machdep.c revision 178471
1/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Mark Brinicombe
22 *	for the NetBSD Project.
23 * 4. The name of the company nor the name of the author may be used to
24 *    endorse or promote products derived from this software without specific
25 *    prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * Created      : 17/09/94
42 * Updated	: 18/04/01 updated for new wscons
43 */
44
45#include "opt_compat.h"
46#include "opt_ddb.h"
47
48#include <sys/cdefs.h>
49__FBSDID("$FreeBSD: head/sys/arm/arm/machdep.c 178471 2008-04-25 05:18:50Z jeff $");
50
51#include <sys/param.h>
52#include <sys/proc.h>
53#include <sys/systm.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/bus.h>
57#include <sys/cons.h>
58#include <sys/cpu.h>
59#include <sys/exec.h>
60#include <sys/imgact.h>
61#include <sys/kernel.h>
62#include <sys/ktr.h>
63#include <sys/linker.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/pcpu.h>
68#include <sys/ptrace.h>
69#include <sys/signalvar.h>
70#include <sys/sysent.h>
71#include <sys/sysproto.h>
72#include <sys/uio.h>
73
74#include <vm/vm.h>
75#include <vm/pmap.h>
76#include <vm/vm_map.h>
77#include <vm/vm_object.h>
78#include <vm/vm_page.h>
79#include <vm/vm_pager.h>
80#include <vm/vnode_pager.h>
81
82#include <machine/armreg.h>
83#include <machine/cpu.h>
84#include <machine/machdep.h>
85#include <machine/md_var.h>
86#include <machine/metadata.h>
87#include <machine/pcb.h>
88#include <machine/pmap.h>
89#include <machine/reg.h>
90#include <machine/trap.h>
91#include <machine/undefined.h>
92#include <machine/vmparam.h>
93#include <machine/sysarch.h>
94
95uint32_t cpu_reset_address = 0;
96int cold = 1;
97vm_offset_t vector_page;
98
99long realmem = 0;
100
101int (*_arm_memcpy)(void *, void *, int, int) = NULL;
102int (*_arm_bzero)(void *, int, int) = NULL;
103int _min_memcpy_size = 0;
104int _min_bzero_size = 0;
105
106extern int *end;
107#ifdef DDB
108extern vm_offset_t ksym_start, ksym_end;
109#endif
110
111void
112sendsig(catcher, ksi, mask)
113	sig_t catcher;
114	ksiginfo_t *ksi;
115	sigset_t *mask;
116{
117	struct thread *td;
118	struct proc *p;
119	struct trapframe *tf;
120	struct sigframe *fp, frame;
121	struct sigacts *psp;
122	int onstack;
123	int sig;
124	int code;
125
126	td = curthread;
127	p = td->td_proc;
128	PROC_LOCK_ASSERT(p, MA_OWNED);
129	sig = ksi->ksi_signo;
130	code = ksi->ksi_code;
131	psp = p->p_sigacts;
132	mtx_assert(&psp->ps_mtx, MA_OWNED);
133	tf = td->td_frame;
134	onstack = sigonstack(tf->tf_usr_sp);
135
136	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
137	    catcher, sig);
138
139	/* Allocate and validate space for the signal handler context. */
140	if ((td->td_flags & TDP_ALTSTACK) != 0 && !(onstack) &&
141	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
142		fp = (struct sigframe *)(td->td_sigstk.ss_sp +
143		    td->td_sigstk.ss_size);
144#if defined(COMPAT_43)
145		td->td_sigstk.ss_flags |= SS_ONSTACK;
146#endif
147	} else
148		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
149
150	/* make room on the stack */
151	fp--;
152
153	/* make the stack aligned */
154	fp = (struct sigframe *)STACKALIGN(fp);
155	/* Populate the siginfo frame. */
156	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
157	frame.sf_si = ksi->ksi_info;
158	frame.sf_uc.uc_sigmask = *mask;
159	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
160	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
161	frame.sf_uc.uc_stack = td->td_sigstk;
162	mtx_unlock(&psp->ps_mtx);
163	PROC_UNLOCK(td->td_proc);
164
165	/* Copy the sigframe out to the user's stack. */
166	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
167		/* Process has trashed its stack. Kill it. */
168		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
169		PROC_LOCK(p);
170		sigexit(td, SIGILL);
171	}
172
173	/* Translate the signal if appropriate. */
174	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
175		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
176
177	/*
178	 * Build context to run handler in.  We invoke the handler
179	 * directly, only returning via the trampoline.  Note the
180	 * trampoline version numbers are coordinated with machine-
181	 * dependent code in libc.
182	 */
183
184	tf->tf_r0 = sig;
185	tf->tf_r1 = (register_t)&fp->sf_si;
186	tf->tf_r2 = (register_t)&fp->sf_uc;
187
188	/* the trampoline uses r5 as the uc address */
189	tf->tf_r5 = (register_t)&fp->sf_uc;
190	tf->tf_pc = (register_t)catcher;
191	tf->tf_usr_sp = (register_t)fp;
192	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
193
194	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
195	    tf->tf_usr_sp);
196
197	PROC_LOCK(p);
198	mtx_lock(&psp->ps_mtx);
199}
200
201struct kva_md_info kmi;
202
203/*
204 * arm32_vector_init:
205 *
206 *	Initialize the vector page, and select whether or not to
207 *	relocate the vectors.
208 *
209 *	NOTE: We expect the vector page to be mapped at its expected
210 *	destination.
211 */
212
213extern unsigned int page0[], page0_data[];
214void
215arm_vector_init(vm_offset_t va, int which)
216{
217	unsigned int *vectors = (int *) va;
218	unsigned int *vectors_data = vectors + (page0_data - page0);
219	int vec;
220
221	/*
222	 * Loop through the vectors we're taking over, and copy the
223	 * vector's insn and data word.
224	 */
225	for (vec = 0; vec < ARM_NVEC; vec++) {
226		if ((which & (1 << vec)) == 0) {
227			/* Don't want to take over this vector. */
228			continue;
229		}
230		vectors[vec] = page0[vec];
231		vectors_data[vec] = page0_data[vec];
232	}
233
234	/* Now sync the vectors. */
235	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
236
237	vector_page = va;
238
239	if (va == ARM_VECTORS_HIGH) {
240		/*
241		 * Assume the MD caller knows what it's doing here, and
242		 * really does want the vector page relocated.
243		 *
244		 * Note: This has to be done here (and not just in
245		 * cpu_setup()) because the vector page needs to be
246		 * accessible *before* cpu_startup() is called.
247		 * Think ddb(9) ...
248		 *
249		 * NOTE: If the CPU control register is not readable,
250		 * this will totally fail!  We'll just assume that
251		 * any system that has high vector support has a
252		 * readable CPU control register, for now.  If we
253		 * ever encounter one that does not, we'll have to
254		 * rethink this.
255		 */
256		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
257	}
258}
259
260static void
261cpu_startup(void *dummy)
262{
263	struct pcb *pcb = thread0.td_pcb;
264#ifndef ARM_CACHE_LOCK_ENABLE
265	vm_page_t m;
266#endif
267
268	cpu_setup("");
269	identify_arm_cpu();
270
271	printf("real memory  = %ju (%ju MB)\n", (uintmax_t)ptoa(physmem),
272	    (uintmax_t)ptoa(physmem) / 1048576);
273	realmem = physmem;
274
275	/*
276	 * Display the RAM layout.
277	 */
278	if (bootverbose) {
279		int indx;
280
281		printf("Physical memory chunk(s):\n");
282		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
283			vm_paddr_t size;
284
285			size = phys_avail[indx + 1] - phys_avail[indx];
286			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
287			    (uintmax_t)phys_avail[indx],
288			    (uintmax_t)phys_avail[indx + 1] - 1,
289			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
290		}
291	}
292
293	vm_ksubmap_init(&kmi);
294
295	printf("avail memory = %ju (%ju MB)\n",
296	    (uintmax_t)ptoa(cnt.v_free_count),
297	    (uintmax_t)ptoa(cnt.v_free_count) / 1048576);
298
299	bufinit();
300	vm_pager_bufferinit();
301	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
302	    USPACE_UNDEF_STACK_TOP;
303	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
304	    USPACE_SVC_STACK_TOP;
305	vector_page_setprot(VM_PROT_READ);
306	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
307	thread0.td_frame = (struct trapframe *)pcb->un_32.pcb32_sp - 1;
308	pmap_postinit();
309#ifdef ARM_CACHE_LOCK_ENABLE
310	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
311	arm_lock_cache_line(ARM_TP_ADDRESS);
312#else
313	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
314	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
315#endif
316}
317
318SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
319
320/* Get current clock frequency for the given cpu id. */
321int
322cpu_est_clockrate(int cpu_id, uint64_t *rate)
323{
324
325	return (ENXIO);
326}
327
328void
329cpu_idle(int busy)
330{
331	cpu_sleep(0);
332}
333
334int
335cpu_idle_wakeup(int cpu)
336{
337
338	return (0);
339}
340
341int
342fill_regs(struct thread *td, struct reg *regs)
343{
344	struct trapframe *tf = td->td_frame;
345	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
346	regs->r_sp = tf->tf_usr_sp;
347	regs->r_lr = tf->tf_usr_lr;
348	regs->r_pc = tf->tf_pc;
349	regs->r_cpsr = tf->tf_spsr;
350	return (0);
351}
352int
353fill_fpregs(struct thread *td, struct fpreg *regs)
354{
355	bzero(regs, sizeof(*regs));
356	return (0);
357}
358
359int
360set_regs(struct thread *td, struct reg *regs)
361{
362	struct trapframe *tf = td->td_frame;
363
364	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
365	tf->tf_usr_sp = regs->r_sp;
366	tf->tf_usr_lr = regs->r_lr;
367	tf->tf_pc = regs->r_pc;
368	tf->tf_spsr &=  ~PSR_FLAGS;
369	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
370	return (0);
371}
372
373int
374set_fpregs(struct thread *td, struct fpreg *regs)
375{
376	return (0);
377}
378
379int
380fill_dbregs(struct thread *td, struct dbreg *regs)
381{
382	return (0);
383}
384int
385set_dbregs(struct thread *td, struct dbreg *regs)
386{
387	return (0);
388}
389
390
391static int
392ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
393{
394	struct iovec iov;
395	struct uio uio;
396
397	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
398	iov.iov_base = (caddr_t) v;
399	iov.iov_len = sizeof(u_int32_t);
400	uio.uio_iov = &iov;
401	uio.uio_iovcnt = 1;
402	uio.uio_offset = (off_t)addr;
403	uio.uio_resid = sizeof(u_int32_t);
404	uio.uio_segflg = UIO_SYSSPACE;
405	uio.uio_rw = UIO_READ;
406	uio.uio_td = td;
407	return proc_rwmem(td->td_proc, &uio);
408}
409
410static int
411ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
412{
413	struct iovec iov;
414	struct uio uio;
415
416	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
417	iov.iov_base = (caddr_t) &v;
418	iov.iov_len = sizeof(u_int32_t);
419	uio.uio_iov = &iov;
420	uio.uio_iovcnt = 1;
421	uio.uio_offset = (off_t)addr;
422	uio.uio_resid = sizeof(u_int32_t);
423	uio.uio_segflg = UIO_SYSSPACE;
424	uio.uio_rw = UIO_WRITE;
425	uio.uio_td = td;
426	return proc_rwmem(td->td_proc, &uio);
427}
428
429int
430ptrace_single_step(struct thread *td)
431{
432	struct proc *p;
433	int error;
434
435	KASSERT(td->td_md.md_ptrace_instr == 0,
436	 ("Didn't clear single step"));
437	p = td->td_proc;
438	PROC_UNLOCK(p);
439	error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
440	    &td->td_md.md_ptrace_instr);
441	if (error)
442		goto out;
443	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
444	    PTRACE_BREAKPOINT);
445	if (error)
446		td->td_md.md_ptrace_instr = 0;
447	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
448out:
449	PROC_LOCK(p);
450	return (error);
451}
452
453int
454ptrace_clear_single_step(struct thread *td)
455{
456	struct proc *p;
457
458	if (td->td_md.md_ptrace_instr) {
459		p = td->td_proc;
460		PROC_UNLOCK(p);
461		ptrace_write_int(td, td->td_md.md_ptrace_addr,
462		    td->td_md.md_ptrace_instr);
463		PROC_LOCK(p);
464		td->td_md.md_ptrace_instr = 0;
465	}
466	return (0);
467}
468
469int
470ptrace_set_pc(struct thread *td, unsigned long addr)
471{
472	td->td_frame->tf_pc = addr;
473	return (0);
474}
475
476void
477cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
478{
479}
480
481void
482spinlock_enter(void)
483{
484	struct thread *td;
485
486	td = curthread;
487	if (td->td_md.md_spinlock_count == 0)
488		td->td_md.md_saved_cspr = disable_interrupts(I32_bit | F32_bit);
489	td->td_md.md_spinlock_count++;
490	critical_enter();
491}
492
493void
494spinlock_exit(void)
495{
496	struct thread *td;
497
498	td = curthread;
499	critical_exit();
500	td->td_md.md_spinlock_count--;
501	if (td->td_md.md_spinlock_count == 0)
502		restore_interrupts(td->td_md.md_saved_cspr);
503}
504
505/*
506 * Clear registers on exec
507 */
508void
509exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
510{
511	struct trapframe *tf = td->td_frame;
512
513	memset(tf, 0, sizeof(*tf));
514	tf->tf_usr_sp = stack;
515	tf->tf_usr_lr = entry;
516	tf->tf_svc_lr = 0x77777777;
517	tf->tf_pc = entry;
518	tf->tf_spsr = PSR_USR32_MODE;
519}
520
521/*
522 * Get machine context.
523 */
524int
525get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
526{
527	struct trapframe *tf = td->td_frame;
528	__greg_t *gr = mcp->__gregs;
529
530	if (clear_ret & GET_MC_CLEAR_RET)
531		gr[_REG_R0] = 0;
532	else
533		gr[_REG_R0]   = tf->tf_r0;
534	gr[_REG_R1]   = tf->tf_r1;
535	gr[_REG_R2]   = tf->tf_r2;
536	gr[_REG_R3]   = tf->tf_r3;
537	gr[_REG_R4]   = tf->tf_r4;
538	gr[_REG_R5]   = tf->tf_r5;
539	gr[_REG_R6]   = tf->tf_r6;
540	gr[_REG_R7]   = tf->tf_r7;
541	gr[_REG_R8]   = tf->tf_r8;
542	gr[_REG_R9]   = tf->tf_r9;
543	gr[_REG_R10]  = tf->tf_r10;
544	gr[_REG_R11]  = tf->tf_r11;
545	gr[_REG_R12]  = tf->tf_r12;
546	gr[_REG_SP]   = tf->tf_usr_sp;
547	gr[_REG_LR]   = tf->tf_usr_lr;
548	gr[_REG_PC]   = tf->tf_pc;
549	gr[_REG_CPSR] = tf->tf_spsr;
550
551	return (0);
552}
553
554/*
555 * Set machine context.
556 *
557 * However, we don't set any but the user modifiable flags, and we won't
558 * touch the cs selector.
559 */
560int
561set_mcontext(struct thread *td, const mcontext_t *mcp)
562{
563	struct trapframe *tf = td->td_frame;
564	const __greg_t *gr = mcp->__gregs;
565
566	tf->tf_r0 = gr[_REG_R0];
567	tf->tf_r1 = gr[_REG_R1];
568	tf->tf_r2 = gr[_REG_R2];
569	tf->tf_r3 = gr[_REG_R3];
570	tf->tf_r4 = gr[_REG_R4];
571	tf->tf_r5 = gr[_REG_R5];
572	tf->tf_r6 = gr[_REG_R6];
573	tf->tf_r7 = gr[_REG_R7];
574	tf->tf_r8 = gr[_REG_R8];
575	tf->tf_r9 = gr[_REG_R9];
576	tf->tf_r10 = gr[_REG_R10];
577	tf->tf_r11 = gr[_REG_R11];
578	tf->tf_r12 = gr[_REG_R12];
579	tf->tf_usr_sp = gr[_REG_SP];
580	tf->tf_usr_lr = gr[_REG_LR];
581	tf->tf_pc = gr[_REG_PC];
582	tf->tf_spsr = gr[_REG_CPSR];
583
584	return (0);
585}
586
587/*
588 * MPSAFE
589 */
590int
591sigreturn(td, uap)
592	struct thread *td;
593	struct sigreturn_args /* {
594		const struct __ucontext *sigcntxp;
595	} */ *uap;
596{
597	struct proc *p = td->td_proc;
598	struct sigframe sf;
599	struct trapframe *tf;
600	int spsr;
601
602	if (uap == NULL)
603		return (EFAULT);
604	if (copyin(uap->sigcntxp, &sf, sizeof(sf)))
605		return (EFAULT);
606	/*
607	 * Make sure the processor mode has not been tampered with and
608	 * interrupts have not been disabled.
609	 */
610	spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR];
611	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
612	    (spsr & (I32_bit | F32_bit)) != 0)
613		return (EINVAL);
614		/* Restore register context. */
615	tf = td->td_frame;
616	set_mcontext(td, &sf.sf_uc.uc_mcontext);
617
618	/* Restore signal mask. */
619	PROC_LOCK(p);
620	td->td_sigmask = sf.sf_uc.uc_sigmask;
621	SIG_CANTMASK(td->td_sigmask);
622	signotify(td);
623	PROC_UNLOCK(p);
624
625	return (EJUSTRETURN);
626}
627
628
629/*
630 * Construct a PCB from a trapframe. This is called from kdb_trap() where
631 * we want to start a backtrace from the function that caused us to enter
632 * the debugger. We have the context in the trapframe, but base the trace
633 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
634 * enough for a backtrace.
635 */
636void
637makectx(struct trapframe *tf, struct pcb *pcb)
638{
639	pcb->un_32.pcb32_r8 = tf->tf_r8;
640	pcb->un_32.pcb32_r9 = tf->tf_r9;
641	pcb->un_32.pcb32_r10 = tf->tf_r10;
642	pcb->un_32.pcb32_r11 = tf->tf_r11;
643	pcb->un_32.pcb32_r12 = tf->tf_r12;
644	pcb->un_32.pcb32_pc = tf->tf_pc;
645	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
646	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
647}
648
649/*
650 * Fake up a boot descriptor table
651 */
652vm_offset_t
653fake_preload_metadata(void)
654{
655#ifdef DDB
656	vm_offset_t zstart = 0, zend = 0;
657#endif
658	vm_offset_t lastaddr;
659	int i = 0;
660	static uint32_t fake_preload[35];
661
662	fake_preload[i++] = MODINFO_NAME;
663	fake_preload[i++] = strlen("elf kernel") + 1;
664	strcpy((char*)&fake_preload[i++], "elf kernel");
665	i += 2;
666	fake_preload[i++] = MODINFO_TYPE;
667	fake_preload[i++] = strlen("elf kernel") + 1;
668	strcpy((char*)&fake_preload[i++], "elf kernel");
669	i += 2;
670	fake_preload[i++] = MODINFO_ADDR;
671	fake_preload[i++] = sizeof(vm_offset_t);
672	fake_preload[i++] = KERNVIRTADDR;
673	fake_preload[i++] = MODINFO_SIZE;
674	fake_preload[i++] = sizeof(uint32_t);
675	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
676#ifdef DDB
677	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
678		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
679		fake_preload[i++] = sizeof(vm_offset_t);
680		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
681		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
682		fake_preload[i++] = sizeof(vm_offset_t);
683		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
684		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
685		zend = lastaddr;
686		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
687		ksym_start = zstart;
688		ksym_end = zend;
689	} else
690#endif
691		lastaddr = (vm_offset_t)&end;
692	fake_preload[i++] = 0;
693	fake_preload[i] = 0;
694	preload_metadata = (void *)fake_preload;
695
696	return (lastaddr);
697}
698