024		while (*cp != 0)
1025			cp++;
1026		cp++;
1027		if (*cp == 0)
1028			cp = NULL;
1029	}
1030	return (cp);
1031}
1032
1033static void
1034print_kenv(void)
1035{
1036	int len;
1037	char *cp;
1038
1039	debugf("loader passed (static) kenv:\n");
1040	if (kern_envp == NULL) {
1041		debugf(" no env, null ptr\n");
1042		return;
1043	}
1044	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
1045
1046	len = 0;
1047	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
1048		debugf(" %x %s\n", (uint32_t)cp, cp);
1049}
1050
1051void *
1052initarm(struct arm_boot_params *abp)
1053{
1054	struct mem_region mem_regions[FDT_MEM_REGIONS];
1055	struct pv_addr kernel_l1pt;
1056	struct pv_addr dpcpu;
1057	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1058	uint32_t memsize, l2size;
1059	char *env;
1060	void *kmdp;
1061	u_int l1pagetable;
1062	int i, j, err_devmap, mem_regions_sz;
1063
1064	lastaddr = parse_boot_param(abp);
1065	arm_physmem_kernaddr = abp->abp_physaddr;
1066
1067	memsize = 0;
1068
1069	cpuinfo_init();
1070	set_cpufuncs();
1071
1072	/*
1073	 * Find the dtb passed in by the boot loader.
1074	 */
1075	kmdp = preload_search_by_type("elf kernel");
1076	if (kmdp != NULL)
1077		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1078	else
1079		dtbp = (vm_offset_t)NULL;
1080
1081#if defined(FDT_DTB_STATIC)
1082	/*
1083	 * In case the device tree blob was not retrieved (from metadata) try
1084	 * to use the statically embedded one.
1085	 */
1086	if (dtbp == (vm_offset_t)NULL)
1087		dtbp = (vm_offset_t)&fdt_static_dtb;
1088#endif
1089
1090	if (OF_install(OFW_FDT, 0) == FALSE)
1091		panic("Cannot install FDT");
1092
1093	if (OF_init((void *)dtbp) != 0)
1094		panic("OF_init failed with the found device tree");
1095
1096	/* Grab physical memory regions information from device tree. */
1097	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
1098		panic("Cannot get physical memory regions");
1099	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1100
1101	/* Grab reserved memory regions information from device tree. */
1102	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1103		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1104		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1105
1106	/* Platform-specific initialisation */
1107	platform_probe_and_attach();
1108
1109	pcpu0_init();
1110
1111	/* Do basic tuning, hz etc */
1112	init_param1();
1113
1114	/* Calculate number of L2 tables needed for mapping vm_page_array */
1115	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1116	l2size = (l2size >> L1_S_SHIFT) + 1;
1117
1118	/*
1119	 * Add one table for end of kernel map, one for stacks, msgbuf and
1120	 * L1 and L2 tables map and one for vectors map.
1121	 */
1122	l2size += 3;
1123
1124	/* Make it divisible by 4 */
1125	l2size = (l2size + 3) & ~3;
1126
1127	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1128
1129	/* Define a macro to simplify memory allocation */
1130#define valloc_pages(var, np)						\
1131	alloc_pages((var).pv_va, (np));					\
1132	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
1133
1134#define alloc_pages(var, np)						\
1135	(var) = freemempos;						\
1136	freemempos += (np * PAGE_SIZE);					\
1137	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1138
1139	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1140		freemempos += PAGE_SIZE;
1141	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1142
1143	for (i = 0, j = 0; i < l2size; ++i) {
1144		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1145			valloc_pages(kernel_pt_table[i],
1146			    L2_TABLE_SIZE / PAGE_SIZE);
1147			j = i;
1148		} else {
1149			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1150			    L2_TABLE_SIZE_REAL * (i - j);
1151			kernel_pt_table[i].pv_pa =
1152			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1153			    abp->abp_physaddr;
1154
1155		}
1156	}
1157	/*
1158	 * Allocate a page for the system page mapped to 0x00000000
1159	 * or 0xffff0000. This page will just contain the system vectors
1160	 * and can be shared by all processes.
1161	 */
1162	valloc_pages(systempage, 1);
1163
1164	/* Allocate dynamic per-cpu area. */
1165	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1166	dpcpu_init((void *)dpcpu.pv_va, 0);
1167
1168	/* Allocate stacks for all modes */
1169	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1170	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1171	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1172	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
1173	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1174
1175	/*
1176	 * Now we start construction of the L1 page table
1177	 * We start by mapping the L2 page tables into the L1.
1178	 * This means that we can replace L1 mappings later on if necessary
1179	 */
1180	l1pagetable = kernel_l1pt.pv_va;
1181
1182	/*
1183	 * Try to map as much as possible of kernel text and data using
1184	 * 1MB section mapping and for the rest of initial kernel address
1185	 * space use L2 coarse tables.
1186	 *
1187	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1188	 * and kernel structures
1189	 */
1190	l2_start = lastaddr & ~(L1_S_OFFSET);
1191	for (i = 0 ; i < l2size - 1; i++)
1192		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1193		    &kernel_pt_table[i]);
1194
1195	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1196
1197	/* Map kernel code and data */
1198	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
1199	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1200	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1201
1202	/* Map L1 directory and allocated L2 page tables */
1203	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1204	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1205
1206	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1207	    kernel_pt_table[0].pv_pa,
1208	    L2_TABLE_SIZE_REAL * l2size,
1209	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1210
1211	/* Map allocated DPCPU, stacks and msgbuf */
1212	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1213	    freemempos - dpcpu.pv_va,
1214	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1215
1216	/* Link and map the vector page */
1217	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1218	    &kernel_pt_table[l2size - 1]);
1219	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1220	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1221
1222	/* Establish static device mappings. */
1223	err_devmap = platform_devmap_init();
1224	arm_devmap_bootstrap(l1pagetable, NULL);
1225	vm_max_kernel_address = platform_lastaddr();
1226
1227	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1228	pmap_pa = kernel_l1pt.pv_pa;
1229	setttb(kernel_l1pt.pv_pa);
1230	cpu_tlb_flushID();
1231	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1232
1233	/*
1234	 * Now that proper page tables are installed, call cpu_setup() to enable
1235	 * instruction and data caches and other chip-specific features.
1236	 */
1237	cpu_setup("");
1238
1239	/*
1240	 * Only after the SOC registers block is mapped we can perform device
1241	 * tree fixups, as they may attempt to read parameters from hardware.
1242	 */
1243	OF_interpret("perform-fixup", 0);
1244
1245	platform_gpio_init();
1246
1247	cninit();
1248
1249	debugf("initarm: console initialized\n");
1250	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1251	debugf(" boothowto = 0x%08x\n", boothowto);
1252	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1253	print_kenv();
1254
1255	env = kern_getenv("kernelname");
1256	if (env != NULL) {
1257		strlcpy(kernelname, env, sizeof(kernelname));
1258		freeenv(env);
1259	}
1260
1261	if (err_devmap != 0)
1262		printf("WARNING: could not fully configure devmap, error=%d\n",
1263		    err_devmap);
1264
1265	platform_late_init();
1266
1267	/*
1268	 * Pages were allocated during the secondary bootstrap for the
1269	 * stacks for different CPU modes.
1270	 * We must now set the r13 registers in the different CPU modes to
1271	 * point to these stacks.
1272	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1273	 * of the stack memory.
1274	 */
1275	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1276
1277	set_stackptrs(0);
1278
1279	/*
1280	 * We must now clean the cache again....
1281	 * Cleaning may be done by reading new data to displace any
1282	 * dirty data in the cache. This will have happened in setttb()
1283	 * but since we are boot strapping the addresses used for the read
1284	 * may have just been remapped and thus the cache could be out
1285	 * of sync. A re-clean after the switch will cure this.
1286	 * After booting there are no gross relocations of the kernel thus
1287	 * this problem will not occur after initarm().
1288	 */
1289	cpu_idcache_wbinv_all();
1290
1291	undefined_init();
1292
1293	init_proc0(kernelstack.pv_va);
1294
1295	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1296	pmap_bootstrap(freemempos, &kernel_l1pt);
1297	msgbufp = (void *)msgbufpv.pv_va;
1298	msgbufinit(msgbufp, msgbufsize);
1299	mutex_init();
1300
1301	/*
1302	 * Exclude the kernel (and all the things we allocated which immediately
1303	 * follow the kernel) from the VM allocation pool but not from crash
1304	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1305	 * "allocated" while setting up pmaps.
1306	 *
1307	 * Prepare the list of physical memory available to the vm subsystem.
1308	 */
1309	arm_physmem_exclude_region(abp->abp_physaddr,
1310	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1311	arm_physmem_init_kernel_globals();
1312
1313	init_param2(physmem);
1314	kdb_init();
1315
1316	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1317	    sizeof(struct pcb)));
1318}
1319#endif
1320