machdep.c revision 260327
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47#include "opt_platform.h"
48#include "opt_sched.h"
49#include "opt_timer.h"
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/arm/arm/machdep.c 260327 2014-01-05 18:46:58Z nwhitehorn $");
53
54#include <sys/param.h>
55#include <sys/proc.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/bus.h>
60#include <sys/cons.h>
61#include <sys/cpu.h>
62#include <sys/exec.h>
63#include <sys/imgact.h>
64#include <sys/kdb.h>
65#include <sys/kernel.h>
66#include <sys/ktr.h>
67#include <sys/linker.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/msgbuf.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/ptrace.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/syscallsubr.h>
78#include <sys/sysctl.h>
79#include <sys/sysent.h>
80#include <sys/sysproto.h>
81#include <sys/uio.h>
82
83#include <vm/vm.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pager.h>
89
90#include <machine/armreg.h>
91#include <machine/atags.h>
92#include <machine/cpu.h>
93#include <machine/devmap.h>
94#include <machine/frame.h>
95#include <machine/intr.h>
96#include <machine/machdep.h>
97#include <machine/md_var.h>
98#include <machine/metadata.h>
99#include <machine/pcb.h>
100#include <machine/reg.h>
101#include <machine/trap.h>
102#include <machine/undefined.h>
103#include <machine/vmparam.h>
104#include <machine/sysarch.h>
105
106#ifdef FDT
107#include <dev/fdt/fdt_common.h>
108#include <dev/ofw/openfirm.h>
109#endif
110
111#ifdef DEBUG
112#define	debugf(fmt, args...) printf(fmt, ##args)
113#else
114#define	debugf(fmt, args...)
115#endif
116
117struct pcpu __pcpu[MAXCPU];
118struct pcpu *pcpup = &__pcpu[0];
119
120static struct trapframe proc0_tf;
121uint32_t cpu_reset_address = 0;
122int cold = 1;
123vm_offset_t vector_page;
124
125long realmem = 0;
126
127int (*_arm_memcpy)(void *, void *, int, int) = NULL;
128int (*_arm_bzero)(void *, int, int) = NULL;
129int _min_memcpy_size = 0;
130int _min_bzero_size = 0;
131
132extern int *end;
133#ifdef DDB
134extern vm_offset_t ksym_start, ksym_end;
135#endif
136
137#ifdef FDT
138/*
139 * This is the number of L2 page tables required for covering max
140 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
141 * stacks etc.), uprounded to be divisible by 4.
142 */
143#define KERNEL_PT_MAX	78
144
145static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
146
147vm_paddr_t phys_avail[10];
148vm_paddr_t dump_avail[4];
149
150extern u_int data_abort_handler_address;
151extern u_int prefetch_abort_handler_address;
152extern u_int undefined_handler_address;
153
154vm_paddr_t pmap_pa;
155
156struct pv_addr systempage;
157static struct pv_addr msgbufpv;
158struct pv_addr irqstack;
159struct pv_addr undstack;
160struct pv_addr abtstack;
161static struct pv_addr kernelstack;
162
163#endif
164
165#if defined(LINUX_BOOT_ABI)
166#define LBABI_MAX_BANKS	10
167
168uint32_t board_id;
169struct arm_lbabi_tag *atag_list;
170char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
171char atags[LBABI_MAX_COMMAND_LINE * 2];
172uint32_t memstart[LBABI_MAX_BANKS];
173uint32_t memsize[LBABI_MAX_BANKS];
174uint32_t membanks;
175#endif
176
177static uint32_t board_revision;
178/* hex representation of uint64_t */
179static char board_serial[32];
180
181SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
182SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
183    &board_revision, 0, "Board revision");
184SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
185    board_serial, 0, "Board serial");
186
187int vfp_exists;
188SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
189    &vfp_exists, 0, "Floating point support enabled");
190
191void
192board_set_serial(uint64_t serial)
193{
194
195	snprintf(board_serial, sizeof(board_serial)-1,
196		    "%016jx", serial);
197}
198
199void
200board_set_revision(uint32_t revision)
201{
202
203	board_revision = revision;
204}
205
206void
207sendsig(catcher, ksi, mask)
208	sig_t catcher;
209	ksiginfo_t *ksi;
210	sigset_t *mask;
211{
212	struct thread *td;
213	struct proc *p;
214	struct trapframe *tf;
215	struct sigframe *fp, frame;
216	struct sigacts *psp;
217	int onstack;
218	int sig;
219	int code;
220
221	td = curthread;
222	p = td->td_proc;
223	PROC_LOCK_ASSERT(p, MA_OWNED);
224	sig = ksi->ksi_signo;
225	code = ksi->ksi_code;
226	psp = p->p_sigacts;
227	mtx_assert(&psp->ps_mtx, MA_OWNED);
228	tf = td->td_frame;
229	onstack = sigonstack(tf->tf_usr_sp);
230
231	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
232	    catcher, sig);
233
234	/* Allocate and validate space for the signal handler context. */
235	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
236	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
237		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
238		    td->td_sigstk.ss_size);
239#if defined(COMPAT_43)
240		td->td_sigstk.ss_flags |= SS_ONSTACK;
241#endif
242	} else
243		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
244
245	/* make room on the stack */
246	fp--;
247
248	/* make the stack aligned */
249	fp = (struct sigframe *)STACKALIGN(fp);
250	/* Populate the siginfo frame. */
251	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
252	frame.sf_si = ksi->ksi_info;
253	frame.sf_uc.uc_sigmask = *mask;
254	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
255	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
256	frame.sf_uc.uc_stack = td->td_sigstk;
257	mtx_unlock(&psp->ps_mtx);
258	PROC_UNLOCK(td->td_proc);
259
260	/* Copy the sigframe out to the user's stack. */
261	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
262		/* Process has trashed its stack. Kill it. */
263		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
264		PROC_LOCK(p);
265		sigexit(td, SIGILL);
266	}
267
268	/* Translate the signal if appropriate. */
269	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
270		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
271
272	/*
273	 * Build context to run handler in.  We invoke the handler
274	 * directly, only returning via the trampoline.  Note the
275	 * trampoline version numbers are coordinated with machine-
276	 * dependent code in libc.
277	 */
278
279	tf->tf_r0 = sig;
280	tf->tf_r1 = (register_t)&fp->sf_si;
281	tf->tf_r2 = (register_t)&fp->sf_uc;
282
283	/* the trampoline uses r5 as the uc address */
284	tf->tf_r5 = (register_t)&fp->sf_uc;
285	tf->tf_pc = (register_t)catcher;
286	tf->tf_usr_sp = (register_t)fp;
287	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
288
289	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
290	    tf->tf_usr_sp);
291
292	PROC_LOCK(p);
293	mtx_lock(&psp->ps_mtx);
294}
295
296struct kva_md_info kmi;
297
298/*
299 * arm32_vector_init:
300 *
301 *	Initialize the vector page, and select whether or not to
302 *	relocate the vectors.
303 *
304 *	NOTE: We expect the vector page to be mapped at its expected
305 *	destination.
306 */
307
308extern unsigned int page0[], page0_data[];
309void
310arm_vector_init(vm_offset_t va, int which)
311{
312	unsigned int *vectors = (int *) va;
313	unsigned int *vectors_data = vectors + (page0_data - page0);
314	int vec;
315
316	/*
317	 * Loop through the vectors we're taking over, and copy the
318	 * vector's insn and data word.
319	 */
320	for (vec = 0; vec < ARM_NVEC; vec++) {
321		if ((which & (1 << vec)) == 0) {
322			/* Don't want to take over this vector. */
323			continue;
324		}
325		vectors[vec] = page0[vec];
326		vectors_data[vec] = page0_data[vec];
327	}
328
329	/* Now sync the vectors. */
330	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
331
332	vector_page = va;
333
334	if (va == ARM_VECTORS_HIGH) {
335		/*
336		 * Assume the MD caller knows what it's doing here, and
337		 * really does want the vector page relocated.
338		 *
339		 * Note: This has to be done here (and not just in
340		 * cpu_setup()) because the vector page needs to be
341		 * accessible *before* cpu_startup() is called.
342		 * Think ddb(9) ...
343		 *
344		 * NOTE: If the CPU control register is not readable,
345		 * this will totally fail!  We'll just assume that
346		 * any system that has high vector support has a
347		 * readable CPU control register, for now.  If we
348		 * ever encounter one that does not, we'll have to
349		 * rethink this.
350		 */
351		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
352	}
353}
354
355static void
356cpu_startup(void *dummy)
357{
358	struct pcb *pcb = thread0.td_pcb;
359#ifdef ARM_TP_ADDRESS
360#ifndef ARM_CACHE_LOCK_ENABLE
361	vm_page_t m;
362#endif
363#endif
364
365	identify_arm_cpu();
366
367	printf("real memory  = %ju (%ju MB)\n", (uintmax_t)ptoa(physmem),
368	    (uintmax_t)ptoa(physmem) / 1048576);
369	realmem = physmem;
370
371	/*
372	 * Display the RAM layout.
373	 */
374	if (bootverbose) {
375		int indx;
376
377		printf("Physical memory chunk(s):\n");
378		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
379			vm_paddr_t size;
380
381			size = phys_avail[indx + 1] - phys_avail[indx];
382			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
383			    (uintmax_t)phys_avail[indx],
384			    (uintmax_t)phys_avail[indx + 1] - 1,
385			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
386		}
387	}
388
389	vm_ksubmap_init(&kmi);
390
391	printf("avail memory = %ju (%ju MB)\n",
392	    (uintmax_t)ptoa(cnt.v_free_count),
393	    (uintmax_t)ptoa(cnt.v_free_count) / 1048576);
394
395	bufinit();
396	vm_pager_bufferinit();
397	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
398	    USPACE_UNDEF_STACK_TOP;
399	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
400	    USPACE_SVC_STACK_TOP;
401	vector_page_setprot(VM_PROT_READ);
402	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
403	pmap_postinit();
404#ifdef ARM_TP_ADDRESS
405#ifdef ARM_CACHE_LOCK_ENABLE
406	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
407	arm_lock_cache_line(ARM_TP_ADDRESS);
408#else
409	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
410	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
411#endif
412	*(uint32_t *)ARM_RAS_START = 0;
413	*(uint32_t *)ARM_RAS_END = 0xffffffff;
414#endif
415}
416
417SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
418
419/*
420 * Flush the D-cache for non-DMA I/O so that the I-cache can
421 * be made coherent later.
422 */
423void
424cpu_flush_dcache(void *ptr, size_t len)
425{
426
427	cpu_dcache_wb_range((uintptr_t)ptr, len);
428	cpu_l2cache_wb_range((uintptr_t)ptr, len);
429}
430
431/* Get current clock frequency for the given cpu id. */
432int
433cpu_est_clockrate(int cpu_id, uint64_t *rate)
434{
435
436	return (ENXIO);
437}
438
439void
440cpu_idle(int busy)
441{
442
443	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
444	    busy, curcpu);
445#ifndef NO_EVENTTIMERS
446	if (!busy) {
447		critical_enter();
448		cpu_idleclock();
449	}
450#endif
451	if (!sched_runnable())
452		cpu_sleep(0);
453#ifndef NO_EVENTTIMERS
454	if (!busy) {
455		cpu_activeclock();
456		critical_exit();
457	}
458#endif
459	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
460	    busy, curcpu);
461}
462
463int
464cpu_idle_wakeup(int cpu)
465{
466
467	return (0);
468}
469
470int
471fill_regs(struct thread *td, struct reg *regs)
472{
473	struct trapframe *tf = td->td_frame;
474	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
475	regs->r_sp = tf->tf_usr_sp;
476	regs->r_lr = tf->tf_usr_lr;
477	regs->r_pc = tf->tf_pc;
478	regs->r_cpsr = tf->tf_spsr;
479	return (0);
480}
481int
482fill_fpregs(struct thread *td, struct fpreg *regs)
483{
484	bzero(regs, sizeof(*regs));
485	return (0);
486}
487
488int
489set_regs(struct thread *td, struct reg *regs)
490{
491	struct trapframe *tf = td->td_frame;
492
493	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
494	tf->tf_usr_sp = regs->r_sp;
495	tf->tf_usr_lr = regs->r_lr;
496	tf->tf_pc = regs->r_pc;
497	tf->tf_spsr &=  ~PSR_FLAGS;
498	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
499	return (0);
500}
501
502int
503set_fpregs(struct thread *td, struct fpreg *regs)
504{
505	return (0);
506}
507
508int
509fill_dbregs(struct thread *td, struct dbreg *regs)
510{
511	return (0);
512}
513int
514set_dbregs(struct thread *td, struct dbreg *regs)
515{
516	return (0);
517}
518
519
520static int
521ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
522{
523	struct iovec iov;
524	struct uio uio;
525
526	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
527	iov.iov_base = (caddr_t) v;
528	iov.iov_len = sizeof(u_int32_t);
529	uio.uio_iov = &iov;
530	uio.uio_iovcnt = 1;
531	uio.uio_offset = (off_t)addr;
532	uio.uio_resid = sizeof(u_int32_t);
533	uio.uio_segflg = UIO_SYSSPACE;
534	uio.uio_rw = UIO_READ;
535	uio.uio_td = td;
536	return proc_rwmem(td->td_proc, &uio);
537}
538
539static int
540ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
541{
542	struct iovec iov;
543	struct uio uio;
544
545	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
546	iov.iov_base = (caddr_t) &v;
547	iov.iov_len = sizeof(u_int32_t);
548	uio.uio_iov = &iov;
549	uio.uio_iovcnt = 1;
550	uio.uio_offset = (off_t)addr;
551	uio.uio_resid = sizeof(u_int32_t);
552	uio.uio_segflg = UIO_SYSSPACE;
553	uio.uio_rw = UIO_WRITE;
554	uio.uio_td = td;
555	return proc_rwmem(td->td_proc, &uio);
556}
557
558int
559ptrace_single_step(struct thread *td)
560{
561	struct proc *p;
562	int error;
563
564	KASSERT(td->td_md.md_ptrace_instr == 0,
565	 ("Didn't clear single step"));
566	p = td->td_proc;
567	PROC_UNLOCK(p);
568	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
569	    &td->td_md.md_ptrace_instr);
570	if (error)
571		goto out;
572	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
573	    PTRACE_BREAKPOINT);
574	if (error)
575		td->td_md.md_ptrace_instr = 0;
576	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
577out:
578	PROC_LOCK(p);
579	return (error);
580}
581
582int
583ptrace_clear_single_step(struct thread *td)
584{
585	struct proc *p;
586
587	if (td->td_md.md_ptrace_instr) {
588		p = td->td_proc;
589		PROC_UNLOCK(p);
590		ptrace_write_int(td, td->td_md.md_ptrace_addr,
591		    td->td_md.md_ptrace_instr);
592		PROC_LOCK(p);
593		td->td_md.md_ptrace_instr = 0;
594	}
595	return (0);
596}
597
598int
599ptrace_set_pc(struct thread *td, unsigned long addr)
600{
601	td->td_frame->tf_pc = addr;
602	return (0);
603}
604
605void
606cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
607{
608}
609
610void
611spinlock_enter(void)
612{
613	struct thread *td;
614	register_t cspr;
615
616	td = curthread;
617	if (td->td_md.md_spinlock_count == 0) {
618		cspr = disable_interrupts(I32_bit | F32_bit);
619		td->td_md.md_spinlock_count = 1;
620		td->td_md.md_saved_cspr = cspr;
621	} else
622		td->td_md.md_spinlock_count++;
623	critical_enter();
624}
625
626void
627spinlock_exit(void)
628{
629	struct thread *td;
630	register_t cspr;
631
632	td = curthread;
633	critical_exit();
634	cspr = td->td_md.md_saved_cspr;
635	td->td_md.md_spinlock_count--;
636	if (td->td_md.md_spinlock_count == 0)
637		restore_interrupts(cspr);
638}
639
640/*
641 * Clear registers on exec
642 */
643void
644exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
645{
646	struct trapframe *tf = td->td_frame;
647
648	memset(tf, 0, sizeof(*tf));
649	tf->tf_usr_sp = stack;
650	tf->tf_usr_lr = imgp->entry_addr;
651	tf->tf_svc_lr = 0x77777777;
652	tf->tf_pc = imgp->entry_addr;
653	tf->tf_spsr = PSR_USR32_MODE;
654}
655
656/*
657 * Get machine context.
658 */
659int
660get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
661{
662	struct trapframe *tf = td->td_frame;
663	__greg_t *gr = mcp->__gregs;
664
665	if (clear_ret & GET_MC_CLEAR_RET)
666		gr[_REG_R0] = 0;
667	else
668		gr[_REG_R0]   = tf->tf_r0;
669	gr[_REG_R1]   = tf->tf_r1;
670	gr[_REG_R2]   = tf->tf_r2;
671	gr[_REG_R3]   = tf->tf_r3;
672	gr[_REG_R4]   = tf->tf_r4;
673	gr[_REG_R5]   = tf->tf_r5;
674	gr[_REG_R6]   = tf->tf_r6;
675	gr[_REG_R7]   = tf->tf_r7;
676	gr[_REG_R8]   = tf->tf_r8;
677	gr[_REG_R9]   = tf->tf_r9;
678	gr[_REG_R10]  = tf->tf_r10;
679	gr[_REG_R11]  = tf->tf_r11;
680	gr[_REG_R12]  = tf->tf_r12;
681	gr[_REG_SP]   = tf->tf_usr_sp;
682	gr[_REG_LR]   = tf->tf_usr_lr;
683	gr[_REG_PC]   = tf->tf_pc;
684	gr[_REG_CPSR] = tf->tf_spsr;
685
686	return (0);
687}
688
689/*
690 * Set machine context.
691 *
692 * However, we don't set any but the user modifiable flags, and we won't
693 * touch the cs selector.
694 */
695int
696set_mcontext(struct thread *td, const mcontext_t *mcp)
697{
698	struct trapframe *tf = td->td_frame;
699	const __greg_t *gr = mcp->__gregs;
700
701	tf->tf_r0 = gr[_REG_R0];
702	tf->tf_r1 = gr[_REG_R1];
703	tf->tf_r2 = gr[_REG_R2];
704	tf->tf_r3 = gr[_REG_R3];
705	tf->tf_r4 = gr[_REG_R4];
706	tf->tf_r5 = gr[_REG_R5];
707	tf->tf_r6 = gr[_REG_R6];
708	tf->tf_r7 = gr[_REG_R7];
709	tf->tf_r8 = gr[_REG_R8];
710	tf->tf_r9 = gr[_REG_R9];
711	tf->tf_r10 = gr[_REG_R10];
712	tf->tf_r11 = gr[_REG_R11];
713	tf->tf_r12 = gr[_REG_R12];
714	tf->tf_usr_sp = gr[_REG_SP];
715	tf->tf_usr_lr = gr[_REG_LR];
716	tf->tf_pc = gr[_REG_PC];
717	tf->tf_spsr = gr[_REG_CPSR];
718
719	return (0);
720}
721
722/*
723 * MPSAFE
724 */
725int
726sys_sigreturn(td, uap)
727	struct thread *td;
728	struct sigreturn_args /* {
729		const struct __ucontext *sigcntxp;
730	} */ *uap;
731{
732	struct sigframe sf;
733	struct trapframe *tf;
734	int spsr;
735
736	if (uap == NULL)
737		return (EFAULT);
738	if (copyin(uap->sigcntxp, &sf, sizeof(sf)))
739		return (EFAULT);
740	/*
741	 * Make sure the processor mode has not been tampered with and
742	 * interrupts have not been disabled.
743	 */
744	spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR];
745	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
746	    (spsr & (I32_bit | F32_bit)) != 0)
747		return (EINVAL);
748		/* Restore register context. */
749	tf = td->td_frame;
750	set_mcontext(td, &sf.sf_uc.uc_mcontext);
751
752	/* Restore signal mask. */
753	kern_sigprocmask(td, SIG_SETMASK, &sf.sf_uc.uc_sigmask, NULL, 0);
754
755	return (EJUSTRETURN);
756}
757
758
759/*
760 * Construct a PCB from a trapframe. This is called from kdb_trap() where
761 * we want to start a backtrace from the function that caused us to enter
762 * the debugger. We have the context in the trapframe, but base the trace
763 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
764 * enough for a backtrace.
765 */
766void
767makectx(struct trapframe *tf, struct pcb *pcb)
768{
769	pcb->un_32.pcb32_r8 = tf->tf_r8;
770	pcb->un_32.pcb32_r9 = tf->tf_r9;
771	pcb->un_32.pcb32_r10 = tf->tf_r10;
772	pcb->un_32.pcb32_r11 = tf->tf_r11;
773	pcb->un_32.pcb32_r12 = tf->tf_r12;
774	pcb->un_32.pcb32_pc = tf->tf_pc;
775	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
776	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
777}
778
779/*
780 * Make a standard dump_avail array.  Can't make the phys_avail
781 * since we need to do that after we call pmap_bootstrap, but this
782 * is needed before pmap_boostrap.
783 *
784 * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
785 * calling pmap_bootstrap.
786 */
787void
788arm_dump_avail_init(vm_offset_t ramsize, size_t max)
789{
790#ifdef LINUX_BOOT_ABI
791	/*
792	 * Linux boot loader passes us the actual banks of memory, so use them
793	 * to construct the dump_avail array.
794	 */
795	if (membanks > 0)
796	{
797		int i, j;
798
799		if (max < (membanks + 1) * 2)
800			panic("dump_avail[%d] too small for %d banks\n",
801			    max, membanks);
802		for (j = 0, i = 0; i < membanks; i++) {
803			dump_avail[j++] = round_page(memstart[i]);
804			dump_avail[j++] = trunc_page(memstart[i] + memsize[i]);
805		}
806		dump_avail[j++] = 0;
807		dump_avail[j++] = 0;
808		return;
809	}
810#endif
811	if (max < 4)
812		panic("dump_avail too small\n");
813
814	dump_avail[0] = round_page(PHYSADDR);
815	dump_avail[1] = trunc_page(PHYSADDR + ramsize);
816	dump_avail[2] = 0;
817	dump_avail[3] = 0;
818}
819
820/*
821 * Fake up a boot descriptor table
822 */
823vm_offset_t
824fake_preload_metadata(struct arm_boot_params *abp __unused)
825{
826#ifdef DDB
827	vm_offset_t zstart = 0, zend = 0;
828#endif
829	vm_offset_t lastaddr;
830	int i = 0;
831	static uint32_t fake_preload[35];
832
833	fake_preload[i++] = MODINFO_NAME;
834	fake_preload[i++] = strlen("kernel") + 1;
835	strcpy((char*)&fake_preload[i++], "kernel");
836	i += 1;
837	fake_preload[i++] = MODINFO_TYPE;
838	fake_preload[i++] = strlen("elf kernel") + 1;
839	strcpy((char*)&fake_preload[i++], "elf kernel");
840	i += 2;
841	fake_preload[i++] = MODINFO_ADDR;
842	fake_preload[i++] = sizeof(vm_offset_t);
843	fake_preload[i++] = KERNVIRTADDR;
844	fake_preload[i++] = MODINFO_SIZE;
845	fake_preload[i++] = sizeof(uint32_t);
846	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
847#ifdef DDB
848	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
849		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
850		fake_preload[i++] = sizeof(vm_offset_t);
851		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
852		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
853		fake_preload[i++] = sizeof(vm_offset_t);
854		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
855		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
856		zend = lastaddr;
857		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
858		ksym_start = zstart;
859		ksym_end = zend;
860	} else
861#endif
862		lastaddr = (vm_offset_t)&end;
863	fake_preload[i++] = 0;
864	fake_preload[i] = 0;
865	preload_metadata = (void *)fake_preload;
866
867	return (lastaddr);
868}
869
870void
871pcpu0_init(void)
872{
873#if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
874	set_pcpu(pcpup);
875#endif
876	pcpu_init(pcpup, 0, sizeof(struct pcpu));
877	PCPU_SET(curthread, &thread0);
878#ifdef VFP
879	PCPU_SET(cpu, 0);
880#endif
881}
882
883#if defined(LINUX_BOOT_ABI)
884vm_offset_t
885linux_parse_boot_param(struct arm_boot_params *abp)
886{
887	struct arm_lbabi_tag *walker;
888	uint32_t revision;
889	uint64_t serial;
890
891	/*
892	 * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
893	 * is atags or dtb pointer.  If all of these aren't satisfied,
894	 * then punt.
895	 */
896	if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
897		return 0;
898
899	board_id = abp->abp_r1;
900	walker = (struct arm_lbabi_tag *)
901	    (abp->abp_r2 + KERNVIRTADDR - KERNPHYSADDR);
902
903	/* xxx - Need to also look for binary device tree */
904	if (ATAG_TAG(walker) != ATAG_CORE)
905		return 0;
906
907	atag_list = walker;
908	while (ATAG_TAG(walker) != ATAG_NONE) {
909		switch (ATAG_TAG(walker)) {
910		case ATAG_CORE:
911			break;
912		case ATAG_MEM:
913			if (membanks < LBABI_MAX_BANKS) {
914				memstart[membanks] = walker->u.tag_mem.start;
915				memsize[membanks] = walker->u.tag_mem.size;
916			}
917			membanks++;
918			break;
919		case ATAG_INITRD2:
920			break;
921		case ATAG_SERIAL:
922			serial = walker->u.tag_sn.low |
923			    ((uint64_t)walker->u.tag_sn.high << 32);
924			board_set_serial(serial);
925			break;
926		case ATAG_REVISION:
927			revision = walker->u.tag_rev.rev;
928			board_set_revision(revision);
929			break;
930		case ATAG_CMDLINE:
931			/* XXX open question: Parse this for boothowto? */
932			bcopy(walker->u.tag_cmd.command, linux_command_line,
933			      ATAG_SIZE(walker));
934			break;
935		default:
936			break;
937		}
938		walker = ATAG_NEXT(walker);
939	}
940
941	/* Save a copy for later */
942	bcopy(atag_list, atags,
943	    (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
944
945	return fake_preload_metadata(abp);
946}
947#endif
948
949#if defined(FREEBSD_BOOT_LOADER)
950vm_offset_t
951freebsd_parse_boot_param(struct arm_boot_params *abp)
952{
953	vm_offset_t lastaddr = 0;
954	void *mdp;
955	void *kmdp;
956
957	/*
958	 * Mask metadata pointer: it is supposed to be on page boundary. If
959	 * the first argument (mdp) doesn't point to a valid address the
960	 * bootloader must have passed us something else than the metadata
961	 * ptr, so we give up.  Also give up if we cannot find metadta section
962	 * the loader creates that we get all this data out of.
963	 */
964
965	if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
966		return 0;
967	preload_metadata = mdp;
968	kmdp = preload_search_by_type("elf kernel");
969	if (kmdp == NULL)
970		return 0;
971
972	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
973	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
974	lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
975#ifdef DDB
976	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
977	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
978#endif
979	preload_addr_relocate = KERNVIRTADDR - KERNPHYSADDR;
980	return lastaddr;
981}
982#endif
983
984vm_offset_t
985default_parse_boot_param(struct arm_boot_params *abp)
986{
987	vm_offset_t lastaddr;
988
989#if defined(LINUX_BOOT_ABI)
990	if ((lastaddr = linux_parse_boot_param(abp)) != 0)
991		return lastaddr;
992#endif
993#if defined(FREEBSD_BOOT_LOADER)
994	if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
995		return lastaddr;
996#endif
997	/* Fall back to hardcoded metadata. */
998	lastaddr = fake_preload_metadata(abp);
999
1000	return lastaddr;
1001}
1002
1003/*
1004 * Stub version of the boot parameter parsing routine.  We are
1005 * called early in initarm, before even VM has been initialized.
1006 * This routine needs to preserve any data that the boot loader
1007 * has passed in before the kernel starts to grow past the end
1008 * of the BSS, traditionally the place boot-loaders put this data.
1009 *
1010 * Since this is called so early, things that depend on the vm system
1011 * being setup (including access to some SoC's serial ports), about
1012 * all that can be done in this routine is to copy the arguments.
1013 *
1014 * This is the default boot parameter parsing routine.  Individual
1015 * kernels/boards can override this weak function with one of their
1016 * own.  We just fake metadata...
1017 */
1018__weak_reference(default_parse_boot_param, parse_boot_param);
1019
1020/*
1021 * Initialize proc0
1022 */
1023void
1024init_proc0(vm_offset_t kstack)
1025{
1026	proc_linkup0(&proc0, &thread0);
1027	thread0.td_kstack = kstack;
1028	thread0.td_pcb = (struct pcb *)
1029		(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1030	thread0.td_pcb->pcb_flags = 0;
1031	thread0.td_frame = &proc0_tf;
1032	pcpup->pc_curpcb = thread0.td_pcb;
1033}
1034
1035void
1036set_stackptrs(int cpu)
1037{
1038
1039	set_stackptr(PSR_IRQ32_MODE,
1040	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1041	set_stackptr(PSR_ABT32_MODE,
1042	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1043	set_stackptr(PSR_UND32_MODE,
1044	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
1045}
1046
1047#ifdef FDT
1048static char *
1049kenv_next(char *cp)
1050{
1051
1052	if (cp != NULL) {
1053		while (*cp != 0)
1054			cp++;
1055		cp++;
1056		if (*cp == 0)
1057			cp = NULL;
1058	}
1059	return (cp);
1060}
1061
1062static void
1063print_kenv(void)
1064{
1065	int len;
1066	char *cp;
1067
1068	debugf("loader passed (static) kenv:\n");
1069	if (kern_envp == NULL) {
1070		debugf(" no env, null ptr\n");
1071		return;
1072	}
1073	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
1074
1075	len = 0;
1076	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
1077		debugf(" %x %s\n", (uint32_t)cp, cp);
1078}
1079
1080static void
1081physmap_init(struct mem_region *availmem_regions, int availmem_regions_sz)
1082{
1083	int i, j, cnt;
1084	vm_offset_t phys_kernelend, kernload;
1085	uint32_t s, e, sz;
1086	struct mem_region *mp, *mp1;
1087
1088	phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
1089	kernload = KERNPHYSADDR;
1090
1091	/*
1092	 * Remove kernel physical address range from avail
1093	 * regions list. Page align all regions.
1094	 * Non-page aligned memory isn't very interesting to us.
1095	 * Also, sort the entries for ascending addresses.
1096	 */
1097	sz = 0;
1098	cnt = availmem_regions_sz;
1099	debugf("processing avail regions:\n");
1100	for (mp = availmem_regions; mp->mr_size; mp++) {
1101		s = mp->mr_start;
1102		e = mp->mr_start + mp->mr_size;
1103		debugf(" %08x-%08x -> ", s, e);
1104		/* Check whether this region holds all of the kernel. */
1105		if (s < kernload && e > phys_kernelend) {
1106			availmem_regions[cnt].mr_start = phys_kernelend;
1107			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1108			e = kernload;
1109		}
1110		/* Look whether this regions starts within the kernel. */
1111		if (s >= kernload && s < phys_kernelend) {
1112			if (e <= phys_kernelend)
1113				goto empty;
1114			s = phys_kernelend;
1115		}
1116		/* Now look whether this region ends within the kernel. */
1117		if (e > kernload && e <= phys_kernelend) {
1118			if (s >= kernload) {
1119				goto empty;
1120			}
1121			e = kernload;
1122		}
1123		/* Now page align the start and size of the region. */
1124		s = round_page(s);
1125		e = trunc_page(e);
1126		if (e < s)
1127			e = s;
1128		sz = e - s;
1129		debugf("%08x-%08x = %x\n", s, e, sz);
1130
1131		/* Check whether some memory is left here. */
1132		if (sz == 0) {
1133		empty:
1134			printf("skipping\n");
1135			bcopy(mp + 1, mp,
1136			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1137			cnt--;
1138			mp--;
1139			continue;
1140		}
1141
1142		/* Do an insertion sort. */
1143		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1144			if (s < mp1->mr_start)
1145				break;
1146		if (mp1 < mp) {
1147			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1148			mp1->mr_start = s;
1149			mp1->mr_size = sz;
1150		} else {
1151			mp->mr_start = s;
1152			mp->mr_size = sz;
1153		}
1154	}
1155	availmem_regions_sz = cnt;
1156
1157	/* Fill in phys_avail table, based on availmem_regions */
1158	debugf("fill in phys_avail:\n");
1159	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1160
1161		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1162		    availmem_regions[i].mr_start,
1163		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
1164		    availmem_regions[i].mr_size);
1165
1166		/*
1167		 * We should not map the page at PA 0x0000000, the VM can't
1168		 * handle it, as pmap_extract() == 0 means failure.
1169		 */
1170		if (availmem_regions[i].mr_start > 0 ||
1171		    availmem_regions[i].mr_size > PAGE_SIZE) {
1172			vm_size_t size;
1173			phys_avail[j] = availmem_regions[i].mr_start;
1174
1175			size = availmem_regions[i].mr_size;
1176			if (phys_avail[j] == 0) {
1177				phys_avail[j] += PAGE_SIZE;
1178				size -= PAGE_SIZE;
1179			}
1180			phys_avail[j + 1] = availmem_regions[i].mr_start + size;
1181		} else
1182			j -= 2;
1183	}
1184	phys_avail[j] = 0;
1185	phys_avail[j + 1] = 0;
1186}
1187
1188void *
1189initarm(struct arm_boot_params *abp)
1190{
1191	struct mem_region memory_regions[FDT_MEM_REGIONS];
1192	struct mem_region availmem_regions[FDT_MEM_REGIONS];
1193	struct mem_region reserved_regions[FDT_MEM_REGIONS];
1194	struct pv_addr kernel_l1pt;
1195	struct pv_addr dpcpu;
1196	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
1197	uint32_t memsize, l2size;
1198	char *env;
1199	void *kmdp;
1200	u_int l1pagetable;
1201	int i = 0, j = 0, err_devmap = 0;
1202	int memory_regions_sz;
1203	int availmem_regions_sz;
1204	int reserved_regions_sz;
1205	vm_offset_t start, end;
1206	vm_offset_t rstart, rend;
1207	int curr;
1208
1209	lastaddr = parse_boot_param(abp);
1210	memsize = 0;
1211	set_cpufuncs();
1212
1213	/*
1214	 * Find the dtb passed in by the boot loader.
1215	 */
1216	kmdp = preload_search_by_type("elf kernel");
1217	if (kmdp != NULL)
1218		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1219	else
1220		dtbp = (vm_offset_t)NULL;
1221
1222#if defined(FDT_DTB_STATIC)
1223	/*
1224	 * In case the device tree blob was not retrieved (from metadata) try
1225	 * to use the statically embedded one.
1226	 */
1227	if (dtbp == (vm_offset_t)NULL)
1228		dtbp = (vm_offset_t)&fdt_static_dtb;
1229#endif
1230
1231	if (OF_install(OFW_FDT, 0) == FALSE)
1232		while (1);
1233
1234	if (OF_init((void *)dtbp) != 0)
1235		while (1);
1236
1237	/* Grab physical memory regions information from device tree. */
1238	if (fdt_get_mem_regions(memory_regions, &memory_regions_sz,
1239	    &memsize) != 0)
1240		while(1);
1241
1242	/* Grab physical memory regions information from device tree. */
1243	if (fdt_get_reserved_regions(reserved_regions, &reserved_regions_sz) != 0)
1244		reserved_regions_sz = 0;
1245
1246	/*
1247	 * Now exclude all the reserved regions
1248	 */
1249	curr = 0;
1250	for (i = 0; i < memory_regions_sz; i++) {
1251		start = memory_regions[i].mr_start;
1252		end = start + memory_regions[i].mr_size;
1253		for (j = 0; j < reserved_regions_sz; j++) {
1254			rstart = reserved_regions[j].mr_start;
1255			rend = rstart + reserved_regions[j].mr_size;
1256			/*
1257			 * Restricted region is before available
1258			 * Skip restricted region
1259			 */
1260			if (rend <= start)
1261				continue;
1262			/*
1263			 * Restricted region is behind available
1264			 * No  further processing required
1265			 */
1266			if (rstart >= end)
1267				break;
1268			/*
1269			 * Restricted region includes memory region
1270			 * skip available region
1271			 */
1272			if ((start >= rstart) && (rend >= end)) {
1273				start = rend;
1274				end = rend;
1275				break;
1276			}
1277			/*
1278			 * Memory region includes restricted region
1279			 */
1280			if ((rstart > start) && (end > rend)) {
1281				availmem_regions[curr].mr_start = start;
1282				availmem_regions[curr++].mr_size = rstart - start;
1283				start = rend;
1284				break;
1285			}
1286			/*
1287			 * Memory region partially overlaps with restricted
1288			 */
1289			if ((rstart >= start) && (rstart <= end)) {
1290				end = rstart;
1291			}
1292			else if ((rend >= start) && (rend <= end)) {
1293				start = rend;
1294			}
1295		}
1296
1297		if (end > start) {
1298			availmem_regions[curr].mr_start = start;
1299			availmem_regions[curr++].mr_size = end - start;
1300		}
1301	}
1302
1303	availmem_regions_sz = curr;
1304
1305	/* Platform-specific initialisation */
1306	initarm_early_init();
1307
1308	pcpu0_init();
1309
1310	/* Do basic tuning, hz etc */
1311	init_param1();
1312
1313	/* Calculate number of L2 tables needed for mapping vm_page_array */
1314	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
1315	l2size = (l2size >> L1_S_SHIFT) + 1;
1316
1317	/*
1318	 * Add one table for end of kernel map, one for stacks, msgbuf and
1319	 * L1 and L2 tables map and one for vectors map.
1320	 */
1321	l2size += 3;
1322
1323	/* Make it divisible by 4 */
1324	l2size = (l2size + 3) & ~3;
1325
1326	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
1327
1328	/* Define a macro to simplify memory allocation */
1329#define valloc_pages(var, np)						\
1330	alloc_pages((var).pv_va, (np));					\
1331	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
1332
1333#define alloc_pages(var, np)						\
1334	(var) = freemempos;						\
1335	freemempos += (np * PAGE_SIZE);					\
1336	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1337
1338	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
1339		freemempos += PAGE_SIZE;
1340	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
1341
1342	for (i = 0; i < l2size; ++i) {
1343		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
1344			valloc_pages(kernel_pt_table[i],
1345			    L2_TABLE_SIZE / PAGE_SIZE);
1346			j = i;
1347		} else {
1348			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
1349			    L2_TABLE_SIZE_REAL * (i - j);
1350			kernel_pt_table[i].pv_pa =
1351			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
1352			    KERNPHYSADDR;
1353
1354		}
1355	}
1356	/*
1357	 * Allocate a page for the system page mapped to 0x00000000
1358	 * or 0xffff0000. This page will just contain the system vectors
1359	 * and can be shared by all processes.
1360	 */
1361	valloc_pages(systempage, 1);
1362
1363	/* Allocate dynamic per-cpu area. */
1364	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1365	dpcpu_init((void *)dpcpu.pv_va, 0);
1366
1367	/* Allocate stacks for all modes */
1368	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
1369	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
1370	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
1371	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
1372	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1373
1374	/*
1375	 * Now we start construction of the L1 page table
1376	 * We start by mapping the L2 page tables into the L1.
1377	 * This means that we can replace L1 mappings later on if necessary
1378	 */
1379	l1pagetable = kernel_l1pt.pv_va;
1380
1381	/*
1382	 * Try to map as much as possible of kernel text and data using
1383	 * 1MB section mapping and for the rest of initial kernel address
1384	 * space use L2 coarse tables.
1385	 *
1386	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
1387	 * and kernel structures
1388	 */
1389	l2_start = lastaddr & ~(L1_S_OFFSET);
1390	for (i = 0 ; i < l2size - 1; i++)
1391		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
1392		    &kernel_pt_table[i]);
1393
1394	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
1395
1396	/* Map kernel code and data */
1397	pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
1398	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
1399	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1400
1401
1402	/* Map L1 directory and allocated L2 page tables */
1403	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1404	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1405
1406	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
1407	    kernel_pt_table[0].pv_pa,
1408	    L2_TABLE_SIZE_REAL * l2size,
1409	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1410
1411	/* Map allocated DPCPU, stacks and msgbuf */
1412	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
1413	    freemempos - dpcpu.pv_va,
1414	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1415
1416	/* Link and map the vector page */
1417	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
1418	    &kernel_pt_table[l2size - 1]);
1419	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
1420	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
1421
1422	/* Establish static device mappings. */
1423	err_devmap = initarm_devmap_init();
1424	arm_devmap_bootstrap(l1pagetable, NULL);
1425	vm_max_kernel_address = initarm_lastaddr();
1426
1427	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1428	pmap_pa = kernel_l1pt.pv_pa;
1429	setttb(kernel_l1pt.pv_pa);
1430	cpu_tlb_flushID();
1431	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1432
1433	/*
1434	 * Now that proper page tables are installed, call cpu_setup() to enable
1435	 * instruction and data caches and other chip-specific features.
1436	 */
1437	cpu_setup("");
1438
1439	/*
1440	 * Only after the SOC registers block is mapped we can perform device
1441	 * tree fixups, as they may attempt to read parameters from hardware.
1442	 */
1443	OF_interpret("perform-fixup", 0);
1444
1445	initarm_gpio_init();
1446
1447	cninit();
1448
1449	physmem = memsize / PAGE_SIZE;
1450
1451	debugf("initarm: console initialized\n");
1452	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1453	debugf(" boothowto = 0x%08x\n", boothowto);
1454	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1455	print_kenv();
1456
1457	env = getenv("kernelname");
1458	if (env != NULL)
1459		strlcpy(kernelname, env, sizeof(kernelname));
1460
1461	if (err_devmap != 0)
1462		printf("WARNING: could not fully configure devmap, error=%d\n",
1463		    err_devmap);
1464
1465	initarm_late_init();
1466
1467	/*
1468	 * Pages were allocated during the secondary bootstrap for the
1469	 * stacks for different CPU modes.
1470	 * We must now set the r13 registers in the different CPU modes to
1471	 * point to these stacks.
1472	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1473	 * of the stack memory.
1474	 */
1475	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1476
1477	set_stackptrs(0);
1478
1479	/*
1480	 * We must now clean the cache again....
1481	 * Cleaning may be done by reading new data to displace any
1482	 * dirty data in the cache. This will have happened in setttb()
1483	 * but since we are boot strapping the addresses used for the read
1484	 * may have just been remapped and thus the cache could be out
1485	 * of sync. A re-clean after the switch will cure this.
1486	 * After booting there are no gross relocations of the kernel thus
1487	 * this problem will not occur after initarm().
1488	 */
1489	cpu_idcache_wbinv_all();
1490
1491	/* Set stack for exception handlers */
1492	data_abort_handler_address = (u_int)data_abort_handler;
1493	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
1494	undefined_handler_address = (u_int)undefinedinstruction_bounce;
1495	undefined_init();
1496
1497	init_proc0(kernelstack.pv_va);
1498
1499	arm_intrnames_init();
1500	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1501	arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
1502	pmap_bootstrap(freemempos, &kernel_l1pt);
1503	msgbufp = (void *)msgbufpv.pv_va;
1504	msgbufinit(msgbufp, msgbufsize);
1505	mutex_init();
1506
1507	/*
1508	 * Prepare map of physical memory regions available to vm subsystem.
1509	 */
1510	physmap_init(availmem_regions, availmem_regions_sz);
1511
1512	init_param2(physmem);
1513	kdb_init();
1514
1515	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1516	    sizeof(struct pcb)));
1517}
1518#endif
1519