busdma_machdep-v6.c revision 274545
1113584Ssimokawa/*-
2113584Ssimokawa * Copyright (c) 2012-2014 Ian Lepore
3113584Ssimokawa * Copyright (c) 2010 Mark Tinguely
4113584Ssimokawa * Copyright (c) 2004 Olivier Houchard
5113584Ssimokawa * Copyright (c) 2002 Peter Grehan
6113584Ssimokawa * Copyright (c) 1997, 1998 Justin T. Gibbs.
7113584Ssimokawa * All rights reserved.
8113584Ssimokawa *
9113584Ssimokawa * Redistribution and use in source and binary forms, with or without
10113584Ssimokawa * modification, are permitted provided that the following conditions
11113584Ssimokawa * are met:
12113584Ssimokawa * 1. Redistributions of source code must retain the above copyright
13113584Ssimokawa *    notice, this list of conditions, and the following disclaimer,
14113584Ssimokawa *    without modification, immediately at the beginning of the file.
15113584Ssimokawa * 2. The name of the author may not be used to endorse or promote products
16113584Ssimokawa *    derived from this software without specific prior written permission.
17113584Ssimokawa *
18113584Ssimokawa * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19113584Ssimokawa * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20113584Ssimokawa * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21113584Ssimokawa * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22113584Ssimokawa * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23113584Ssimokawa * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24113584Ssimokawa * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25113584Ssimokawa * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26113584Ssimokawa * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27113584Ssimokawa * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28113584Ssimokawa * SUCH DAMAGE.
29113584Ssimokawa *
30113584Ssimokawa *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
31113584Ssimokawa */
32113584Ssimokawa
33113584Ssimokawa#include <sys/cdefs.h>
34113584Ssimokawa__FBSDID("$FreeBSD: head/sys/arm/arm/busdma_machdep-v6.c 274545 2014-11-15 05:40:20Z ian $");
35113584Ssimokawa
36113584Ssimokawa#define _ARM32_BUS_DMA_PRIVATE
37113584Ssimokawa#include <sys/param.h>
38113584Ssimokawa#include <sys/kdb.h>
39113584Ssimokawa#include <ddb/ddb.h>
40113584Ssimokawa#include <ddb/db_output.h>
41113584Ssimokawa#include <sys/systm.h>
42113584Ssimokawa#include <sys/malloc.h>
43113584Ssimokawa#include <sys/bus.h>
44113584Ssimokawa#include <sys/busdma_bufalloc.h>
45113584Ssimokawa#include <sys/counter.h>
46113584Ssimokawa#include <sys/interrupt.h>
47113584Ssimokawa#include <sys/kernel.h>
48113584Ssimokawa#include <sys/ktr.h>
49113584Ssimokawa#include <sys/lock.h>
50113584Ssimokawa#include <sys/memdesc.h>
51113584Ssimokawa#include <sys/proc.h>
52113584Ssimokawa#include <sys/mutex.h>
53113584Ssimokawa#include <sys/sysctl.h>
54113584Ssimokawa#include <sys/uio.h>
55113584Ssimokawa
56113584Ssimokawa#include <vm/vm.h>
57113584Ssimokawa#include <vm/vm_page.h>
58113584Ssimokawa#include <vm/vm_map.h>
59113584Ssimokawa#include <vm/vm_extern.h>
60113584Ssimokawa#include <vm/vm_kern.h>
61113584Ssimokawa
62113584Ssimokawa#include <machine/atomic.h>
63113584Ssimokawa#include <machine/bus.h>
64113584Ssimokawa#include <machine/cpufunc.h>
65113584Ssimokawa#include <machine/md_var.h>
66113584Ssimokawa
67113584Ssimokawa#define MAX_BPAGES 64
68113584Ssimokawa#define MAX_DMA_SEGMENTS	4096
69113584Ssimokawa#define BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
70113584Ssimokawa#define BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
71113584Ssimokawa#define BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
72113584Ssimokawa#define BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
73113584Ssimokawa
74113584Ssimokawastruct bounce_zone;
75113584Ssimokawa
76113584Ssimokawastruct bus_dma_tag {
77113584Ssimokawa	bus_dma_tag_t	  parent;
78113584Ssimokawa	bus_size_t	  alignment;
79113584Ssimokawa	bus_size_t	  boundary;
80113584Ssimokawa	bus_addr_t	  lowaddr;
81113584Ssimokawa	bus_addr_t	  highaddr;
82113584Ssimokawa	bus_dma_filter_t *filter;
83113584Ssimokawa	void		 *filterarg;
84113584Ssimokawa	bus_size_t	  maxsize;
85113584Ssimokawa	u_int		  nsegments;
86113584Ssimokawa	bus_size_t	  maxsegsz;
87113584Ssimokawa	int		  flags;
88113584Ssimokawa	int		  ref_count;
89113584Ssimokawa	int		  map_count;
90113584Ssimokawa	bus_dma_lock_t	 *lockfunc;
91113584Ssimokawa	void		 *lockfuncarg;
92113584Ssimokawa	struct bounce_zone *bounce_zone;
93113584Ssimokawa	/*
94113584Ssimokawa	 * DMA range for this tag.  If the page doesn't fall within
95113584Ssimokawa	 * one of these ranges, an error is returned.  The caller
96113584Ssimokawa	 * may then decide what to do with the transfer.  If the
97113584Ssimokawa	 * range pointer is NULL, it is ignored.
98113584Ssimokawa	 */
99113584Ssimokawa	struct arm32_dma_range	*ranges;
100113584Ssimokawa	int			_nranges;
101113584Ssimokawa};
102113584Ssimokawa
103113584Ssimokawastruct bounce_page {
104113584Ssimokawa	vm_offset_t	vaddr;		/* kva of bounce buffer */
105113584Ssimokawa	bus_addr_t	busaddr;	/* Physical address */
106113584Ssimokawa	vm_offset_t	datavaddr;	/* kva of client data */
107113584Ssimokawa	bus_addr_t	dataaddr;	/* client physical address */
108113584Ssimokawa	bus_size_t	datacount;	/* client data count */
109113584Ssimokawa	STAILQ_ENTRY(bounce_page) links;
110113584Ssimokawa};
111113584Ssimokawa
112113584Ssimokawastruct sync_list {
113113584Ssimokawa	vm_offset_t	vaddr;		/* kva of bounce buffer */
114113584Ssimokawa	bus_addr_t	busaddr;	/* Physical address */
115113584Ssimokawa	bus_size_t	datacount;	/* client data count */
116113584Ssimokawa};
117113584Ssimokawa
118113584Ssimokawaint busdma_swi_pending;
119113584Ssimokawa
120113584Ssimokawastruct bounce_zone {
121113584Ssimokawa	STAILQ_ENTRY(bounce_zone) links;
122113584Ssimokawa	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
123113584Ssimokawa	int		total_bpages;
124113584Ssimokawa	int		free_bpages;
125113584Ssimokawa	int		reserved_bpages;
126113584Ssimokawa	int		active_bpages;
127113584Ssimokawa	int		total_bounced;
128113584Ssimokawa	int		total_deferred;
129113584Ssimokawa	int		map_count;
130113584Ssimokawa	bus_size_t	alignment;
131113584Ssimokawa	bus_addr_t	lowaddr;
132113584Ssimokawa	char		zoneid[8];
133113584Ssimokawa	char		lowaddrid[20];
134113584Ssimokawa	struct sysctl_ctx_list sysctl_tree;
135113584Ssimokawa	struct sysctl_oid *sysctl_tree_top;
136113584Ssimokawa};
137113584Ssimokawa
138113584Ssimokawastatic struct mtx bounce_lock;
139113584Ssimokawastatic int total_bpages;
140113584Ssimokawastatic int busdma_zonecount;
141113584Ssimokawastatic uint32_t tags_total;
142113584Ssimokawastatic uint32_t maps_total;
143113584Ssimokawastatic uint32_t maps_dmamem;
144113584Ssimokawastatic uint32_t maps_coherent;
145113584Ssimokawastatic counter_u64_t maploads_total;
146113584Ssimokawastatic counter_u64_t maploads_bounced;
147113584Ssimokawastatic counter_u64_t maploads_coherent;
148113584Ssimokawastatic counter_u64_t maploads_dmamem;
149113584Ssimokawastatic counter_u64_t maploads_mbuf;
150113584Ssimokawastatic counter_u64_t maploads_physmem;
151113584Ssimokawa
152113584Ssimokawastatic STAILQ_HEAD(, bounce_zone) bounce_zone_list;
153113584Ssimokawa
154113584SsimokawaSYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
155113584SsimokawaSYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
156113584Ssimokawa   "Number of active tags");
157113584SsimokawaSYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
158113584Ssimokawa   "Number of active maps");
159113584SsimokawaSYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
160113584Ssimokawa   "Number of active maps for bus_dmamem_alloc buffers");
161113584SsimokawaSYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
162113584Ssimokawa   "Number of active maps with BUS_DMA_COHERENT flag set");
163113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD,
164113584Ssimokawa    &maploads_total, "Number of load operations performed");
165113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD,
166113584Ssimokawa    &maploads_bounced, "Number of load operations that used bounce buffers");
167113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD,
168113584Ssimokawa    &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory");
169113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD,
170113584Ssimokawa    &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers");
171113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD,
172113584Ssimokawa    &maploads_mbuf, "Number of load operations for mbufs");
173113584SsimokawaSYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD,
174113584Ssimokawa    &maploads_physmem, "Number of load operations on physical buffers");
175113584SsimokawaSYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
176113584Ssimokawa   "Total bounce pages");
177113584Ssimokawa
178113584Ssimokawastruct bus_dmamap {
179113584Ssimokawa	struct bp_list	       bpages;
180113584Ssimokawa	int		       pagesneeded;
181113584Ssimokawa	int		       pagesreserved;
182113584Ssimokawa	bus_dma_tag_t	       dmat;
183113584Ssimokawa	struct memdesc	       mem;
184113584Ssimokawa	pmap_t		       pmap;
185113584Ssimokawa	bus_dmamap_callback_t *callback;
186113584Ssimokawa	void		      *callback_arg;
187113584Ssimokawa	int		      flags;
188113584Ssimokawa#define DMAMAP_COHERENT		(1 << 0)
189113584Ssimokawa#define DMAMAP_DMAMEM_ALLOC	(1 << 1)
190113584Ssimokawa#define DMAMAP_MBUF		(1 << 2)
191113584Ssimokawa	STAILQ_ENTRY(bus_dmamap) links;
192113584Ssimokawa	bus_dma_segment_t	*segments;
193113584Ssimokawa	int		       sync_count;
194113584Ssimokawa	struct sync_list       slist[];
195113584Ssimokawa};
196113584Ssimokawa
197113584Ssimokawastatic STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
198113584Ssimokawastatic STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
199113584Ssimokawa
200113584Ssimokawastatic void init_bounce_pages(void *dummy);
201113584Ssimokawastatic int alloc_bounce_zone(bus_dma_tag_t dmat);
202113584Ssimokawastatic int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
203113584Ssimokawastatic int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
204113584Ssimokawa				int commit);
205113584Ssimokawastatic bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
206113584Ssimokawa				  vm_offset_t vaddr, bus_addr_t addr,
207113584Ssimokawa				  bus_size_t size);
208113584Ssimokawastatic void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
209static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
210    void *buf, bus_size_t buflen, int flags);
211static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
212    vm_paddr_t buf, bus_size_t buflen, int flags);
213static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
214    int flags);
215
216static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
217static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
218static void
219busdma_init(void *dummy)
220{
221	int uma_flags;
222
223	maploads_total    = counter_u64_alloc(M_WAITOK);
224	maploads_bounced  = counter_u64_alloc(M_WAITOK);
225	maploads_coherent = counter_u64_alloc(M_WAITOK);
226	maploads_dmamem   = counter_u64_alloc(M_WAITOK);
227	maploads_mbuf     = counter_u64_alloc(M_WAITOK);
228	maploads_physmem  = counter_u64_alloc(M_WAITOK);
229
230	uma_flags = 0;
231
232	/* Create a cache of buffers in standard (cacheable) memory. */
233	standard_allocator = busdma_bufalloc_create("buffer",
234	    arm_dcache_align,	/* minimum_alignment */
235	    NULL,		/* uma_alloc func */
236	    NULL,		/* uma_free func */
237	    uma_flags);		/* uma_zcreate_flags */
238
239#ifdef INVARIANTS
240	/*
241	 * Force UMA zone to allocate service structures like
242	 * slabs using own allocator. uma_debug code performs
243	 * atomic ops on uma_slab_t fields and safety of this
244	 * operation is not guaranteed for write-back caches
245	 */
246	uma_flags = UMA_ZONE_OFFPAGE;
247#endif
248	/*
249	 * Create a cache of buffers in uncacheable memory, to implement the
250	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
251	 */
252	coherent_allocator = busdma_bufalloc_create("coherent",
253	    arm_dcache_align,	/* minimum_alignment */
254	    busdma_bufalloc_alloc_uncacheable,
255	    busdma_bufalloc_free_uncacheable,
256	    uma_flags);	/* uma_zcreate_flags */
257}
258
259/*
260 * This init historically used SI_SUB_VM, but now the init code requires
261 * malloc(9) using M_DEVBUF memory and the pcpu zones for counter(9), which get
262 * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by
263 * using SI_SUB_KMEM+1.
264 */
265SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL);
266
267/*
268 * This routine checks the exclusion zone constraints from a tag against the
269 * physical RAM available on the machine.  If a tag specifies an exclusion zone
270 * but there's no RAM in that zone, then we avoid allocating resources to bounce
271 * a request, and we can use any memory allocator (as opposed to needing
272 * kmem_alloc_contig() just because it can allocate pages in an address range).
273 *
274 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
275 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
276 * possibly have RAM at an address higher than the highest address we can
277 * express, so we take a fast out.
278 */
279static int
280exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
281{
282	int i;
283
284	if (lowaddr >= BUS_SPACE_MAXADDR)
285		return (0);
286
287	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
288		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
289		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
290			return (1);
291	}
292	return (0);
293}
294
295/*
296 * Return true if the tag has an exclusion zone that could lead to bouncing.
297 */
298static __inline int
299exclusion_bounce(bus_dma_tag_t dmat)
300{
301
302	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
303}
304
305/*
306 * Return true if the given address does not fall on the alignment boundary.
307 */
308static __inline int
309alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
310{
311
312	return (addr & (dmat->alignment - 1));
313}
314
315/*
316 * Return true if the DMA should bounce because the start or end does not fall
317 * on a cacheline boundary (which would require a partial cacheline flush).
318 * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
319 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
320 * strict rule that such memory cannot be accessed by the CPU while DMA is in
321 * progress (or by multiple DMA engines at once), so that it's always safe to do
322 * full cacheline flushes even if that affects memory outside the range of a
323 * given DMA operation that doesn't involve the full allocated buffer.  If we're
324 * mapping an mbuf, that follows the same rules as a buffer we allocated.
325 */
326static __inline int
327cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
328{
329
330	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
331		return (0);
332	return ((addr | size) & arm_dcache_align_mask);
333}
334
335/*
336 * Return true if we might need to bounce the DMA described by addr and size.
337 *
338 * This is used to quick-check whether we need to do the more expensive work of
339 * checking the DMA page-by-page looking for alignment and exclusion bounces.
340 *
341 * Note that the addr argument might be either virtual or physical.  It doesn't
342 * matter because we only look at the low-order bits, which are the same in both
343 * address spaces.
344 */
345static __inline int
346might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
347    bus_size_t size)
348{
349
350	return ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
351	    alignment_bounce(dmat, addr) ||
352	    cacheline_bounce(map, addr, size));
353}
354
355/*
356 * Return true if we must bounce the DMA described by paddr and size.
357 *
358 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
359 * boundaries, or doesn't begin on an alignment boundary, or falls within the
360 * exclusion zone of any tag in the ancestry chain.
361 *
362 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
363 * within each tag.  If the tag has a filter function, use it to decide whether
364 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
365 */
366static int
367must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
368    bus_size_t size)
369{
370
371	if (cacheline_bounce(map, paddr, size))
372		return (1);
373
374	/*
375	 *  The tag already contains ancestors' alignment restrictions so this
376	 *  check doesn't need to be inside the loop.
377	 */
378	if (alignment_bounce(dmat, paddr))
379		return (1);
380
381	/*
382	 * Even though each tag has an exclusion zone that is a superset of its
383	 * own and all its ancestors' exclusions, the exclusion zone of each tag
384	 * up the chain must be checked within the loop, because the busdma
385	 * rules say the filter function is called only when the address lies
386	 * within the low-highaddr range of the tag that filterfunc belongs to.
387	 */
388	while (dmat != NULL && exclusion_bounce(dmat)) {
389		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
390		    (dmat->filter == NULL ||
391		    dmat->filter(dmat->filterarg, paddr) != 0))
392			return (1);
393		dmat = dmat->parent;
394	}
395
396	return (0);
397}
398
399static __inline struct arm32_dma_range *
400_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
401    bus_addr_t curaddr)
402{
403	struct arm32_dma_range *dr;
404	int i;
405
406	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
407		if (curaddr >= dr->dr_sysbase &&
408		    round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
409			return (dr);
410	}
411
412	return (NULL);
413}
414
415/*
416 * Convenience function for manipulating driver locks from busdma (during
417 * busdma_swi, for example).  Drivers that don't provide their own locks
418 * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
419 * non-mutex locking scheme don't have to use this at all.
420 */
421void
422busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
423{
424	struct mtx *dmtx;
425
426	dmtx = (struct mtx *)arg;
427	switch (op) {
428	case BUS_DMA_LOCK:
429		mtx_lock(dmtx);
430		break;
431	case BUS_DMA_UNLOCK:
432		mtx_unlock(dmtx);
433		break;
434	default:
435		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
436	}
437}
438
439/*
440 * dflt_lock should never get called.  It gets put into the dma tag when
441 * lockfunc == NULL, which is only valid if the maps that are associated
442 * with the tag are meant to never be defered.
443 * XXX Should have a way to identify which driver is responsible here.
444 */
445static void
446dflt_lock(void *arg, bus_dma_lock_op_t op)
447{
448
449	panic("driver error: busdma dflt_lock called");
450}
451
452/*
453 * Allocate a device specific dma_tag.
454 */
455int
456bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
457		   bus_size_t boundary, bus_addr_t lowaddr,
458		   bus_addr_t highaddr, bus_dma_filter_t *filter,
459		   void *filterarg, bus_size_t maxsize, int nsegments,
460		   bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
461		   void *lockfuncarg, bus_dma_tag_t *dmat)
462{
463	bus_dma_tag_t newtag;
464	int error = 0;
465
466#if 0
467	if (!parent)
468		parent = arm_root_dma_tag;
469#endif
470
471	/* Basic sanity checking. */
472	KASSERT(boundary == 0 || powerof2(boundary),
473	    ("dma tag boundary %lu, must be a power of 2", boundary));
474	KASSERT(boundary == 0 || boundary >= maxsegsz,
475	    ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz));
476	KASSERT(alignment != 0 && powerof2(alignment),
477	    ("dma tag alignment %lu, must be non-zero power of 2", alignment));
478	KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero"));
479
480	/* Return a NULL tag on failure */
481	*dmat = NULL;
482
483	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
484	    M_ZERO | M_NOWAIT);
485	if (newtag == NULL) {
486		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
487		    __func__, newtag, 0, error);
488		return (ENOMEM);
489	}
490
491	newtag->parent = parent;
492	newtag->alignment = alignment;
493	newtag->boundary = boundary;
494	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
495	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
496	    (PAGE_SIZE - 1);
497	newtag->filter = filter;
498	newtag->filterarg = filterarg;
499	newtag->maxsize = maxsize;
500	newtag->nsegments = nsegments;
501	newtag->maxsegsz = maxsegsz;
502	newtag->flags = flags;
503	newtag->ref_count = 1; /* Count ourself */
504	newtag->map_count = 0;
505	newtag->ranges = bus_dma_get_range();
506	newtag->_nranges = bus_dma_get_range_nb();
507	if (lockfunc != NULL) {
508		newtag->lockfunc = lockfunc;
509		newtag->lockfuncarg = lockfuncarg;
510	} else {
511		newtag->lockfunc = dflt_lock;
512		newtag->lockfuncarg = NULL;
513	}
514
515	/* Take into account any restrictions imposed by our parent tag */
516	if (parent != NULL) {
517		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
518		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
519		newtag->alignment = MAX(parent->alignment, newtag->alignment);
520		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
521		if (newtag->boundary == 0)
522			newtag->boundary = parent->boundary;
523		else if (parent->boundary != 0)
524			newtag->boundary = MIN(parent->boundary,
525					       newtag->boundary);
526		if (newtag->filter == NULL) {
527			/*
528			 * Short circuit to looking at our parent directly
529			 * since we have encapsulated all of its information
530			 */
531			newtag->filter = parent->filter;
532			newtag->filterarg = parent->filterarg;
533			newtag->parent = parent->parent;
534		}
535		if (newtag->parent != NULL)
536			atomic_add_int(&parent->ref_count, 1);
537	}
538
539	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
540		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
541	if (alignment_bounce(newtag, 1))
542		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
543
544	/*
545	 * Any request can auto-bounce due to cacheline alignment, in addition
546	 * to any alignment or boundary specifications in the tag, so if the
547	 * ALLOCNOW flag is set, there's always work to do.
548	 */
549	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
550		struct bounce_zone *bz;
551		/*
552		 * Round size up to a full page, and add one more page because
553		 * there can always be one more boundary crossing than the
554		 * number of pages in a transfer.
555		 */
556		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
557
558		if ((error = alloc_bounce_zone(newtag)) != 0) {
559			free(newtag, M_DEVBUF);
560			return (error);
561		}
562		bz = newtag->bounce_zone;
563
564		if (ptoa(bz->total_bpages) < maxsize) {
565			int pages;
566
567			pages = atop(maxsize) - bz->total_bpages;
568
569			/* Add pages to our bounce pool */
570			if (alloc_bounce_pages(newtag, pages) < pages)
571				error = ENOMEM;
572		}
573		/* Performed initial allocation */
574		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
575	} else
576		newtag->bounce_zone = NULL;
577
578	if (error != 0) {
579		free(newtag, M_DEVBUF);
580	} else {
581		atomic_add_32(&tags_total, 1);
582		*dmat = newtag;
583	}
584	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
585	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
586	return (error);
587}
588
589int
590bus_dma_tag_destroy(bus_dma_tag_t dmat)
591{
592	bus_dma_tag_t dmat_copy;
593	int error;
594
595	error = 0;
596	dmat_copy = dmat;
597
598	if (dmat != NULL) {
599
600		if (dmat->map_count != 0) {
601			error = EBUSY;
602			goto out;
603		}
604
605		while (dmat != NULL) {
606			bus_dma_tag_t parent;
607
608			parent = dmat->parent;
609			atomic_subtract_int(&dmat->ref_count, 1);
610			if (dmat->ref_count == 0) {
611				atomic_subtract_32(&tags_total, 1);
612				free(dmat, M_DEVBUF);
613				/*
614				 * Last reference count, so
615				 * release our reference
616				 * count on our parent.
617				 */
618				dmat = parent;
619			} else
620				dmat = NULL;
621		}
622	}
623out:
624	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
625	return (error);
626}
627
628static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
629{
630	struct bounce_zone *bz;
631	int maxpages;
632	int error;
633
634	if (dmat->bounce_zone == NULL)
635		if ((error = alloc_bounce_zone(dmat)) != 0)
636			return (error);
637	bz = dmat->bounce_zone;
638	/* Initialize the new map */
639	STAILQ_INIT(&(mapp->bpages));
640
641	/*
642	 * Attempt to add pages to our pool on a per-instance basis up to a sane
643	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
644	 * alignment and boundary constraints, it could still auto-bounce due to
645	 * cacheline alignment, which requires at most two bounce pages.
646	 */
647	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
648		maxpages = MAX_BPAGES;
649	else
650		maxpages = 2 * bz->map_count;
651	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
652	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
653		int pages;
654
655		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
656		pages = MIN(maxpages - bz->total_bpages, pages);
657		pages = MAX(pages, 2);
658		if (alloc_bounce_pages(dmat, pages) < pages)
659			return (ENOMEM);
660
661		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
662			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
663	}
664	bz->map_count++;
665	return (0);
666}
667
668static bus_dmamap_t
669allocate_map(bus_dma_tag_t dmat, int mflags)
670{
671	int mapsize, segsize;
672	bus_dmamap_t map;
673
674	/*
675	 * Allocate the map.  The map structure ends with an embedded
676	 * variable-sized array of sync_list structures.  Following that
677	 * we allocate enough extra space to hold the array of bus_dma_segments.
678	 */
679	KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
680	   ("cannot allocate %u dma segments (max is %u)",
681	    dmat->nsegments, MAX_DMA_SEGMENTS));
682	segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
683	mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
684	map = malloc(mapsize + segsize, M_DEVBUF, mflags | M_ZERO);
685	if (map == NULL) {
686		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
687		return (NULL);
688	}
689	map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
690	return (map);
691}
692
693/*
694 * Allocate a handle for mapping from kva/uva/physical
695 * address space into bus device space.
696 */
697int
698bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
699{
700	bus_dmamap_t map;
701	int error = 0;
702
703	*mapp = map = allocate_map(dmat, M_NOWAIT);
704	if (map == NULL) {
705		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
706		return (ENOMEM);
707	}
708
709	/*
710	 * Bouncing might be required if the driver asks for an exclusion
711	 * region, a data alignment that is stricter than 1, or DMA that begins
712	 * or ends with a partial cacheline.  Whether bouncing will actually
713	 * happen can't be known until mapping time, but we need to pre-allocate
714	 * resources now because we might not be allowed to at mapping time.
715	 */
716	error = allocate_bz_and_pages(dmat, map);
717	if (error != 0) {
718		free(map, M_DEVBUF);
719		*mapp = NULL;
720		return (error);
721	}
722	if (map->flags & DMAMAP_COHERENT)
723		atomic_add_32(&maps_coherent, 1);
724	atomic_add_32(&maps_total, 1);
725	dmat->map_count++;
726
727	return (0);
728}
729
730/*
731 * Destroy a handle for mapping from kva/uva/physical
732 * address space into bus device space.
733 */
734int
735bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
736{
737	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
738		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
739		    __func__, dmat, EBUSY);
740		return (EBUSY);
741	}
742	if (dmat->bounce_zone)
743		dmat->bounce_zone->map_count--;
744	if (map->flags & DMAMAP_COHERENT)
745		atomic_subtract_32(&maps_coherent, 1);
746	atomic_subtract_32(&maps_total, 1);
747	free(map, M_DEVBUF);
748	dmat->map_count--;
749	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
750	return (0);
751}
752
753
754/*
755 * Allocate a piece of memory that can be efficiently mapped into
756 * bus device space based on the constraints lited in the dma tag.
757 * A dmamap to for use with dmamap_load is also allocated.
758 */
759int
760bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
761		 bus_dmamap_t *mapp)
762{
763	busdma_bufalloc_t ba;
764	struct busdma_bufzone *bufzone;
765	bus_dmamap_t map;
766	vm_memattr_t memattr;
767	int mflags;
768
769	if (flags & BUS_DMA_NOWAIT)
770		mflags = M_NOWAIT;
771	else
772		mflags = M_WAITOK;
773	if (flags & BUS_DMA_ZERO)
774		mflags |= M_ZERO;
775
776	*mapp = map = allocate_map(dmat, mflags);
777	if (map == NULL) {
778		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
779		    __func__, dmat, dmat->flags, ENOMEM);
780		return (ENOMEM);
781	}
782	map->flags = DMAMAP_DMAMEM_ALLOC;
783
784	/* Choose a busdma buffer allocator based on memory type flags. */
785	if (flags & BUS_DMA_COHERENT) {
786		memattr = VM_MEMATTR_UNCACHEABLE;
787		ba = coherent_allocator;
788		map->flags |= DMAMAP_COHERENT;
789	} else {
790		memattr = VM_MEMATTR_DEFAULT;
791		ba = standard_allocator;
792	}
793
794	/*
795	 * Try to find a bufzone in the allocator that holds a cache of buffers
796	 * of the right size for this request.  If the buffer is too big to be
797	 * held in the allocator cache, this returns NULL.
798	 */
799	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
800
801	/*
802	 * Allocate the buffer from the uma(9) allocator if...
803	 *  - It's small enough to be in the allocator (bufzone not NULL).
804	 *  - The alignment constraint isn't larger than the allocation size
805	 *    (the allocator aligns buffers to their size boundaries).
806	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
807	 * else allocate non-contiguous pages if...
808	 *  - The page count that could get allocated doesn't exceed nsegments.
809	 *  - The alignment constraint isn't larger than a page boundary.
810	 *  - There are no boundary-crossing constraints.
811	 * else allocate a block of contiguous pages because one or more of the
812	 * constraints is something that only the contig allocator can fulfill.
813	 */
814	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
815	    !exclusion_bounce(dmat)) {
816		*vaddr = uma_zalloc(bufzone->umazone, mflags);
817	} else if (dmat->nsegments >= btoc(dmat->maxsize) &&
818	    dmat->alignment <= PAGE_SIZE && dmat->boundary == 0) {
819		*vaddr = (void *)kmem_alloc_attr(kernel_arena, dmat->maxsize,
820		    mflags, 0, dmat->lowaddr, memattr);
821	} else {
822		*vaddr = (void *)kmem_alloc_contig(kernel_arena, dmat->maxsize,
823		    mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary,
824		    memattr);
825	}
826
827
828	if (*vaddr == NULL) {
829		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
830		    __func__, dmat, dmat->flags, ENOMEM);
831		free(map, M_DEVBUF);
832		*mapp = NULL;
833		return (ENOMEM);
834	}
835	if (map->flags & DMAMAP_COHERENT)
836		atomic_add_32(&maps_coherent, 1);
837	atomic_add_32(&maps_dmamem, 1);
838	atomic_add_32(&maps_total, 1);
839	dmat->map_count++;
840
841	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
842	    __func__, dmat, dmat->flags, 0);
843	return (0);
844}
845
846/*
847 * Free a piece of memory and it's allociated dmamap, that was allocated
848 * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
849 */
850void
851bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
852{
853	struct busdma_bufzone *bufzone;
854	busdma_bufalloc_t ba;
855
856	if (map->flags & DMAMAP_COHERENT)
857		ba = coherent_allocator;
858	else
859		ba = standard_allocator;
860
861	/* Be careful not to access map from here on. */
862
863	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
864
865	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
866	    !exclusion_bounce(dmat))
867		uma_zfree(bufzone->umazone, vaddr);
868	else
869		kmem_free(kernel_arena, (vm_offset_t)vaddr, dmat->maxsize);
870
871	dmat->map_count--;
872	if (map->flags & DMAMAP_COHERENT)
873		atomic_subtract_32(&maps_coherent, 1);
874	atomic_subtract_32(&maps_total, 1);
875	atomic_subtract_32(&maps_dmamem, 1);
876	free(map, M_DEVBUF);
877	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
878}
879
880static void
881_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
882    bus_size_t buflen, int flags)
883{
884	bus_addr_t curaddr;
885	bus_size_t sgsize;
886
887	if (map->pagesneeded == 0) {
888		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
889		    " map= %p, pagesneeded= %d",
890		    dmat->lowaddr, dmat->boundary, dmat->alignment,
891		    map, map->pagesneeded);
892		/*
893		 * Count the number of bounce pages
894		 * needed in order to complete this transfer
895		 */
896		curaddr = buf;
897		while (buflen != 0) {
898			sgsize = MIN(buflen, dmat->maxsegsz);
899			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
900				sgsize = MIN(sgsize, PAGE_SIZE);
901				map->pagesneeded++;
902			}
903			curaddr += sgsize;
904			buflen -= sgsize;
905		}
906		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
907	}
908}
909
910static void
911_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
912    void *buf, bus_size_t buflen, int flags)
913{
914	vm_offset_t vaddr;
915	vm_offset_t vendaddr;
916	bus_addr_t paddr;
917
918	if (map->pagesneeded == 0) {
919		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
920		    " map= %p, pagesneeded= %d",
921		    dmat->lowaddr, dmat->boundary, dmat->alignment,
922		    map, map->pagesneeded);
923		/*
924		 * Count the number of bounce pages
925		 * needed in order to complete this transfer
926		 */
927		vaddr = (vm_offset_t)buf;
928		vendaddr = (vm_offset_t)buf + buflen;
929
930		while (vaddr < vendaddr) {
931			if (__predict_true(map->pmap == kernel_pmap))
932				paddr = pmap_kextract(vaddr);
933			else
934				paddr = pmap_extract(map->pmap, vaddr);
935			if (must_bounce(dmat, map, paddr,
936			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
937			    PAGE_MASK)))) != 0) {
938				map->pagesneeded++;
939			}
940			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
941
942		}
943		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
944	}
945}
946
947static int
948_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
949{
950
951	/* Reserve Necessary Bounce Pages */
952	mtx_lock(&bounce_lock);
953	if (flags & BUS_DMA_NOWAIT) {
954		if (reserve_bounce_pages(dmat, map, 0) != 0) {
955			map->pagesneeded = 0;
956			mtx_unlock(&bounce_lock);
957			return (ENOMEM);
958		}
959	} else {
960		if (reserve_bounce_pages(dmat, map, 1) != 0) {
961			/* Queue us for resources */
962			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
963			mtx_unlock(&bounce_lock);
964			return (EINPROGRESS);
965		}
966	}
967	mtx_unlock(&bounce_lock);
968
969	return (0);
970}
971
972/*
973 * Add a single contiguous physical range to the segment list.
974 */
975static int
976_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
977		   bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
978{
979	bus_addr_t baddr, bmask;
980	int seg;
981
982	/*
983	 * Make sure we don't cross any boundaries.
984	 */
985	bmask = ~(dmat->boundary - 1);
986	if (dmat->boundary > 0) {
987		baddr = (curaddr + dmat->boundary) & bmask;
988		if (sgsize > (baddr - curaddr))
989			sgsize = (baddr - curaddr);
990	}
991
992	if (dmat->ranges) {
993		struct arm32_dma_range *dr;
994
995		dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges,
996		    curaddr);
997		if (dr == NULL) {
998			_bus_dmamap_unload(dmat, map);
999			return (0);
1000		}
1001		/*
1002		 * In a valid DMA range.  Translate the physical
1003		 * memory address to an address in the DMA window.
1004		 */
1005		curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase;
1006	}
1007
1008	/*
1009	 * Insert chunk into a segment, coalescing with
1010	 * previous segment if possible.
1011	 */
1012	seg = *segp;
1013	if (seg == -1) {
1014		seg = 0;
1015		segs[seg].ds_addr = curaddr;
1016		segs[seg].ds_len = sgsize;
1017	} else {
1018		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
1019		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
1020		    (dmat->boundary == 0 ||
1021		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
1022			segs[seg].ds_len += sgsize;
1023		else {
1024			if (++seg >= dmat->nsegments)
1025				return (0);
1026			segs[seg].ds_addr = curaddr;
1027			segs[seg].ds_len = sgsize;
1028		}
1029	}
1030	*segp = seg;
1031	return (sgsize);
1032}
1033
1034/*
1035 * Utility function to load a physical buffer.  segp contains
1036 * the starting segment on entrace, and the ending segment on exit.
1037 */
1038int
1039_bus_dmamap_load_phys(bus_dma_tag_t dmat,
1040		      bus_dmamap_t map,
1041		      vm_paddr_t buf, bus_size_t buflen,
1042		      int flags,
1043		      bus_dma_segment_t *segs,
1044		      int *segp)
1045{
1046	bus_addr_t curaddr;
1047	bus_size_t sgsize;
1048	int error;
1049
1050	if (segs == NULL)
1051		segs = map->segments;
1052
1053	counter_u64_add(maploads_total, 1);
1054	counter_u64_add(maploads_physmem, 1);
1055
1056	if (might_bounce(dmat, map, buflen, buflen)) {
1057		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
1058		if (map->pagesneeded != 0) {
1059			counter_u64_add(maploads_bounced, 1);
1060			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1061			if (error)
1062				return (error);
1063		}
1064	}
1065
1066	while (buflen > 0) {
1067		curaddr = buf;
1068		sgsize = MIN(buflen, dmat->maxsegsz);
1069		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1070		    sgsize)) {
1071			sgsize = MIN(sgsize, PAGE_SIZE);
1072			curaddr = add_bounce_page(dmat, map, 0, curaddr,
1073						  sgsize);
1074		}
1075		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1076		    segp);
1077		if (sgsize == 0)
1078			break;
1079		buf += sgsize;
1080		buflen -= sgsize;
1081	}
1082
1083	/*
1084	 * Did we fit?
1085	 */
1086	if (buflen != 0) {
1087		_bus_dmamap_unload(dmat, map);
1088		return (EFBIG); /* XXX better return value here? */
1089	}
1090	return (0);
1091}
1092
1093int
1094_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1095    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1096    bus_dma_segment_t *segs, int *segp)
1097{
1098
1099	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1100	    segs, segp));
1101}
1102
1103/*
1104 * Utility function to load a linear buffer.  segp contains
1105 * the starting segment on entrace, and the ending segment on exit.
1106 */
1107int
1108_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
1109			bus_dmamap_t map,
1110			void *buf, bus_size_t buflen,
1111			pmap_t pmap,
1112			int flags,
1113			bus_dma_segment_t *segs,
1114			int *segp)
1115{
1116	bus_size_t sgsize;
1117	bus_addr_t curaddr;
1118	vm_offset_t vaddr;
1119	struct sync_list *sl;
1120	int error;
1121
1122	counter_u64_add(maploads_total, 1);
1123	if (map->flags & DMAMAP_COHERENT)
1124		counter_u64_add(maploads_coherent, 1);
1125	if (map->flags & DMAMAP_DMAMEM_ALLOC)
1126		counter_u64_add(maploads_dmamem, 1);
1127
1128	if (segs == NULL)
1129		segs = map->segments;
1130
1131	if (flags & BUS_DMA_LOAD_MBUF) {
1132		counter_u64_add(maploads_mbuf, 1);
1133		map->flags |= DMAMAP_MBUF;
1134	}
1135
1136	map->pmap = pmap;
1137
1138	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
1139		_bus_dmamap_count_pages(dmat, map, buf, buflen, flags);
1140		if (map->pagesneeded != 0) {
1141			counter_u64_add(maploads_bounced, 1);
1142			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1143			if (error)
1144				return (error);
1145		}
1146	}
1147
1148	sl = NULL;
1149	vaddr = (vm_offset_t)buf;
1150
1151	while (buflen > 0) {
1152		/*
1153		 * Get the physical address for this segment.
1154		 */
1155		if (__predict_true(map->pmap == kernel_pmap))
1156			curaddr = pmap_kextract(vaddr);
1157		else
1158			curaddr = pmap_extract(map->pmap, vaddr);
1159
1160		/*
1161		 * Compute the segment size, and adjust counts.
1162		 */
1163		sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
1164		if (sgsize > dmat->maxsegsz)
1165			sgsize = dmat->maxsegsz;
1166		if (buflen < sgsize)
1167			sgsize = buflen;
1168
1169		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1170		    sgsize)) {
1171			curaddr = add_bounce_page(dmat, map, vaddr, curaddr,
1172						  sgsize);
1173		} else {
1174			sl = &map->slist[map->sync_count - 1];
1175			if (map->sync_count == 0 ||
1176#ifdef ARM_L2_PIPT
1177			    curaddr != sl->busaddr + sl->datacount ||
1178#endif
1179			    vaddr != sl->vaddr + sl->datacount) {
1180				if (++map->sync_count > dmat->nsegments)
1181					goto cleanup;
1182				sl++;
1183				sl->vaddr = vaddr;
1184				sl->datacount = sgsize;
1185				sl->busaddr = curaddr;
1186			} else
1187				sl->datacount += sgsize;
1188		}
1189		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1190					    segp);
1191		if (sgsize == 0)
1192			break;
1193		vaddr += sgsize;
1194		buflen -= sgsize;
1195	}
1196
1197cleanup:
1198	/*
1199	 * Did we fit?
1200	 */
1201	if (buflen != 0) {
1202		_bus_dmamap_unload(dmat, map);
1203		return (EFBIG); /* XXX better return value here? */
1204	}
1205	return (0);
1206}
1207
1208
1209void
1210__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1211		    struct memdesc *mem, bus_dmamap_callback_t *callback,
1212		    void *callback_arg)
1213{
1214
1215	map->mem = *mem;
1216	map->dmat = dmat;
1217	map->callback = callback;
1218	map->callback_arg = callback_arg;
1219}
1220
1221bus_dma_segment_t *
1222_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1223		     bus_dma_segment_t *segs, int nsegs, int error)
1224{
1225
1226	if (segs == NULL)
1227		segs = map->segments;
1228	return (segs);
1229}
1230
1231/*
1232 * Release the mapping held by map.
1233 */
1234void
1235_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1236{
1237	struct bounce_page *bpage;
1238	struct bounce_zone *bz;
1239
1240	if ((bz = dmat->bounce_zone) != NULL) {
1241		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1242			STAILQ_REMOVE_HEAD(&map->bpages, links);
1243			free_bounce_page(dmat, bpage);
1244		}
1245
1246		bz = dmat->bounce_zone;
1247		bz->free_bpages += map->pagesreserved;
1248		bz->reserved_bpages -= map->pagesreserved;
1249		map->pagesreserved = 0;
1250		map->pagesneeded = 0;
1251	}
1252	map->sync_count = 0;
1253	map->flags &= ~DMAMAP_MBUF;
1254}
1255
1256#ifdef notyetbounceuser
1257/* If busdma uses user pages, then the interrupt handler could
1258 * be use the kernel vm mapping. Both bounce pages and sync list
1259 * do not cross page boundaries.
1260 * Below is a rough sequence that a person would do to fix the
1261 * user page reference in the kernel vmspace. This would be
1262 * done in the dma post routine.
1263 */
1264void
1265_bus_dmamap_fix_user(vm_offset_t buf, bus_size_t len,
1266			pmap_t pmap, int op)
1267{
1268	bus_size_t sgsize;
1269	bus_addr_t curaddr;
1270	vm_offset_t va;
1271
1272	/*
1273	 * each synclist entry is contained within a single page.
1274	 * this would be needed if BUS_DMASYNC_POSTxxxx was implemented
1275	 */
1276	curaddr = pmap_extract(pmap, buf);
1277	va = pmap_dma_map(curaddr);
1278	switch (op) {
1279	case SYNC_USER_INV:
1280		cpu_dcache_wb_range(va, sgsize);
1281		break;
1282
1283	case SYNC_USER_COPYTO:
1284		bcopy((void *)va, (void *)bounce, sgsize);
1285		break;
1286
1287	case SYNC_USER_COPYFROM:
1288		bcopy((void *) bounce, (void *)va, sgsize);
1289		break;
1290
1291	default:
1292		break;
1293	}
1294
1295	pmap_dma_unmap(va);
1296}
1297#endif
1298
1299#ifdef ARM_L2_PIPT
1300#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(pa, size)
1301#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(pa, size)
1302#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(pa, size)
1303#else
1304#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(va, size)
1305#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(va, size)
1306#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(va, size)
1307#endif
1308
1309void
1310_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1311{
1312	struct bounce_page *bpage;
1313	struct sync_list *sl, *end;
1314	/*
1315	 * If the buffer was from user space, it is possible that this is not
1316	 * the same vm map, especially on a POST operation.  It's not clear that
1317	 * dma on userland buffers can work at all right now, certainly not if a
1318	 * partial cacheline flush has to be handled.  To be safe, until we're
1319	 * able to test direct userland dma, panic on a map mismatch.
1320	 */
1321	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1322		if (!pmap_dmap_iscurrent(map->pmap))
1323			panic("_bus_dmamap_sync: wrong user map for bounce sync.");
1324		/* Handle data bouncing. */
1325		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1326		    "performing bounce", __func__, dmat, dmat->flags, op);
1327
1328		if (op & BUS_DMASYNC_PREWRITE) {
1329			while (bpage != NULL) {
1330				if (bpage->datavaddr != 0)
1331					bcopy((void *)bpage->datavaddr,
1332					    (void *)bpage->vaddr,
1333					    bpage->datacount);
1334				else
1335					physcopyout(bpage->dataaddr,
1336					    (void *)bpage->vaddr,
1337					    bpage->datacount);
1338				cpu_dcache_wb_range((vm_offset_t)bpage->vaddr,
1339					bpage->datacount);
1340				l2cache_wb_range((vm_offset_t)bpage->vaddr,
1341				    (vm_offset_t)bpage->busaddr,
1342				    bpage->datacount);
1343				bpage = STAILQ_NEXT(bpage, links);
1344			}
1345			dmat->bounce_zone->total_bounced++;
1346		}
1347
1348		if (op & BUS_DMASYNC_PREREAD) {
1349			bpage = STAILQ_FIRST(&map->bpages);
1350			while (bpage != NULL) {
1351				cpu_dcache_inv_range((vm_offset_t)bpage->vaddr,
1352				    bpage->datacount);
1353				l2cache_inv_range((vm_offset_t)bpage->vaddr,
1354				    (vm_offset_t)bpage->busaddr,
1355				    bpage->datacount);
1356				bpage = STAILQ_NEXT(bpage, links);
1357			}
1358		}
1359		if (op & BUS_DMASYNC_POSTREAD) {
1360			while (bpage != NULL) {
1361				vm_offset_t startv;
1362				vm_paddr_t startp;
1363				int len;
1364
1365				startv = bpage->vaddr &~ arm_dcache_align_mask;
1366				startp = bpage->busaddr &~ arm_dcache_align_mask;
1367				len = bpage->datacount;
1368
1369				if (startv != bpage->vaddr)
1370					len += bpage->vaddr & arm_dcache_align_mask;
1371				if (len & arm_dcache_align_mask)
1372					len = (len -
1373					    (len & arm_dcache_align_mask)) +
1374					    arm_dcache_align;
1375				cpu_dcache_inv_range(startv, len);
1376				l2cache_inv_range(startv, startp, len);
1377				if (bpage->datavaddr != 0)
1378					bcopy((void *)bpage->vaddr,
1379					    (void *)bpage->datavaddr,
1380					    bpage->datacount);
1381				else
1382					physcopyin((void *)bpage->vaddr,
1383					    bpage->dataaddr,
1384					    bpage->datacount);
1385				bpage = STAILQ_NEXT(bpage, links);
1386			}
1387			dmat->bounce_zone->total_bounced++;
1388		}
1389	}
1390
1391	/*
1392	 * For COHERENT memory no cache maintenance is necessary, but ensure all
1393	 * writes have reached memory for the PREWRITE case.
1394	 */
1395	if (map->flags & DMAMAP_COHERENT) {
1396		if (op & BUS_DMASYNC_PREWRITE) {
1397		    dsb();
1398		    cpu_l2cache_drain_writebuf();
1399		}
1400		return;
1401	}
1402
1403	if (map->sync_count != 0) {
1404		if (!pmap_dmap_iscurrent(map->pmap))
1405			panic("_bus_dmamap_sync: wrong user map for sync.");
1406		/* ARM caches are not self-snooping for dma */
1407
1408		sl = &map->slist[0];
1409		end = &map->slist[map->sync_count];
1410		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1411		    "performing sync", __func__, dmat, dmat->flags, op);
1412
1413		switch (op) {
1414		case BUS_DMASYNC_PREWRITE:
1415			while (sl != end) {
1416				cpu_dcache_wb_range(sl->vaddr, sl->datacount);
1417				l2cache_wb_range(sl->vaddr, sl->busaddr,
1418				    sl->datacount);
1419				sl++;
1420			}
1421			break;
1422
1423		case BUS_DMASYNC_PREREAD:
1424			while (sl != end) {
1425				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1426				l2cache_inv_range(sl->vaddr, sl->busaddr,
1427				    sl->datacount);
1428				sl++;
1429			}
1430			break;
1431
1432		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1433			while (sl != end) {
1434				cpu_dcache_wbinv_range(sl->vaddr, sl->datacount);
1435				l2cache_wbinv_range(sl->vaddr,
1436				    sl->busaddr, sl->datacount);
1437				sl++;
1438			}
1439			break;
1440
1441		case BUS_DMASYNC_POSTREAD:
1442		case BUS_DMASYNC_POSTWRITE:
1443		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1444			break;
1445		default:
1446			panic("unsupported combination of sync operations: 0x%08x\n", op);
1447			break;
1448		}
1449	}
1450}
1451
1452static void
1453init_bounce_pages(void *dummy __unused)
1454{
1455
1456	total_bpages = 0;
1457	STAILQ_INIT(&bounce_zone_list);
1458	STAILQ_INIT(&bounce_map_waitinglist);
1459	STAILQ_INIT(&bounce_map_callbacklist);
1460	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1461}
1462SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1463
1464static struct sysctl_ctx_list *
1465busdma_sysctl_tree(struct bounce_zone *bz)
1466{
1467
1468	return (&bz->sysctl_tree);
1469}
1470
1471static struct sysctl_oid *
1472busdma_sysctl_tree_top(struct bounce_zone *bz)
1473{
1474
1475	return (bz->sysctl_tree_top);
1476}
1477
1478static int
1479alloc_bounce_zone(bus_dma_tag_t dmat)
1480{
1481	struct bounce_zone *bz;
1482
1483	/* Check to see if we already have a suitable zone */
1484	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1485		if ((dmat->alignment <= bz->alignment) &&
1486		    (dmat->lowaddr >= bz->lowaddr)) {
1487			dmat->bounce_zone = bz;
1488			return (0);
1489		}
1490	}
1491
1492	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1493	    M_NOWAIT | M_ZERO)) == NULL)
1494		return (ENOMEM);
1495
1496	STAILQ_INIT(&bz->bounce_page_list);
1497	bz->free_bpages = 0;
1498	bz->reserved_bpages = 0;
1499	bz->active_bpages = 0;
1500	bz->lowaddr = dmat->lowaddr;
1501	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
1502	bz->map_count = 0;
1503	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1504	busdma_zonecount++;
1505	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1506	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1507	dmat->bounce_zone = bz;
1508
1509	sysctl_ctx_init(&bz->sysctl_tree);
1510	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1511	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1512	    CTLFLAG_RD, 0, "");
1513	if (bz->sysctl_tree_top == NULL) {
1514		sysctl_ctx_free(&bz->sysctl_tree);
1515		return (0);	/* XXX error code? */
1516	}
1517
1518	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1519	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1520	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1521	    "Total bounce pages");
1522	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1523	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1524	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1525	    "Free bounce pages");
1526	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1527	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1528	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1529	    "Reserved bounce pages");
1530	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1531	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1532	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1533	    "Active bounce pages");
1534	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1535	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1536	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1537	    "Total bounce requests (pages bounced)");
1538	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1539	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1540	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1541	    "Total bounce requests that were deferred");
1542	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1543	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1544	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1545	SYSCTL_ADD_ULONG(busdma_sysctl_tree(bz),
1546	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1547	    "alignment", CTLFLAG_RD, &bz->alignment, "");
1548
1549	return (0);
1550}
1551
1552static int
1553alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1554{
1555	struct bounce_zone *bz;
1556	int count;
1557
1558	bz = dmat->bounce_zone;
1559	count = 0;
1560	while (numpages > 0) {
1561		struct bounce_page *bpage;
1562
1563		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1564		    M_NOWAIT | M_ZERO);
1565
1566		if (bpage == NULL)
1567			break;
1568		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1569		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1570		if (bpage->vaddr == 0) {
1571			free(bpage, M_DEVBUF);
1572			break;
1573		}
1574		bpage->busaddr = pmap_kextract(bpage->vaddr);
1575		mtx_lock(&bounce_lock);
1576		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1577		total_bpages++;
1578		bz->total_bpages++;
1579		bz->free_bpages++;
1580		mtx_unlock(&bounce_lock);
1581		count++;
1582		numpages--;
1583	}
1584	return (count);
1585}
1586
1587static int
1588reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1589{
1590	struct bounce_zone *bz;
1591	int pages;
1592
1593	mtx_assert(&bounce_lock, MA_OWNED);
1594	bz = dmat->bounce_zone;
1595	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1596	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1597		return (map->pagesneeded - (map->pagesreserved + pages));
1598	bz->free_bpages -= pages;
1599	bz->reserved_bpages += pages;
1600	map->pagesreserved += pages;
1601	pages = map->pagesneeded - map->pagesreserved;
1602
1603	return (pages);
1604}
1605
1606static bus_addr_t
1607add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1608		bus_addr_t addr, bus_size_t size)
1609{
1610	struct bounce_zone *bz;
1611	struct bounce_page *bpage;
1612
1613	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1614	KASSERT(map != NULL,
1615	    ("add_bounce_page: bad map %p", map));
1616
1617	bz = dmat->bounce_zone;
1618	if (map->pagesneeded == 0)
1619		panic("add_bounce_page: map doesn't need any pages");
1620	map->pagesneeded--;
1621
1622	if (map->pagesreserved == 0)
1623		panic("add_bounce_page: map doesn't need any pages");
1624	map->pagesreserved--;
1625
1626	mtx_lock(&bounce_lock);
1627	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1628	if (bpage == NULL)
1629		panic("add_bounce_page: free page list is empty");
1630
1631	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1632	bz->reserved_bpages--;
1633	bz->active_bpages++;
1634	mtx_unlock(&bounce_lock);
1635
1636	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1637		/* Page offset needs to be preserved. */
1638		bpage->vaddr |= vaddr & PAGE_MASK;
1639		bpage->busaddr |= vaddr & PAGE_MASK;
1640	}
1641	bpage->datavaddr = vaddr;
1642	bpage->dataaddr = addr;
1643	bpage->datacount = size;
1644	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1645	return (bpage->busaddr);
1646}
1647
1648static void
1649free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1650{
1651	struct bus_dmamap *map;
1652	struct bounce_zone *bz;
1653
1654	bz = dmat->bounce_zone;
1655	bpage->datavaddr = 0;
1656	bpage->datacount = 0;
1657	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1658		/*
1659		 * Reset the bounce page to start at offset 0.  Other uses
1660		 * of this bounce page may need to store a full page of
1661		 * data and/or assume it starts on a page boundary.
1662		 */
1663		bpage->vaddr &= ~PAGE_MASK;
1664		bpage->busaddr &= ~PAGE_MASK;
1665	}
1666
1667	mtx_lock(&bounce_lock);
1668	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1669	bz->free_bpages++;
1670	bz->active_bpages--;
1671	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1672		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1673			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1674			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1675			    map, links);
1676			busdma_swi_pending = 1;
1677			bz->total_deferred++;
1678			swi_sched(vm_ih, 0);
1679		}
1680	}
1681	mtx_unlock(&bounce_lock);
1682}
1683
1684void
1685busdma_swi(void)
1686{
1687	bus_dma_tag_t dmat;
1688	struct bus_dmamap *map;
1689
1690	mtx_lock(&bounce_lock);
1691	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1692		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1693		mtx_unlock(&bounce_lock);
1694		dmat = map->dmat;
1695		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK);
1696		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
1697		    map->callback_arg, BUS_DMA_WAITOK);
1698		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK);
1699		mtx_lock(&bounce_lock);
1700	}
1701	mtx_unlock(&bounce_lock);
1702}
1703