busdma_machdep-v6.c revision 278031
1/*-
2 * Copyright (c) 2012-2014 Ian Lepore
3 * Copyright (c) 2010 Mark Tinguely
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 2002 Peter Grehan
6 * Copyright (c) 1997, 1998 Justin T. Gibbs.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions, and the following disclaimer,
14 *    without modification, immediately at the beginning of the file.
15 * 2. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/arm/arm/busdma_machdep-v6.c 278031 2015-02-01 17:19:57Z ian $");
35
36#define _ARM32_BUS_DMA_PRIVATE
37#include <sys/param.h>
38#include <sys/kdb.h>
39#include <ddb/ddb.h>
40#include <ddb/db_output.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/bus.h>
44#include <sys/busdma_bufalloc.h>
45#include <sys/counter.h>
46#include <sys/interrupt.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/memdesc.h>
51#include <sys/proc.h>
52#include <sys/mutex.h>
53#include <sys/sysctl.h>
54#include <sys/uio.h>
55
56#include <vm/vm.h>
57#include <vm/vm_page.h>
58#include <vm/vm_map.h>
59#include <vm/vm_extern.h>
60#include <vm/vm_kern.h>
61
62#include <machine/atomic.h>
63#include <machine/bus.h>
64#include <machine/cpufunc.h>
65#include <machine/md_var.h>
66
67#define MAX_BPAGES 64
68#define MAX_DMA_SEGMENTS	4096
69#define BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
70#define BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
71#define BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
72#define BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
73
74struct bounce_zone;
75
76struct bus_dma_tag {
77	bus_dma_tag_t	  parent;
78	bus_size_t	  alignment;
79	bus_size_t	  boundary;
80	bus_addr_t	  lowaddr;
81	bus_addr_t	  highaddr;
82	bus_dma_filter_t *filter;
83	void		 *filterarg;
84	bus_size_t	  maxsize;
85	u_int		  nsegments;
86	bus_size_t	  maxsegsz;
87	int		  flags;
88	int		  ref_count;
89	int		  map_count;
90	bus_dma_lock_t	 *lockfunc;
91	void		 *lockfuncarg;
92	struct bounce_zone *bounce_zone;
93	/*
94	 * DMA range for this tag.  If the page doesn't fall within
95	 * one of these ranges, an error is returned.  The caller
96	 * may then decide what to do with the transfer.  If the
97	 * range pointer is NULL, it is ignored.
98	 */
99	struct arm32_dma_range	*ranges;
100	int			_nranges;
101};
102
103struct bounce_page {
104	vm_offset_t	vaddr;		/* kva of bounce buffer */
105	bus_addr_t	busaddr;	/* Physical address */
106	vm_offset_t	datavaddr;	/* kva of client data */
107	bus_addr_t	dataaddr;	/* client physical address */
108	bus_size_t	datacount;	/* client data count */
109	STAILQ_ENTRY(bounce_page) links;
110};
111
112struct sync_list {
113	vm_offset_t	vaddr;		/* kva of bounce buffer */
114	bus_addr_t	busaddr;	/* Physical address */
115	bus_size_t	datacount;	/* client data count */
116};
117
118int busdma_swi_pending;
119
120struct bounce_zone {
121	STAILQ_ENTRY(bounce_zone) links;
122	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
123	int		total_bpages;
124	int		free_bpages;
125	int		reserved_bpages;
126	int		active_bpages;
127	int		total_bounced;
128	int		total_deferred;
129	int		map_count;
130	bus_size_t	alignment;
131	bus_addr_t	lowaddr;
132	char		zoneid[8];
133	char		lowaddrid[20];
134	struct sysctl_ctx_list sysctl_tree;
135	struct sysctl_oid *sysctl_tree_top;
136};
137
138static struct mtx bounce_lock;
139static int total_bpages;
140static int busdma_zonecount;
141static uint32_t tags_total;
142static uint32_t maps_total;
143static uint32_t maps_dmamem;
144static uint32_t maps_coherent;
145static counter_u64_t maploads_total;
146static counter_u64_t maploads_bounced;
147static counter_u64_t maploads_coherent;
148static counter_u64_t maploads_dmamem;
149static counter_u64_t maploads_mbuf;
150static counter_u64_t maploads_physmem;
151
152static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
153
154SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
155SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
156   "Number of active tags");
157SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
158   "Number of active maps");
159SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
160   "Number of active maps for bus_dmamem_alloc buffers");
161SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
162   "Number of active maps with BUS_DMA_COHERENT flag set");
163SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD,
164    &maploads_total, "Number of load operations performed");
165SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD,
166    &maploads_bounced, "Number of load operations that used bounce buffers");
167SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD,
168    &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory");
169SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD,
170    &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers");
171SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD,
172    &maploads_mbuf, "Number of load operations for mbufs");
173SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD,
174    &maploads_physmem, "Number of load operations on physical buffers");
175SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
176   "Total bounce pages");
177
178struct bus_dmamap {
179	struct bp_list	       bpages;
180	int		       pagesneeded;
181	int		       pagesreserved;
182	bus_dma_tag_t	       dmat;
183	struct memdesc	       mem;
184	pmap_t		       pmap;
185	bus_dmamap_callback_t *callback;
186	void		      *callback_arg;
187	int		      flags;
188#define DMAMAP_COHERENT		(1 << 0)
189#define DMAMAP_DMAMEM_ALLOC	(1 << 1)
190#define DMAMAP_MBUF		(1 << 2)
191	STAILQ_ENTRY(bus_dmamap) links;
192	bus_dma_segment_t	*segments;
193	int		       sync_count;
194	struct sync_list       slist[];
195};
196
197static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
198static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
199
200static void init_bounce_pages(void *dummy);
201static int alloc_bounce_zone(bus_dma_tag_t dmat);
202static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
203static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
204				int commit);
205static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
206				  vm_offset_t vaddr, bus_addr_t addr,
207				  bus_size_t size);
208static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
209static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
210    void *buf, bus_size_t buflen, int flags);
211static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
212    vm_paddr_t buf, bus_size_t buflen, int flags);
213static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
214    int flags);
215
216static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
217static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
218static void
219busdma_init(void *dummy)
220{
221	int uma_flags;
222
223	maploads_total    = counter_u64_alloc(M_WAITOK);
224	maploads_bounced  = counter_u64_alloc(M_WAITOK);
225	maploads_coherent = counter_u64_alloc(M_WAITOK);
226	maploads_dmamem   = counter_u64_alloc(M_WAITOK);
227	maploads_mbuf     = counter_u64_alloc(M_WAITOK);
228	maploads_physmem  = counter_u64_alloc(M_WAITOK);
229
230	uma_flags = 0;
231
232	/* Create a cache of buffers in standard (cacheable) memory. */
233	standard_allocator = busdma_bufalloc_create("buffer",
234	    arm_dcache_align,	/* minimum_alignment */
235	    NULL,		/* uma_alloc func */
236	    NULL,		/* uma_free func */
237	    uma_flags);		/* uma_zcreate_flags */
238
239#ifdef INVARIANTS
240	/*
241	 * Force UMA zone to allocate service structures like
242	 * slabs using own allocator. uma_debug code performs
243	 * atomic ops on uma_slab_t fields and safety of this
244	 * operation is not guaranteed for write-back caches
245	 */
246	uma_flags = UMA_ZONE_OFFPAGE;
247#endif
248	/*
249	 * Create a cache of buffers in uncacheable memory, to implement the
250	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
251	 */
252	coherent_allocator = busdma_bufalloc_create("coherent",
253	    arm_dcache_align,	/* minimum_alignment */
254	    busdma_bufalloc_alloc_uncacheable,
255	    busdma_bufalloc_free_uncacheable,
256	    uma_flags);	/* uma_zcreate_flags */
257}
258
259/*
260 * This init historically used SI_SUB_VM, but now the init code requires
261 * malloc(9) using M_DEVBUF memory and the pcpu zones for counter(9), which get
262 * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by
263 * using SI_SUB_KMEM+1.
264 */
265SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL);
266
267/*
268 * This routine checks the exclusion zone constraints from a tag against the
269 * physical RAM available on the machine.  If a tag specifies an exclusion zone
270 * but there's no RAM in that zone, then we avoid allocating resources to bounce
271 * a request, and we can use any memory allocator (as opposed to needing
272 * kmem_alloc_contig() just because it can allocate pages in an address range).
273 *
274 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
275 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
276 * possibly have RAM at an address higher than the highest address we can
277 * express, so we take a fast out.
278 */
279static int
280exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
281{
282	int i;
283
284	if (lowaddr >= BUS_SPACE_MAXADDR)
285		return (0);
286
287	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
288		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
289		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
290			return (1);
291	}
292	return (0);
293}
294
295/*
296 * Return true if the tag has an exclusion zone that could lead to bouncing.
297 */
298static __inline int
299exclusion_bounce(bus_dma_tag_t dmat)
300{
301
302	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
303}
304
305/*
306 * Return true if the given address does not fall on the alignment boundary.
307 */
308static __inline int
309alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
310{
311
312	return (addr & (dmat->alignment - 1));
313}
314
315/*
316 * Return true if the DMA should bounce because the start or end does not fall
317 * on a cacheline boundary (which would require a partial cacheline flush).
318 * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
319 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
320 * strict rule that such memory cannot be accessed by the CPU while DMA is in
321 * progress (or by multiple DMA engines at once), so that it's always safe to do
322 * full cacheline flushes even if that affects memory outside the range of a
323 * given DMA operation that doesn't involve the full allocated buffer.  If we're
324 * mapping an mbuf, that follows the same rules as a buffer we allocated.
325 */
326static __inline int
327cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
328{
329
330	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
331		return (0);
332	return ((addr | size) & arm_dcache_align_mask);
333}
334
335/*
336 * Return true if we might need to bounce the DMA described by addr and size.
337 *
338 * This is used to quick-check whether we need to do the more expensive work of
339 * checking the DMA page-by-page looking for alignment and exclusion bounces.
340 *
341 * Note that the addr argument might be either virtual or physical.  It doesn't
342 * matter because we only look at the low-order bits, which are the same in both
343 * address spaces.
344 */
345static __inline int
346might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
347    bus_size_t size)
348{
349
350	return ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
351	    alignment_bounce(dmat, addr) ||
352	    cacheline_bounce(map, addr, size));
353}
354
355/*
356 * Return true if we must bounce the DMA described by paddr and size.
357 *
358 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
359 * boundaries, or doesn't begin on an alignment boundary, or falls within the
360 * exclusion zone of any tag in the ancestry chain.
361 *
362 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
363 * within each tag.  If the tag has a filter function, use it to decide whether
364 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
365 */
366static int
367must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
368    bus_size_t size)
369{
370
371	if (cacheline_bounce(map, paddr, size))
372		return (1);
373
374	/*
375	 *  The tag already contains ancestors' alignment restrictions so this
376	 *  check doesn't need to be inside the loop.
377	 */
378	if (alignment_bounce(dmat, paddr))
379		return (1);
380
381	/*
382	 * Even though each tag has an exclusion zone that is a superset of its
383	 * own and all its ancestors' exclusions, the exclusion zone of each tag
384	 * up the chain must be checked within the loop, because the busdma
385	 * rules say the filter function is called only when the address lies
386	 * within the low-highaddr range of the tag that filterfunc belongs to.
387	 */
388	while (dmat != NULL && exclusion_bounce(dmat)) {
389		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
390		    (dmat->filter == NULL ||
391		    dmat->filter(dmat->filterarg, paddr) != 0))
392			return (1);
393		dmat = dmat->parent;
394	}
395
396	return (0);
397}
398
399static __inline struct arm32_dma_range *
400_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
401    bus_addr_t curaddr)
402{
403	struct arm32_dma_range *dr;
404	int i;
405
406	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
407		if (curaddr >= dr->dr_sysbase &&
408		    round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
409			return (dr);
410	}
411
412	return (NULL);
413}
414
415/*
416 * Convenience function for manipulating driver locks from busdma (during
417 * busdma_swi, for example).  Drivers that don't provide their own locks
418 * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
419 * non-mutex locking scheme don't have to use this at all.
420 */
421void
422busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
423{
424	struct mtx *dmtx;
425
426	dmtx = (struct mtx *)arg;
427	switch (op) {
428	case BUS_DMA_LOCK:
429		mtx_lock(dmtx);
430		break;
431	case BUS_DMA_UNLOCK:
432		mtx_unlock(dmtx);
433		break;
434	default:
435		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
436	}
437}
438
439/*
440 * dflt_lock should never get called.  It gets put into the dma tag when
441 * lockfunc == NULL, which is only valid if the maps that are associated
442 * with the tag are meant to never be defered.
443 * XXX Should have a way to identify which driver is responsible here.
444 */
445static void
446dflt_lock(void *arg, bus_dma_lock_op_t op)
447{
448
449	panic("driver error: busdma dflt_lock called");
450}
451
452/*
453 * Allocate a device specific dma_tag.
454 */
455int
456bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
457		   bus_size_t boundary, bus_addr_t lowaddr,
458		   bus_addr_t highaddr, bus_dma_filter_t *filter,
459		   void *filterarg, bus_size_t maxsize, int nsegments,
460		   bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
461		   void *lockfuncarg, bus_dma_tag_t *dmat)
462{
463	bus_dma_tag_t newtag;
464	int error = 0;
465
466#if 0
467	if (!parent)
468		parent = arm_root_dma_tag;
469#endif
470
471	/* Basic sanity checking. */
472	KASSERT(boundary == 0 || powerof2(boundary),
473	    ("dma tag boundary %lu, must be a power of 2", boundary));
474	KASSERT(boundary == 0 || boundary >= maxsegsz,
475	    ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz));
476	KASSERT(alignment != 0 && powerof2(alignment),
477	    ("dma tag alignment %lu, must be non-zero power of 2", alignment));
478	KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero"));
479
480	/* Return a NULL tag on failure */
481	*dmat = NULL;
482
483	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
484	    M_ZERO | M_NOWAIT);
485	if (newtag == NULL) {
486		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
487		    __func__, newtag, 0, error);
488		return (ENOMEM);
489	}
490
491	newtag->parent = parent;
492	newtag->alignment = alignment;
493	newtag->boundary = boundary;
494	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
495	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
496	    (PAGE_SIZE - 1);
497	newtag->filter = filter;
498	newtag->filterarg = filterarg;
499	newtag->maxsize = maxsize;
500	newtag->nsegments = nsegments;
501	newtag->maxsegsz = maxsegsz;
502	newtag->flags = flags;
503	newtag->ref_count = 1; /* Count ourself */
504	newtag->map_count = 0;
505	newtag->ranges = bus_dma_get_range();
506	newtag->_nranges = bus_dma_get_range_nb();
507	if (lockfunc != NULL) {
508		newtag->lockfunc = lockfunc;
509		newtag->lockfuncarg = lockfuncarg;
510	} else {
511		newtag->lockfunc = dflt_lock;
512		newtag->lockfuncarg = NULL;
513	}
514
515	/* Take into account any restrictions imposed by our parent tag */
516	if (parent != NULL) {
517		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
518		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
519		newtag->alignment = MAX(parent->alignment, newtag->alignment);
520		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
521		if (newtag->boundary == 0)
522			newtag->boundary = parent->boundary;
523		else if (parent->boundary != 0)
524			newtag->boundary = MIN(parent->boundary,
525					       newtag->boundary);
526		if (newtag->filter == NULL) {
527			/*
528			 * Short circuit to looking at our parent directly
529			 * since we have encapsulated all of its information
530			 */
531			newtag->filter = parent->filter;
532			newtag->filterarg = parent->filterarg;
533			newtag->parent = parent->parent;
534		}
535		if (newtag->parent != NULL)
536			atomic_add_int(&parent->ref_count, 1);
537	}
538
539	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
540		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
541	if (alignment_bounce(newtag, 1))
542		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
543
544	/*
545	 * Any request can auto-bounce due to cacheline alignment, in addition
546	 * to any alignment or boundary specifications in the tag, so if the
547	 * ALLOCNOW flag is set, there's always work to do.
548	 */
549	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
550		struct bounce_zone *bz;
551		/*
552		 * Round size up to a full page, and add one more page because
553		 * there can always be one more boundary crossing than the
554		 * number of pages in a transfer.
555		 */
556		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
557
558		if ((error = alloc_bounce_zone(newtag)) != 0) {
559			free(newtag, M_DEVBUF);
560			return (error);
561		}
562		bz = newtag->bounce_zone;
563
564		if (ptoa(bz->total_bpages) < maxsize) {
565			int pages;
566
567			pages = atop(maxsize) - bz->total_bpages;
568
569			/* Add pages to our bounce pool */
570			if (alloc_bounce_pages(newtag, pages) < pages)
571				error = ENOMEM;
572		}
573		/* Performed initial allocation */
574		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
575	} else
576		newtag->bounce_zone = NULL;
577
578	if (error != 0) {
579		free(newtag, M_DEVBUF);
580	} else {
581		atomic_add_32(&tags_total, 1);
582		*dmat = newtag;
583	}
584	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
585	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
586	return (error);
587}
588
589int
590bus_dma_tag_destroy(bus_dma_tag_t dmat)
591{
592	bus_dma_tag_t dmat_copy;
593	int error;
594
595	error = 0;
596	dmat_copy = dmat;
597
598	if (dmat != NULL) {
599
600		if (dmat->map_count != 0) {
601			error = EBUSY;
602			goto out;
603		}
604
605		while (dmat != NULL) {
606			bus_dma_tag_t parent;
607
608			parent = dmat->parent;
609			atomic_subtract_int(&dmat->ref_count, 1);
610			if (dmat->ref_count == 0) {
611				atomic_subtract_32(&tags_total, 1);
612				free(dmat, M_DEVBUF);
613				/*
614				 * Last reference count, so
615				 * release our reference
616				 * count on our parent.
617				 */
618				dmat = parent;
619			} else
620				dmat = NULL;
621		}
622	}
623out:
624	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
625	return (error);
626}
627
628static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
629{
630	struct bounce_zone *bz;
631	int maxpages;
632	int error;
633
634	if (dmat->bounce_zone == NULL)
635		if ((error = alloc_bounce_zone(dmat)) != 0)
636			return (error);
637	bz = dmat->bounce_zone;
638	/* Initialize the new map */
639	STAILQ_INIT(&(mapp->bpages));
640
641	/*
642	 * Attempt to add pages to our pool on a per-instance basis up to a sane
643	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
644	 * alignment and boundary constraints, it could still auto-bounce due to
645	 * cacheline alignment, which requires at most two bounce pages.
646	 */
647	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
648		maxpages = MAX_BPAGES;
649	else
650		maxpages = 2 * bz->map_count;
651	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
652	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
653		int pages;
654
655		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
656		pages = MIN(maxpages - bz->total_bpages, pages);
657		pages = MAX(pages, 2);
658		if (alloc_bounce_pages(dmat, pages) < pages)
659			return (ENOMEM);
660
661		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
662			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
663	}
664	bz->map_count++;
665	return (0);
666}
667
668static bus_dmamap_t
669allocate_map(bus_dma_tag_t dmat, int mflags)
670{
671	int mapsize, segsize;
672	bus_dmamap_t map;
673
674	/*
675	 * Allocate the map.  The map structure ends with an embedded
676	 * variable-sized array of sync_list structures.  Following that
677	 * we allocate enough extra space to hold the array of bus_dma_segments.
678	 */
679	KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
680	   ("cannot allocate %u dma segments (max is %u)",
681	    dmat->nsegments, MAX_DMA_SEGMENTS));
682	segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
683	mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
684	map = malloc(mapsize + segsize, M_DEVBUF, mflags | M_ZERO);
685	if (map == NULL) {
686		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
687		return (NULL);
688	}
689	map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
690	return (map);
691}
692
693/*
694 * Allocate a handle for mapping from kva/uva/physical
695 * address space into bus device space.
696 */
697int
698bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
699{
700	bus_dmamap_t map;
701	int error = 0;
702
703	*mapp = map = allocate_map(dmat, M_NOWAIT);
704	if (map == NULL) {
705		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
706		return (ENOMEM);
707	}
708
709	/*
710	 * Bouncing might be required if the driver asks for an exclusion
711	 * region, a data alignment that is stricter than 1, or DMA that begins
712	 * or ends with a partial cacheline.  Whether bouncing will actually
713	 * happen can't be known until mapping time, but we need to pre-allocate
714	 * resources now because we might not be allowed to at mapping time.
715	 */
716	error = allocate_bz_and_pages(dmat, map);
717	if (error != 0) {
718		free(map, M_DEVBUF);
719		*mapp = NULL;
720		return (error);
721	}
722	if (map->flags & DMAMAP_COHERENT)
723		atomic_add_32(&maps_coherent, 1);
724	atomic_add_32(&maps_total, 1);
725	dmat->map_count++;
726
727	return (0);
728}
729
730/*
731 * Destroy a handle for mapping from kva/uva/physical
732 * address space into bus device space.
733 */
734int
735bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
736{
737	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
738		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
739		    __func__, dmat, EBUSY);
740		return (EBUSY);
741	}
742	if (dmat->bounce_zone)
743		dmat->bounce_zone->map_count--;
744	if (map->flags & DMAMAP_COHERENT)
745		atomic_subtract_32(&maps_coherent, 1);
746	atomic_subtract_32(&maps_total, 1);
747	free(map, M_DEVBUF);
748	dmat->map_count--;
749	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
750	return (0);
751}
752
753
754/*
755 * Allocate a piece of memory that can be efficiently mapped into
756 * bus device space based on the constraints lited in the dma tag.
757 * A dmamap to for use with dmamap_load is also allocated.
758 */
759int
760bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
761		 bus_dmamap_t *mapp)
762{
763	busdma_bufalloc_t ba;
764	struct busdma_bufzone *bufzone;
765	bus_dmamap_t map;
766	vm_memattr_t memattr;
767	int mflags;
768
769	if (flags & BUS_DMA_NOWAIT)
770		mflags = M_NOWAIT;
771	else
772		mflags = M_WAITOK;
773	if (flags & BUS_DMA_ZERO)
774		mflags |= M_ZERO;
775
776	*mapp = map = allocate_map(dmat, mflags);
777	if (map == NULL) {
778		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
779		    __func__, dmat, dmat->flags, ENOMEM);
780		return (ENOMEM);
781	}
782	map->flags = DMAMAP_DMAMEM_ALLOC;
783
784	/* Choose a busdma buffer allocator based on memory type flags. */
785	if (flags & BUS_DMA_COHERENT) {
786		memattr = VM_MEMATTR_UNCACHEABLE;
787		ba = coherent_allocator;
788		map->flags |= DMAMAP_COHERENT;
789	} else {
790		memattr = VM_MEMATTR_DEFAULT;
791		ba = standard_allocator;
792	}
793
794	/*
795	 * Try to find a bufzone in the allocator that holds a cache of buffers
796	 * of the right size for this request.  If the buffer is too big to be
797	 * held in the allocator cache, this returns NULL.
798	 */
799	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
800
801	/*
802	 * Allocate the buffer from the uma(9) allocator if...
803	 *  - It's small enough to be in the allocator (bufzone not NULL).
804	 *  - The alignment constraint isn't larger than the allocation size
805	 *    (the allocator aligns buffers to their size boundaries).
806	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
807	 * else allocate non-contiguous pages if...
808	 *  - The page count that could get allocated doesn't exceed nsegments.
809	 *  - The alignment constraint isn't larger than a page boundary.
810	 *  - There are no boundary-crossing constraints.
811	 * else allocate a block of contiguous pages because one or more of the
812	 * constraints is something that only the contig allocator can fulfill.
813	 */
814	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
815	    !exclusion_bounce(dmat)) {
816		*vaddr = uma_zalloc(bufzone->umazone, mflags);
817	} else if (dmat->nsegments >= btoc(dmat->maxsize) &&
818	    dmat->alignment <= PAGE_SIZE && dmat->boundary == 0) {
819		*vaddr = (void *)kmem_alloc_attr(kernel_arena, dmat->maxsize,
820		    mflags, 0, dmat->lowaddr, memattr);
821	} else {
822		*vaddr = (void *)kmem_alloc_contig(kernel_arena, dmat->maxsize,
823		    mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary,
824		    memattr);
825	}
826
827
828	if (*vaddr == NULL) {
829		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
830		    __func__, dmat, dmat->flags, ENOMEM);
831		free(map, M_DEVBUF);
832		*mapp = NULL;
833		return (ENOMEM);
834	}
835	if (map->flags & DMAMAP_COHERENT)
836		atomic_add_32(&maps_coherent, 1);
837	atomic_add_32(&maps_dmamem, 1);
838	atomic_add_32(&maps_total, 1);
839	dmat->map_count++;
840
841	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
842	    __func__, dmat, dmat->flags, 0);
843	return (0);
844}
845
846/*
847 * Free a piece of memory and it's allociated dmamap, that was allocated
848 * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
849 */
850void
851bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
852{
853	struct busdma_bufzone *bufzone;
854	busdma_bufalloc_t ba;
855
856	if (map->flags & DMAMAP_COHERENT)
857		ba = coherent_allocator;
858	else
859		ba = standard_allocator;
860
861	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
862
863	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
864	    !exclusion_bounce(dmat))
865		uma_zfree(bufzone->umazone, vaddr);
866	else
867		kmem_free(kernel_arena, (vm_offset_t)vaddr, dmat->maxsize);
868
869	dmat->map_count--;
870	if (map->flags & DMAMAP_COHERENT)
871		atomic_subtract_32(&maps_coherent, 1);
872	atomic_subtract_32(&maps_total, 1);
873	atomic_subtract_32(&maps_dmamem, 1);
874	free(map, M_DEVBUF);
875	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
876}
877
878static void
879_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
880    bus_size_t buflen, int flags)
881{
882	bus_addr_t curaddr;
883	bus_size_t sgsize;
884
885	if (map->pagesneeded == 0) {
886		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
887		    " map= %p, pagesneeded= %d",
888		    dmat->lowaddr, dmat->boundary, dmat->alignment,
889		    map, map->pagesneeded);
890		/*
891		 * Count the number of bounce pages
892		 * needed in order to complete this transfer
893		 */
894		curaddr = buf;
895		while (buflen != 0) {
896			sgsize = MIN(buflen, dmat->maxsegsz);
897			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
898				sgsize = MIN(sgsize, PAGE_SIZE);
899				map->pagesneeded++;
900			}
901			curaddr += sgsize;
902			buflen -= sgsize;
903		}
904		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
905	}
906}
907
908static void
909_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
910    void *buf, bus_size_t buflen, int flags)
911{
912	vm_offset_t vaddr;
913	vm_offset_t vendaddr;
914	bus_addr_t paddr;
915
916	if (map->pagesneeded == 0) {
917		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
918		    " map= %p, pagesneeded= %d",
919		    dmat->lowaddr, dmat->boundary, dmat->alignment,
920		    map, map->pagesneeded);
921		/*
922		 * Count the number of bounce pages
923		 * needed in order to complete this transfer
924		 */
925		vaddr = (vm_offset_t)buf;
926		vendaddr = (vm_offset_t)buf + buflen;
927
928		while (vaddr < vendaddr) {
929			if (__predict_true(map->pmap == kernel_pmap))
930				paddr = pmap_kextract(vaddr);
931			else
932				paddr = pmap_extract(map->pmap, vaddr);
933			if (must_bounce(dmat, map, paddr,
934			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
935			    PAGE_MASK)))) != 0) {
936				map->pagesneeded++;
937			}
938			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
939
940		}
941		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
942	}
943}
944
945static int
946_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
947{
948
949	/* Reserve Necessary Bounce Pages */
950	mtx_lock(&bounce_lock);
951	if (flags & BUS_DMA_NOWAIT) {
952		if (reserve_bounce_pages(dmat, map, 0) != 0) {
953			map->pagesneeded = 0;
954			mtx_unlock(&bounce_lock);
955			return (ENOMEM);
956		}
957	} else {
958		if (reserve_bounce_pages(dmat, map, 1) != 0) {
959			/* Queue us for resources */
960			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
961			mtx_unlock(&bounce_lock);
962			return (EINPROGRESS);
963		}
964	}
965	mtx_unlock(&bounce_lock);
966
967	return (0);
968}
969
970/*
971 * Add a single contiguous physical range to the segment list.
972 */
973static int
974_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
975		   bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
976{
977	bus_addr_t baddr, bmask;
978	int seg;
979
980	/*
981	 * Make sure we don't cross any boundaries.
982	 */
983	bmask = ~(dmat->boundary - 1);
984	if (dmat->boundary > 0) {
985		baddr = (curaddr + dmat->boundary) & bmask;
986		if (sgsize > (baddr - curaddr))
987			sgsize = (baddr - curaddr);
988	}
989
990	if (dmat->ranges) {
991		struct arm32_dma_range *dr;
992
993		dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges,
994		    curaddr);
995		if (dr == NULL) {
996			_bus_dmamap_unload(dmat, map);
997			return (0);
998		}
999		/*
1000		 * In a valid DMA range.  Translate the physical
1001		 * memory address to an address in the DMA window.
1002		 */
1003		curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase;
1004	}
1005
1006	/*
1007	 * Insert chunk into a segment, coalescing with
1008	 * previous segment if possible.
1009	 */
1010	seg = *segp;
1011	if (seg == -1) {
1012		seg = 0;
1013		segs[seg].ds_addr = curaddr;
1014		segs[seg].ds_len = sgsize;
1015	} else {
1016		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
1017		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
1018		    (dmat->boundary == 0 ||
1019		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
1020			segs[seg].ds_len += sgsize;
1021		else {
1022			if (++seg >= dmat->nsegments)
1023				return (0);
1024			segs[seg].ds_addr = curaddr;
1025			segs[seg].ds_len = sgsize;
1026		}
1027	}
1028	*segp = seg;
1029	return (sgsize);
1030}
1031
1032/*
1033 * Utility function to load a physical buffer.  segp contains
1034 * the starting segment on entrace, and the ending segment on exit.
1035 */
1036int
1037_bus_dmamap_load_phys(bus_dma_tag_t dmat,
1038		      bus_dmamap_t map,
1039		      vm_paddr_t buf, bus_size_t buflen,
1040		      int flags,
1041		      bus_dma_segment_t *segs,
1042		      int *segp)
1043{
1044	bus_addr_t curaddr;
1045	bus_size_t sgsize;
1046	int error;
1047
1048	if (segs == NULL)
1049		segs = map->segments;
1050
1051	counter_u64_add(maploads_total, 1);
1052	counter_u64_add(maploads_physmem, 1);
1053
1054	if (might_bounce(dmat, map, buflen, buflen)) {
1055		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
1056		if (map->pagesneeded != 0) {
1057			counter_u64_add(maploads_bounced, 1);
1058			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1059			if (error)
1060				return (error);
1061		}
1062	}
1063
1064	while (buflen > 0) {
1065		curaddr = buf;
1066		sgsize = MIN(buflen, dmat->maxsegsz);
1067		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1068		    sgsize)) {
1069			sgsize = MIN(sgsize, PAGE_SIZE);
1070			curaddr = add_bounce_page(dmat, map, 0, curaddr,
1071						  sgsize);
1072		}
1073		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1074		    segp);
1075		if (sgsize == 0)
1076			break;
1077		buf += sgsize;
1078		buflen -= sgsize;
1079	}
1080
1081	/*
1082	 * Did we fit?
1083	 */
1084	if (buflen != 0) {
1085		_bus_dmamap_unload(dmat, map);
1086		return (EFBIG); /* XXX better return value here? */
1087	}
1088	return (0);
1089}
1090
1091int
1092_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1093    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1094    bus_dma_segment_t *segs, int *segp)
1095{
1096
1097	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1098	    segs, segp));
1099}
1100
1101/*
1102 * Utility function to load a linear buffer.  segp contains
1103 * the starting segment on entrace, and the ending segment on exit.
1104 */
1105int
1106_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
1107			bus_dmamap_t map,
1108			void *buf, bus_size_t buflen,
1109			pmap_t pmap,
1110			int flags,
1111			bus_dma_segment_t *segs,
1112			int *segp)
1113{
1114	bus_size_t sgsize;
1115	bus_addr_t curaddr;
1116	vm_offset_t vaddr;
1117	struct sync_list *sl;
1118	int error;
1119
1120	counter_u64_add(maploads_total, 1);
1121	if (map->flags & DMAMAP_COHERENT)
1122		counter_u64_add(maploads_coherent, 1);
1123	if (map->flags & DMAMAP_DMAMEM_ALLOC)
1124		counter_u64_add(maploads_dmamem, 1);
1125
1126	if (segs == NULL)
1127		segs = map->segments;
1128
1129	if (flags & BUS_DMA_LOAD_MBUF) {
1130		counter_u64_add(maploads_mbuf, 1);
1131		map->flags |= DMAMAP_MBUF;
1132	}
1133
1134	map->pmap = pmap;
1135
1136	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
1137		_bus_dmamap_count_pages(dmat, map, buf, buflen, flags);
1138		if (map->pagesneeded != 0) {
1139			counter_u64_add(maploads_bounced, 1);
1140			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1141			if (error)
1142				return (error);
1143		}
1144	}
1145
1146	sl = NULL;
1147	vaddr = (vm_offset_t)buf;
1148
1149	while (buflen > 0) {
1150		/*
1151		 * Get the physical address for this segment.
1152		 */
1153		if (__predict_true(map->pmap == kernel_pmap))
1154			curaddr = pmap_kextract(vaddr);
1155		else
1156			curaddr = pmap_extract(map->pmap, vaddr);
1157
1158		/*
1159		 * Compute the segment size, and adjust counts.
1160		 */
1161		sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
1162		if (sgsize > dmat->maxsegsz)
1163			sgsize = dmat->maxsegsz;
1164		if (buflen < sgsize)
1165			sgsize = buflen;
1166
1167		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1168		    sgsize)) {
1169			curaddr = add_bounce_page(dmat, map, vaddr, curaddr,
1170						  sgsize);
1171		} else {
1172			sl = &map->slist[map->sync_count - 1];
1173			if (map->sync_count == 0 ||
1174#ifdef ARM_L2_PIPT
1175			    curaddr != sl->busaddr + sl->datacount ||
1176#endif
1177			    vaddr != sl->vaddr + sl->datacount) {
1178				if (++map->sync_count > dmat->nsegments)
1179					goto cleanup;
1180				sl++;
1181				sl->vaddr = vaddr;
1182				sl->datacount = sgsize;
1183				sl->busaddr = curaddr;
1184			} else
1185				sl->datacount += sgsize;
1186		}
1187		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1188					    segp);
1189		if (sgsize == 0)
1190			break;
1191		vaddr += sgsize;
1192		buflen -= sgsize;
1193	}
1194
1195cleanup:
1196	/*
1197	 * Did we fit?
1198	 */
1199	if (buflen != 0) {
1200		_bus_dmamap_unload(dmat, map);
1201		return (EFBIG); /* XXX better return value here? */
1202	}
1203	return (0);
1204}
1205
1206
1207void
1208__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1209		    struct memdesc *mem, bus_dmamap_callback_t *callback,
1210		    void *callback_arg)
1211{
1212
1213	map->mem = *mem;
1214	map->dmat = dmat;
1215	map->callback = callback;
1216	map->callback_arg = callback_arg;
1217}
1218
1219bus_dma_segment_t *
1220_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1221		     bus_dma_segment_t *segs, int nsegs, int error)
1222{
1223
1224	if (segs == NULL)
1225		segs = map->segments;
1226	return (segs);
1227}
1228
1229/*
1230 * Release the mapping held by map.
1231 */
1232void
1233_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1234{
1235	struct bounce_page *bpage;
1236	struct bounce_zone *bz;
1237
1238	if ((bz = dmat->bounce_zone) != NULL) {
1239		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1240			STAILQ_REMOVE_HEAD(&map->bpages, links);
1241			free_bounce_page(dmat, bpage);
1242		}
1243
1244		bz = dmat->bounce_zone;
1245		bz->free_bpages += map->pagesreserved;
1246		bz->reserved_bpages -= map->pagesreserved;
1247		map->pagesreserved = 0;
1248		map->pagesneeded = 0;
1249	}
1250	map->sync_count = 0;
1251	map->flags &= ~DMAMAP_MBUF;
1252}
1253
1254#ifdef notyetbounceuser
1255/* If busdma uses user pages, then the interrupt handler could
1256 * be use the kernel vm mapping. Both bounce pages and sync list
1257 * do not cross page boundaries.
1258 * Below is a rough sequence that a person would do to fix the
1259 * user page reference in the kernel vmspace. This would be
1260 * done in the dma post routine.
1261 */
1262void
1263_bus_dmamap_fix_user(vm_offset_t buf, bus_size_t len,
1264			pmap_t pmap, int op)
1265{
1266	bus_size_t sgsize;
1267	bus_addr_t curaddr;
1268	vm_offset_t va;
1269
1270	/*
1271	 * each synclist entry is contained within a single page.
1272	 * this would be needed if BUS_DMASYNC_POSTxxxx was implemented
1273	 */
1274	curaddr = pmap_extract(pmap, buf);
1275	va = pmap_dma_map(curaddr);
1276	switch (op) {
1277	case SYNC_USER_INV:
1278		cpu_dcache_wb_range(va, sgsize);
1279		break;
1280
1281	case SYNC_USER_COPYTO:
1282		bcopy((void *)va, (void *)bounce, sgsize);
1283		break;
1284
1285	case SYNC_USER_COPYFROM:
1286		bcopy((void *) bounce, (void *)va, sgsize);
1287		break;
1288
1289	default:
1290		break;
1291	}
1292
1293	pmap_dma_unmap(va);
1294}
1295#endif
1296
1297#ifdef ARM_L2_PIPT
1298#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(pa, size)
1299#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(pa, size)
1300#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(pa, size)
1301#else
1302#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(va, size)
1303#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(va, size)
1304#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(va, size)
1305#endif
1306
1307void
1308_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1309{
1310	struct bounce_page *bpage;
1311	struct sync_list *sl, *end;
1312	/*
1313	 * If the buffer was from user space, it is possible that this is not
1314	 * the same vm map, especially on a POST operation.  It's not clear that
1315	 * dma on userland buffers can work at all right now.  To be safe, until
1316	 * we're able to test direct userland dma, panic on a map mismatch.
1317	 */
1318	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1319		if (!pmap_dmap_iscurrent(map->pmap))
1320			panic("_bus_dmamap_sync: wrong user map for bounce sync.");
1321
1322		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1323		    "performing bounce", __func__, dmat, dmat->flags, op);
1324
1325		/*
1326		 * For PREWRITE do a writeback.  Clean the caches from the
1327		 * innermost to the outermost levels.
1328		 */
1329		if (op & BUS_DMASYNC_PREWRITE) {
1330			while (bpage != NULL) {
1331				if (bpage->datavaddr != 0)
1332					bcopy((void *)bpage->datavaddr,
1333					    (void *)bpage->vaddr,
1334					    bpage->datacount);
1335				else
1336					physcopyout(bpage->dataaddr,
1337					    (void *)bpage->vaddr,
1338					    bpage->datacount);
1339				cpu_dcache_wb_range((vm_offset_t)bpage->vaddr,
1340				    bpage->datacount);
1341				l2cache_wb_range((vm_offset_t)bpage->vaddr,
1342				    (vm_offset_t)bpage->busaddr,
1343				    bpage->datacount);
1344				bpage = STAILQ_NEXT(bpage, links);
1345			}
1346			dmat->bounce_zone->total_bounced++;
1347		}
1348
1349		/*
1350		 * Do an invalidate for PREREAD unless a writeback was already
1351		 * done above due to PREWRITE also being set.  The reason for a
1352		 * PREREAD invalidate is to prevent dirty lines currently in the
1353		 * cache from being evicted during the DMA.  If a writeback was
1354		 * done due to PREWRITE also being set there will be no dirty
1355		 * lines and the POSTREAD invalidate handles the rest. The
1356		 * invalidate is done from the innermost to outermost level. If
1357		 * L2 were done first, a dirty cacheline could be automatically
1358		 * evicted from L1 before we invalidated it, re-dirtying the L2.
1359		 */
1360		if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) {
1361			bpage = STAILQ_FIRST(&map->bpages);
1362			while (bpage != NULL) {
1363				cpu_dcache_inv_range((vm_offset_t)bpage->vaddr,
1364				    bpage->datacount);
1365				l2cache_inv_range((vm_offset_t)bpage->vaddr,
1366				    (vm_offset_t)bpage->busaddr,
1367				    bpage->datacount);
1368				bpage = STAILQ_NEXT(bpage, links);
1369			}
1370		}
1371
1372		/*
1373		 * Re-invalidate the caches on a POSTREAD, even though they were
1374		 * already invalidated at PREREAD time.  Aggressive prefetching
1375		 * due to accesses to other data near the dma buffer could have
1376		 * brought buffer data into the caches which is now stale.  The
1377		 * caches are invalidated from the outermost to innermost; the
1378		 * prefetches could be happening right now, and if L1 were
1379		 * invalidated first, stale L2 data could be prefetched into L1.
1380		 */
1381		if (op & BUS_DMASYNC_POSTREAD) {
1382			while (bpage != NULL) {
1383				vm_offset_t startv;
1384				vm_paddr_t startp;
1385				int len;
1386
1387				startv = bpage->vaddr &~ arm_dcache_align_mask;
1388				startp = bpage->busaddr &~ arm_dcache_align_mask;
1389				len = bpage->datacount;
1390
1391				if (startv != bpage->vaddr)
1392					len += bpage->vaddr & arm_dcache_align_mask;
1393				if (len & arm_dcache_align_mask)
1394					len = (len -
1395					    (len & arm_dcache_align_mask)) +
1396					    arm_dcache_align;
1397				l2cache_inv_range(startv, startp, len);
1398				cpu_dcache_inv_range(startv, len);
1399				if (bpage->datavaddr != 0)
1400					bcopy((void *)bpage->vaddr,
1401					    (void *)bpage->datavaddr,
1402					    bpage->datacount);
1403				else
1404					physcopyin((void *)bpage->vaddr,
1405					    bpage->dataaddr,
1406					    bpage->datacount);
1407				bpage = STAILQ_NEXT(bpage, links);
1408			}
1409			dmat->bounce_zone->total_bounced++;
1410		}
1411	}
1412
1413	/*
1414	 * For COHERENT memory no cache maintenance is necessary, but ensure all
1415	 * writes have reached memory for the PREWRITE case.  No action is
1416	 * needed for a PREREAD without PREWRITE also set, because that would
1417	 * imply that the cpu had written to the COHERENT buffer and expected
1418	 * the dma device to see that change, and by definition a PREWRITE sync
1419	 * is required to make that happen.
1420	 */
1421	if (map->flags & DMAMAP_COHERENT) {
1422		if (op & BUS_DMASYNC_PREWRITE) {
1423			dsb();
1424			cpu_l2cache_drain_writebuf();
1425		}
1426		return;
1427	}
1428
1429	/*
1430	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.  All
1431	 * the comments about the sequences for flushing cache levels in the
1432	 * bounce buffer code above apply here as well.  In particular, the fact
1433	 * that the sequence is inner-to-outer for PREREAD invalidation and
1434	 * outer-to-inner for POSTREAD invalidation is not a mistake.
1435	 */
1436	if (map->sync_count != 0) {
1437		if (!pmap_dmap_iscurrent(map->pmap))
1438			panic("_bus_dmamap_sync: wrong user map for sync.");
1439
1440		sl = &map->slist[0];
1441		end = &map->slist[map->sync_count];
1442		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1443		    "performing sync", __func__, dmat, dmat->flags, op);
1444
1445		switch (op) {
1446		case BUS_DMASYNC_PREWRITE:
1447		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1448			while (sl != end) {
1449				cpu_dcache_wb_range(sl->vaddr, sl->datacount);
1450				l2cache_wb_range(sl->vaddr, sl->busaddr,
1451				    sl->datacount);
1452				sl++;
1453			}
1454			break;
1455
1456		case BUS_DMASYNC_PREREAD:
1457			/*
1458			 * An mbuf may start in the middle of a cacheline. There
1459			 * will be no cpu writes to the beginning of that line
1460			 * (which contains the mbuf header) while dma is in
1461			 * progress.  Handle that case by doing a writeback of
1462			 * just the first cacheline before invalidating the
1463			 * overall buffer.  Any mbuf in a chain may have this
1464			 * misalignment.  Buffers which are not mbufs bounce if
1465			 * they are not aligned to a cacheline.
1466			 */
1467			while (sl != end) {
1468				if (sl->vaddr & arm_dcache_align_mask) {
1469					KASSERT(map->flags & DMAMAP_MBUF,
1470					    ("unaligned buffer is not an mbuf"));
1471					cpu_dcache_wb_range(sl->vaddr, 1);
1472					l2cache_wb_range(sl->vaddr,
1473					    sl->busaddr, 1);
1474				}
1475				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1476				l2cache_inv_range(sl->vaddr, sl->busaddr,
1477				    sl->datacount);
1478				sl++;
1479			}
1480			break;
1481
1482		case BUS_DMASYNC_POSTWRITE:
1483			break;
1484
1485		case BUS_DMASYNC_POSTREAD:
1486		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1487			while (sl != end) {
1488				l2cache_inv_range(sl->vaddr, sl->busaddr,
1489				    sl->datacount);
1490				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1491				sl++;
1492			}
1493			break;
1494
1495		default:
1496			panic("unsupported combination of sync operations: 0x%08x\n", op);
1497			break;
1498		}
1499	}
1500}
1501
1502static void
1503init_bounce_pages(void *dummy __unused)
1504{
1505
1506	total_bpages = 0;
1507	STAILQ_INIT(&bounce_zone_list);
1508	STAILQ_INIT(&bounce_map_waitinglist);
1509	STAILQ_INIT(&bounce_map_callbacklist);
1510	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1511}
1512SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1513
1514static struct sysctl_ctx_list *
1515busdma_sysctl_tree(struct bounce_zone *bz)
1516{
1517
1518	return (&bz->sysctl_tree);
1519}
1520
1521static struct sysctl_oid *
1522busdma_sysctl_tree_top(struct bounce_zone *bz)
1523{
1524
1525	return (bz->sysctl_tree_top);
1526}
1527
1528static int
1529alloc_bounce_zone(bus_dma_tag_t dmat)
1530{
1531	struct bounce_zone *bz;
1532
1533	/* Check to see if we already have a suitable zone */
1534	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1535		if ((dmat->alignment <= bz->alignment) &&
1536		    (dmat->lowaddr >= bz->lowaddr)) {
1537			dmat->bounce_zone = bz;
1538			return (0);
1539		}
1540	}
1541
1542	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1543	    M_NOWAIT | M_ZERO)) == NULL)
1544		return (ENOMEM);
1545
1546	STAILQ_INIT(&bz->bounce_page_list);
1547	bz->free_bpages = 0;
1548	bz->reserved_bpages = 0;
1549	bz->active_bpages = 0;
1550	bz->lowaddr = dmat->lowaddr;
1551	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
1552	bz->map_count = 0;
1553	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1554	busdma_zonecount++;
1555	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1556	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1557	dmat->bounce_zone = bz;
1558
1559	sysctl_ctx_init(&bz->sysctl_tree);
1560	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1561	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1562	    CTLFLAG_RD, 0, "");
1563	if (bz->sysctl_tree_top == NULL) {
1564		sysctl_ctx_free(&bz->sysctl_tree);
1565		return (0);	/* XXX error code? */
1566	}
1567
1568	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1569	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1570	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1571	    "Total bounce pages");
1572	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1573	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1574	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1575	    "Free bounce pages");
1576	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1577	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1578	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1579	    "Reserved bounce pages");
1580	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1581	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1582	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1583	    "Active bounce pages");
1584	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1585	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1586	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1587	    "Total bounce requests (pages bounced)");
1588	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1589	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1590	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1591	    "Total bounce requests that were deferred");
1592	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1593	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1594	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1595	SYSCTL_ADD_ULONG(busdma_sysctl_tree(bz),
1596	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1597	    "alignment", CTLFLAG_RD, &bz->alignment, "");
1598
1599	return (0);
1600}
1601
1602static int
1603alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1604{
1605	struct bounce_zone *bz;
1606	int count;
1607
1608	bz = dmat->bounce_zone;
1609	count = 0;
1610	while (numpages > 0) {
1611		struct bounce_page *bpage;
1612
1613		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1614		    M_NOWAIT | M_ZERO);
1615
1616		if (bpage == NULL)
1617			break;
1618		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1619		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1620		if (bpage->vaddr == 0) {
1621			free(bpage, M_DEVBUF);
1622			break;
1623		}
1624		bpage->busaddr = pmap_kextract(bpage->vaddr);
1625		mtx_lock(&bounce_lock);
1626		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1627		total_bpages++;
1628		bz->total_bpages++;
1629		bz->free_bpages++;
1630		mtx_unlock(&bounce_lock);
1631		count++;
1632		numpages--;
1633	}
1634	return (count);
1635}
1636
1637static int
1638reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1639{
1640	struct bounce_zone *bz;
1641	int pages;
1642
1643	mtx_assert(&bounce_lock, MA_OWNED);
1644	bz = dmat->bounce_zone;
1645	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1646	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1647		return (map->pagesneeded - (map->pagesreserved + pages));
1648	bz->free_bpages -= pages;
1649	bz->reserved_bpages += pages;
1650	map->pagesreserved += pages;
1651	pages = map->pagesneeded - map->pagesreserved;
1652
1653	return (pages);
1654}
1655
1656static bus_addr_t
1657add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1658		bus_addr_t addr, bus_size_t size)
1659{
1660	struct bounce_zone *bz;
1661	struct bounce_page *bpage;
1662
1663	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1664	KASSERT(map != NULL,
1665	    ("add_bounce_page: bad map %p", map));
1666
1667	bz = dmat->bounce_zone;
1668	if (map->pagesneeded == 0)
1669		panic("add_bounce_page: map doesn't need any pages");
1670	map->pagesneeded--;
1671
1672	if (map->pagesreserved == 0)
1673		panic("add_bounce_page: map doesn't need any pages");
1674	map->pagesreserved--;
1675
1676	mtx_lock(&bounce_lock);
1677	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1678	if (bpage == NULL)
1679		panic("add_bounce_page: free page list is empty");
1680
1681	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1682	bz->reserved_bpages--;
1683	bz->active_bpages++;
1684	mtx_unlock(&bounce_lock);
1685
1686	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1687		/* Page offset needs to be preserved. */
1688		bpage->vaddr |= vaddr & PAGE_MASK;
1689		bpage->busaddr |= vaddr & PAGE_MASK;
1690	}
1691	bpage->datavaddr = vaddr;
1692	bpage->dataaddr = addr;
1693	bpage->datacount = size;
1694	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1695	return (bpage->busaddr);
1696}
1697
1698static void
1699free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1700{
1701	struct bus_dmamap *map;
1702	struct bounce_zone *bz;
1703
1704	bz = dmat->bounce_zone;
1705	bpage->datavaddr = 0;
1706	bpage->datacount = 0;
1707	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1708		/*
1709		 * Reset the bounce page to start at offset 0.  Other uses
1710		 * of this bounce page may need to store a full page of
1711		 * data and/or assume it starts on a page boundary.
1712		 */
1713		bpage->vaddr &= ~PAGE_MASK;
1714		bpage->busaddr &= ~PAGE_MASK;
1715	}
1716
1717	mtx_lock(&bounce_lock);
1718	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1719	bz->free_bpages++;
1720	bz->active_bpages--;
1721	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1722		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1723			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1724			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1725			    map, links);
1726			busdma_swi_pending = 1;
1727			bz->total_deferred++;
1728			swi_sched(vm_ih, 0);
1729		}
1730	}
1731	mtx_unlock(&bounce_lock);
1732}
1733
1734void
1735busdma_swi(void)
1736{
1737	bus_dma_tag_t dmat;
1738	struct bus_dmamap *map;
1739
1740	mtx_lock(&bounce_lock);
1741	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1742		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1743		mtx_unlock(&bounce_lock);
1744		dmat = map->dmat;
1745		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK);
1746		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
1747		    map->callback_arg, BUS_DMA_WAITOK);
1748		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK);
1749		mtx_lock(&bounce_lock);
1750	}
1751	mtx_unlock(&bounce_lock);
1752}
1753