busdma_machdep-v6.c revision 269213
1/*-
2 * Copyright (c) 2012 Ian Lepore
3 * Copyright (c) 2010 Mark Tinguely
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 2002 Peter Grehan
6 * Copyright (c) 1997, 1998 Justin T. Gibbs.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions, and the following disclaimer,
14 *    without modification, immediately at the beginning of the file.
15 * 2. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/arm/arm/busdma_machdep-v6.c 269213 2014-07-29 02:36:50Z ian $");
35
36#define _ARM32_BUS_DMA_PRIVATE
37#include <sys/param.h>
38#include <sys/kdb.h>
39#include <ddb/ddb.h>
40#include <ddb/db_output.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/bus.h>
44#include <sys/busdma_bufalloc.h>
45#include <sys/interrupt.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/memdesc.h>
50#include <sys/proc.h>
51#include <sys/mutex.h>
52#include <sys/sysctl.h>
53#include <sys/uio.h>
54
55#include <vm/vm.h>
56#include <vm/vm_page.h>
57#include <vm/vm_map.h>
58#include <vm/vm_extern.h>
59#include <vm/vm_kern.h>
60
61#include <machine/atomic.h>
62#include <machine/bus.h>
63#include <machine/cpufunc.h>
64#include <machine/md_var.h>
65
66#define MAX_BPAGES 64
67#define BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
68#define BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
69#define BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
70#define BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
71
72struct bounce_zone;
73
74struct bus_dma_tag {
75	bus_dma_tag_t	  parent;
76	bus_size_t	  alignment;
77	bus_size_t	  boundary;
78	bus_addr_t	  lowaddr;
79	bus_addr_t	  highaddr;
80	bus_dma_filter_t *filter;
81	void		 *filterarg;
82	bus_size_t	  maxsize;
83	u_int		  nsegments;
84	bus_size_t	  maxsegsz;
85	int		  flags;
86	int		  ref_count;
87	int		  map_count;
88	bus_dma_lock_t	 *lockfunc;
89	void		 *lockfuncarg;
90	struct bounce_zone *bounce_zone;
91	/*
92	 * DMA range for this tag.  If the page doesn't fall within
93	 * one of these ranges, an error is returned.  The caller
94	 * may then decide what to do with the transfer.  If the
95	 * range pointer is NULL, it is ignored.
96	 */
97	struct arm32_dma_range	*ranges;
98	int			_nranges;
99	/*
100	 * Most tags need one or two segments, and can use the local tagsegs
101	 * array.  For tags with a larger limit, we'll allocate a bigger array
102	 * on first use.
103	 */
104	bus_dma_segment_t	*segments;
105	bus_dma_segment_t	tagsegs[2];
106
107
108};
109
110struct bounce_page {
111	vm_offset_t	vaddr;		/* kva of bounce buffer */
112	bus_addr_t	busaddr;	/* Physical address */
113	vm_offset_t	datavaddr;	/* kva of client data */
114	bus_addr_t	dataaddr;	/* client physical address */
115	bus_size_t	datacount;	/* client data count */
116	STAILQ_ENTRY(bounce_page) links;
117};
118
119struct sync_list {
120	vm_offset_t	vaddr;		/* kva of bounce buffer */
121	bus_addr_t	busaddr;	/* Physical address */
122	bus_size_t	datacount;	/* client data count */
123};
124
125int busdma_swi_pending;
126
127struct bounce_zone {
128	STAILQ_ENTRY(bounce_zone) links;
129	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
130	int		total_bpages;
131	int		free_bpages;
132	int		reserved_bpages;
133	int		active_bpages;
134	int		total_bounced;
135	int		total_deferred;
136	int		map_count;
137	bus_size_t	alignment;
138	bus_addr_t	lowaddr;
139	char		zoneid[8];
140	char		lowaddrid[20];
141	struct sysctl_ctx_list sysctl_tree;
142	struct sysctl_oid *sysctl_tree_top;
143};
144
145static struct mtx bounce_lock;
146static int total_bpages;
147static int busdma_zonecount;
148static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
149
150SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
151SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
152	   "Total bounce pages");
153
154struct bus_dmamap {
155	struct bp_list	       bpages;
156	int		       pagesneeded;
157	int		       pagesreserved;
158	bus_dma_tag_t	       dmat;
159	struct memdesc	       mem;
160	pmap_t		       pmap;
161	bus_dmamap_callback_t *callback;
162	void		      *callback_arg;
163	int		      flags;
164#define DMAMAP_COHERENT		(1 << 0)
165#define DMAMAP_DMAMEM_ALLOC	(1 << 1)
166#define DMAMAP_MBUF		(1 << 2)
167	STAILQ_ENTRY(bus_dmamap) links;
168	int		       sync_count;
169	struct sync_list       slist[];
170};
171
172static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
173static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
174
175static void init_bounce_pages(void *dummy);
176static int alloc_bounce_zone(bus_dma_tag_t dmat);
177static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
178static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
179				int commit);
180static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
181				  vm_offset_t vaddr, bus_addr_t addr,
182				  bus_size_t size);
183static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
184static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
185    void *buf, bus_size_t buflen, int flags);
186static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
187    vm_paddr_t buf, bus_size_t buflen, int flags);
188static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
189    int flags);
190
191static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
192static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
193static void
194busdma_init(void *dummy)
195{
196	int uma_flags;
197
198	uma_flags = 0;
199
200	/* Create a cache of buffers in standard (cacheable) memory. */
201	standard_allocator = busdma_bufalloc_create("buffer",
202	    arm_dcache_align,	/* minimum_alignment */
203	    NULL,		/* uma_alloc func */
204	    NULL,		/* uma_free func */
205	    uma_flags);		/* uma_zcreate_flags */
206
207#ifdef INVARIANTS
208	/*
209	 * Force UMA zone to allocate service structures like
210	 * slabs using own allocator. uma_debug code performs
211	 * atomic ops on uma_slab_t fields and safety of this
212	 * operation is not guaranteed for write-back caches
213	 */
214	uma_flags = UMA_ZONE_OFFPAGE;
215#endif
216	/*
217	 * Create a cache of buffers in uncacheable memory, to implement the
218	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
219	 */
220	coherent_allocator = busdma_bufalloc_create("coherent",
221	    arm_dcache_align,	/* minimum_alignment */
222	    busdma_bufalloc_alloc_uncacheable,
223	    busdma_bufalloc_free_uncacheable,
224	    uma_flags);	/* uma_zcreate_flags */
225}
226
227/*
228 * This init historically used SI_SUB_VM, but now the init code requires
229 * malloc(9) using M_DEVBUF memory, which is set up later than SI_SUB_VM, by
230 * SI_SUB_KMEM and SI_ORDER_THIRD, so we'll go right after that by using
231 * SI_SUB_KMEM and SI_ORDER_FOURTH.
232 */
233SYSINIT(busdma, SI_SUB_KMEM, SI_ORDER_FOURTH, busdma_init, NULL);
234
235/*
236 * This routine checks the exclusion zone constraints from a tag against the
237 * physical RAM available on the machine.  If a tag specifies an exclusion zone
238 * but there's no RAM in that zone, then we avoid allocating resources to bounce
239 * a request, and we can use any memory allocator (as opposed to needing
240 * kmem_alloc_contig() just because it can allocate pages in an address range).
241 *
242 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
243 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
244 * possibly have RAM at an address higher than the highest address we can
245 * express, so we take a fast out.
246 */
247static int
248exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
249{
250	int i;
251
252	if (lowaddr >= BUS_SPACE_MAXADDR)
253		return (0);
254
255	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
256		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
257		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
258			return (1);
259	}
260	return (0);
261}
262
263/*
264 * Return true if the tag has an exclusion zone that could lead to bouncing.
265 */
266static __inline int
267exclusion_bounce(bus_dma_tag_t dmat)
268{
269
270	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
271}
272
273/*
274 * Return true if the given address does not fall on the alignment boundary.
275 */
276static __inline int
277alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
278{
279
280	return (addr & (dmat->alignment - 1));
281}
282
283/*
284 * Return true if the DMA should bounce because the start or end does not fall
285 * on a cacheline boundary (which would require a partial cacheline flush).
286 * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
287 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
288 * strict rule that such memory cannot be accessed by the CPU while DMA is in
289 * progress (or by multiple DMA engines at once), so that it's always safe to do
290 * full cacheline flushes even if that affects memory outside the range of a
291 * given DMA operation that doesn't involve the full allocated buffer.  If we're
292 * mapping an mbuf, that follows the same rules as a buffer we allocated.
293 */
294static __inline int
295cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
296{
297
298	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
299		return (0);
300	return ((addr | size) & arm_dcache_align_mask);
301}
302
303/*
304 * Return true if we might need to bounce the DMA described by addr and size.
305 *
306 * This is used to quick-check whether we need to do the more expensive work of
307 * checking the DMA page-by-page looking for alignment and exclusion bounces.
308 *
309 * Note that the addr argument might be either virtual or physical.  It doesn't
310 * matter because we only look at the low-order bits, which are the same in both
311 * address spaces.
312 */
313static __inline int
314might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
315    bus_size_t size)
316{
317	return ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
318	    alignment_bounce(dmat, addr) ||
319	    cacheline_bounce(map, addr, size));
320}
321
322/*
323 * Return true if we must bounce the DMA described by paddr and size.
324 *
325 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
326 * boundaries, or doesn't begin on an alignment boundary, or falls within the
327 * exclusion zone of any tag in the ancestry chain.
328 *
329 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
330 * within each tag.  If the tag has a filter function, use it to decide whether
331 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
332 */
333static int
334must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
335    bus_size_t size)
336{
337
338	if (cacheline_bounce(map, paddr, size))
339		return (1);
340
341	/*
342	 *  The tag already contains ancestors' alignment restrictions so this
343	 *  check doesn't need to be inside the loop.
344	 */
345	if (alignment_bounce(dmat, paddr))
346		return (1);
347
348	/*
349	 * Even though each tag has an exclusion zone that is a superset of its
350	 * own and all its ancestors' exclusions, the exclusion zone of each tag
351	 * up the chain must be checked within the loop, because the busdma
352	 * rules say the filter function is called only when the address lies
353	 * within the low-highaddr range of the tag that filterfunc belongs to.
354	 */
355	while (dmat != NULL && exclusion_bounce(dmat)) {
356		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
357		    (dmat->filter == NULL ||
358		    dmat->filter(dmat->filterarg, paddr) != 0))
359			return (1);
360		dmat = dmat->parent;
361	}
362
363	return (0);
364}
365
366static __inline struct arm32_dma_range *
367_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
368    bus_addr_t curaddr)
369{
370	struct arm32_dma_range *dr;
371	int i;
372
373	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
374		if (curaddr >= dr->dr_sysbase &&
375		    round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
376			return (dr);
377	}
378
379	return (NULL);
380}
381
382/*
383 * Convenience function for manipulating driver locks from busdma (during
384 * busdma_swi, for example).  Drivers that don't provide their own locks
385 * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
386 * non-mutex locking scheme don't have to use this at all.
387 */
388void
389busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
390{
391	struct mtx *dmtx;
392
393	dmtx = (struct mtx *)arg;
394	switch (op) {
395	case BUS_DMA_LOCK:
396		mtx_lock(dmtx);
397		break;
398	case BUS_DMA_UNLOCK:
399		mtx_unlock(dmtx);
400		break;
401	default:
402		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
403	}
404}
405
406/*
407 * dflt_lock should never get called.  It gets put into the dma tag when
408 * lockfunc == NULL, which is only valid if the maps that are associated
409 * with the tag are meant to never be defered.
410 * XXX Should have a way to identify which driver is responsible here.
411 */
412static void
413dflt_lock(void *arg, bus_dma_lock_op_t op)
414{
415	panic("driver error: busdma dflt_lock called");
416}
417
418/*
419 * Allocate a device specific dma_tag.
420 */
421int
422bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
423		   bus_size_t boundary, bus_addr_t lowaddr,
424		   bus_addr_t highaddr, bus_dma_filter_t *filter,
425		   void *filterarg, bus_size_t maxsize, int nsegments,
426		   bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
427		   void *lockfuncarg, bus_dma_tag_t *dmat)
428{
429	bus_dma_tag_t newtag;
430	int error = 0;
431
432#if 0
433	if (!parent)
434		parent = arm_root_dma_tag;
435#endif
436
437	/* Basic sanity checking */
438	if (boundary != 0 && boundary < maxsegsz)
439		maxsegsz = boundary;
440
441	/* Return a NULL tag on failure */
442	*dmat = NULL;
443
444	if (maxsegsz == 0) {
445		return (EINVAL);
446	}
447
448	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
449	    M_ZERO | M_NOWAIT);
450	if (newtag == NULL) {
451		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
452		    __func__, newtag, 0, error);
453		return (ENOMEM);
454	}
455
456	newtag->parent = parent;
457	newtag->alignment = alignment;
458	newtag->boundary = boundary;
459	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
460	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
461	    (PAGE_SIZE - 1);
462	newtag->filter = filter;
463	newtag->filterarg = filterarg;
464	newtag->maxsize = maxsize;
465	newtag->nsegments = nsegments;
466	newtag->maxsegsz = maxsegsz;
467	newtag->flags = flags;
468	newtag->ref_count = 1; /* Count ourself */
469	newtag->map_count = 0;
470	newtag->ranges = bus_dma_get_range();
471	newtag->_nranges = bus_dma_get_range_nb();
472	if (lockfunc != NULL) {
473		newtag->lockfunc = lockfunc;
474		newtag->lockfuncarg = lockfuncarg;
475	} else {
476		newtag->lockfunc = dflt_lock;
477		newtag->lockfuncarg = NULL;
478	}
479	/*
480	 * If all the segments we need fit into the local tagsegs array, set the
481	 * pointer now.  Otherwise NULL the pointer and an array of segments
482	 * will be allocated later, on first use.  We don't pre-allocate now
483	 * because some tags exist just to pass contraints to children in the
484	 * device hierarchy, and they tend to use BUS_SPACE_UNRESTRICTED and we
485	 * sure don't want to try to allocate an array for that.
486	 */
487	if (newtag->nsegments <= nitems(newtag->tagsegs))
488		newtag->segments = newtag->tagsegs;
489	else
490		newtag->segments = NULL;
491
492	/* Take into account any restrictions imposed by our parent tag */
493	if (parent != NULL) {
494		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
495		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
496		newtag->alignment = MAX(parent->alignment, newtag->alignment);
497		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
498		if (newtag->boundary == 0)
499			newtag->boundary = parent->boundary;
500		else if (parent->boundary != 0)
501			newtag->boundary = MIN(parent->boundary,
502					       newtag->boundary);
503		if (newtag->filter == NULL) {
504			/*
505			 * Short circuit to looking at our parent directly
506			 * since we have encapsulated all of its information
507			 */
508			newtag->filter = parent->filter;
509			newtag->filterarg = parent->filterarg;
510			newtag->parent = parent->parent;
511		}
512		if (newtag->parent != NULL)
513			atomic_add_int(&parent->ref_count, 1);
514	}
515
516	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
517		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
518	if (alignment_bounce(newtag, 1))
519		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
520
521	/*
522	 * Any request can auto-bounce due to cacheline alignment, in addition
523	 * to any alignment or boundary specifications in the tag, so if the
524	 * ALLOCNOW flag is set, there's always work to do.
525	 */
526	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
527		struct bounce_zone *bz;
528		/*
529		 * Round size up to a full page, and add one more page because
530		 * there can always be one more boundary crossing than the
531		 * number of pages in a transfer.
532		 */
533		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
534
535		if ((error = alloc_bounce_zone(newtag)) != 0) {
536			free(newtag, M_DEVBUF);
537			return (error);
538		}
539		bz = newtag->bounce_zone;
540
541		if (ptoa(bz->total_bpages) < maxsize) {
542			int pages;
543
544			pages = atop(maxsize) - bz->total_bpages;
545
546			/* Add pages to our bounce pool */
547			if (alloc_bounce_pages(newtag, pages) < pages)
548				error = ENOMEM;
549		}
550		/* Performed initial allocation */
551		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
552	} else
553		newtag->bounce_zone = NULL;
554
555	if (error != 0) {
556		free(newtag, M_DEVBUF);
557	} else {
558		*dmat = newtag;
559	}
560	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
561	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
562	return (error);
563}
564
565int
566bus_dma_tag_destroy(bus_dma_tag_t dmat)
567{
568	bus_dma_tag_t dmat_copy;
569	int error;
570
571	error = 0;
572	dmat_copy = dmat;
573
574	if (dmat != NULL) {
575
576		if (dmat->map_count != 0) {
577			error = EBUSY;
578			goto out;
579		}
580
581		while (dmat != NULL) {
582			bus_dma_tag_t parent;
583
584			parent = dmat->parent;
585			atomic_subtract_int(&dmat->ref_count, 1);
586			if (dmat->ref_count == 0) {
587				if (dmat->segments != NULL &&
588				    dmat->segments != dmat->tagsegs)
589					free(dmat->segments, M_DEVBUF);
590				free(dmat, M_DEVBUF);
591				/*
592				 * Last reference count, so
593				 * release our reference
594				 * count on our parent.
595				 */
596				dmat = parent;
597			} else
598				dmat = NULL;
599		}
600	}
601out:
602	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
603	return (error);
604}
605
606static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
607{
608        struct bounce_zone *bz;
609	int maxpages;
610	int error;
611
612	if (dmat->bounce_zone == NULL)
613		if ((error = alloc_bounce_zone(dmat)) != 0)
614			return (error);
615	bz = dmat->bounce_zone;
616	/* Initialize the new map */
617	STAILQ_INIT(&(mapp->bpages));
618
619	/*
620	 * Attempt to add pages to our pool on a per-instance basis up to a sane
621	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
622	 * alignment and boundary constraints, it could still auto-bounce due to
623	 * cacheline alignment, which requires at most two bounce pages.
624	 */
625	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
626		maxpages = MAX_BPAGES;
627	else
628		maxpages = 2 * bz->map_count;
629	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
630	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
631		int pages;
632
633		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
634		pages = MIN(maxpages - bz->total_bpages, pages);
635		pages = MAX(pages, 2);
636		if (alloc_bounce_pages(dmat, pages) < pages)
637			return (ENOMEM);
638
639		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
640			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
641	}
642	bz->map_count++;
643	return (0);
644}
645
646/*
647 * Allocate a handle for mapping from kva/uva/physical
648 * address space into bus device space.
649 */
650int
651bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
652{
653	int mapsize;
654	int error = 0;
655
656	mapsize = sizeof(**mapp) + (sizeof(struct sync_list) * dmat->nsegments);
657	*mapp = (bus_dmamap_t)malloc(mapsize, M_DEVBUF, M_NOWAIT | M_ZERO);
658	if (*mapp == NULL) {
659		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
660		return (ENOMEM);
661	}
662	(*mapp)->sync_count = 0;
663
664	if (dmat->segments == NULL) {
665		dmat->segments = (bus_dma_segment_t *)malloc(
666		    sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF,
667		    M_NOWAIT);
668		if (dmat->segments == NULL) {
669			CTR3(KTR_BUSDMA, "%s: tag %p error %d",
670			    __func__, dmat, ENOMEM);
671			free(*mapp, M_DEVBUF);
672			*mapp = NULL;
673			return (ENOMEM);
674		}
675	}
676	/*
677	 * Bouncing might be required if the driver asks for an active
678	 * exclusion region, a data alignment that is stricter than 1, and/or
679	 * an active address boundary.
680	 */
681	error = allocate_bz_and_pages(dmat, *mapp);
682	if (error != 0) {
683		free(*mapp, M_DEVBUF);
684		*mapp = NULL;
685		return (error);
686	}
687	return (error);
688}
689
690/*
691 * Destroy a handle for mapping from kva/uva/physical
692 * address space into bus device space.
693 */
694int
695bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
696{
697	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
698		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
699		    __func__, dmat, EBUSY);
700		return (EBUSY);
701	}
702	if (dmat->bounce_zone)
703		dmat->bounce_zone->map_count--;
704	free(map, M_DEVBUF);
705	dmat->map_count--;
706	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
707	return (0);
708}
709
710
711/*
712 * Allocate a piece of memory that can be efficiently mapped into
713 * bus device space based on the constraints lited in the dma tag.
714 * A dmamap to for use with dmamap_load is also allocated.
715 */
716int
717bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
718		 bus_dmamap_t *mapp)
719{
720	busdma_bufalloc_t ba;
721	struct busdma_bufzone *bufzone;
722	vm_memattr_t memattr;
723	int mflags;
724	int mapsize;
725	int error;
726
727	if (flags & BUS_DMA_NOWAIT)
728		mflags = M_NOWAIT;
729	else
730		mflags = M_WAITOK;
731
732	/* ARM non-snooping caches need a map for the VA cache sync structure */
733
734	mapsize = sizeof(**mapp) + (sizeof(struct sync_list) * dmat->nsegments);
735	*mapp = (bus_dmamap_t)malloc(mapsize, M_DEVBUF, M_NOWAIT | M_ZERO);
736	if (*mapp == NULL) {
737		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
738		    __func__, dmat, dmat->flags, ENOMEM);
739		return (ENOMEM);
740	}
741
742	(*mapp)->flags = DMAMAP_DMAMEM_ALLOC;
743	(*mapp)->sync_count = 0;
744
745	/* We may need bounce pages, even for allocated memory */
746	error = allocate_bz_and_pages(dmat, *mapp);
747	if (error != 0) {
748		free(*mapp, M_DEVBUF);
749		*mapp = NULL;
750		return (error);
751	}
752
753	if (dmat->segments == NULL) {
754		dmat->segments = (bus_dma_segment_t *)malloc(
755		    sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF,
756		    mflags);
757		if (dmat->segments == NULL) {
758			CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
759			    __func__, dmat, dmat->flags, ENOMEM);
760			free(*mapp, M_DEVBUF);
761			*mapp = NULL;
762			return (ENOMEM);
763		}
764	}
765
766	if (flags & BUS_DMA_ZERO)
767		mflags |= M_ZERO;
768	if (flags & BUS_DMA_COHERENT) {
769		memattr = VM_MEMATTR_UNCACHEABLE;
770		ba = coherent_allocator;
771		(*mapp)->flags |= DMAMAP_COHERENT;
772	} else {
773		memattr = VM_MEMATTR_DEFAULT;
774		ba = standard_allocator;
775	}
776
777	/*
778	 * Try to find a bufzone in the allocator that holds a cache of buffers
779	 * of the right size for this request.  If the buffer is too big to be
780	 * held in the allocator cache, this returns NULL.
781	 */
782	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
783
784	/*
785	 * Allocate the buffer from the uma(9) allocator if...
786	 *  - It's small enough to be in the allocator (bufzone not NULL).
787	 *  - The alignment constraint isn't larger than the allocation size
788	 *    (the allocator aligns buffers to their size boundaries).
789	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
790	 * else allocate non-contiguous pages if...
791	 *  - The page count that could get allocated doesn't exceed nsegments.
792	 *  - The alignment constraint isn't larger than a page boundary.
793	 *  - There are no boundary-crossing constraints.
794	 * else allocate a block of contiguous pages because one or more of the
795	 * constraints is something that only the contig allocator can fulfill.
796	 */
797	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
798	    !exclusion_bounce(dmat)) {
799		*vaddr = uma_zalloc(bufzone->umazone, mflags);
800	} else if (dmat->nsegments >= btoc(dmat->maxsize) &&
801	    dmat->alignment <= PAGE_SIZE && dmat->boundary == 0) {
802		*vaddr = (void *)kmem_alloc_attr(kernel_arena, dmat->maxsize,
803		    mflags, 0, dmat->lowaddr, memattr);
804	} else {
805		*vaddr = (void *)kmem_alloc_contig(kernel_arena, dmat->maxsize,
806		    mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary,
807		    memattr);
808	}
809
810
811	if (*vaddr == NULL) {
812		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
813		    __func__, dmat, dmat->flags, ENOMEM);
814		free(*mapp, M_DEVBUF);
815		*mapp = NULL;
816		return (ENOMEM);
817	}
818	dmat->map_count++;
819
820	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
821	    __func__, dmat, dmat->flags, 0);
822	return (0);
823}
824
825/*
826 * Free a piece of memory and it's allociated dmamap, that was allocated
827 * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
828 */
829void
830bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
831{
832	struct busdma_bufzone *bufzone;
833	busdma_bufalloc_t ba;
834
835	if (map->flags & DMAMAP_COHERENT)
836		ba = coherent_allocator;
837	else
838		ba = standard_allocator;
839
840	/* Be careful not to access map from here on. */
841
842	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
843
844	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
845	    !exclusion_bounce(dmat))
846		uma_zfree(bufzone->umazone, vaddr);
847	else
848		kmem_free(kernel_arena, (vm_offset_t)vaddr, dmat->maxsize);
849
850	dmat->map_count--;
851	free(map, M_DEVBUF);
852	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
853}
854
855static void
856_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
857    bus_size_t buflen, int flags)
858{
859	bus_addr_t curaddr;
860	bus_size_t sgsize;
861
862	if (map->pagesneeded == 0) {
863		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
864		    " map= %p, pagesneeded= %d",
865		    dmat->lowaddr, dmat->boundary, dmat->alignment,
866		    map, map->pagesneeded);
867		/*
868		 * Count the number of bounce pages
869		 * needed in order to complete this transfer
870		 */
871		curaddr = buf;
872		while (buflen != 0) {
873			sgsize = MIN(buflen, dmat->maxsegsz);
874			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
875				sgsize = MIN(sgsize, PAGE_SIZE);
876				map->pagesneeded++;
877			}
878			curaddr += sgsize;
879			buflen -= sgsize;
880		}
881		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
882	}
883}
884
885static void
886_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
887    void *buf, bus_size_t buflen, int flags)
888{
889	vm_offset_t vaddr;
890	vm_offset_t vendaddr;
891	bus_addr_t paddr;
892
893	if (map->pagesneeded == 0) {
894		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
895		    " map= %p, pagesneeded= %d",
896		    dmat->lowaddr, dmat->boundary, dmat->alignment,
897		    map, map->pagesneeded);
898		/*
899		 * Count the number of bounce pages
900		 * needed in order to complete this transfer
901		 */
902		vaddr = (vm_offset_t)buf;
903		vendaddr = (vm_offset_t)buf + buflen;
904
905		while (vaddr < vendaddr) {
906			if (__predict_true(map->pmap == kernel_pmap))
907				paddr = pmap_kextract(vaddr);
908			else
909				paddr = pmap_extract(map->pmap, vaddr);
910			if (must_bounce(dmat, map, paddr,
911			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
912			    PAGE_MASK)))) != 0) {
913				map->pagesneeded++;
914			}
915			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
916
917		}
918		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
919	}
920}
921
922static int
923_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
924{
925
926	/* Reserve Necessary Bounce Pages */
927	mtx_lock(&bounce_lock);
928	if (flags & BUS_DMA_NOWAIT) {
929		if (reserve_bounce_pages(dmat, map, 0) != 0) {
930			map->pagesneeded = 0;
931			mtx_unlock(&bounce_lock);
932			return (ENOMEM);
933		}
934	} else {
935		if (reserve_bounce_pages(dmat, map, 1) != 0) {
936			/* Queue us for resources */
937			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
938			mtx_unlock(&bounce_lock);
939			return (EINPROGRESS);
940		}
941	}
942	mtx_unlock(&bounce_lock);
943
944	return (0);
945}
946
947/*
948 * Add a single contiguous physical range to the segment list.
949 */
950static int
951_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
952		   bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
953{
954	bus_addr_t baddr, bmask;
955	int seg;
956
957	/*
958	 * Make sure we don't cross any boundaries.
959	 */
960	bmask = ~(dmat->boundary - 1);
961	if (dmat->boundary > 0) {
962		baddr = (curaddr + dmat->boundary) & bmask;
963		if (sgsize > (baddr - curaddr))
964			sgsize = (baddr - curaddr);
965	}
966
967	if (dmat->ranges) {
968		struct arm32_dma_range *dr;
969
970		dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges,
971		    curaddr);
972		if (dr == NULL) {
973			_bus_dmamap_unload(dmat, map);
974			return (0);
975		}
976		/*
977		 * In a valid DMA range.  Translate the physical
978		 * memory address to an address in the DMA window.
979		 */
980		curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase;
981	}
982
983	/*
984	 * Insert chunk into a segment, coalescing with
985	 * previous segment if possible.
986	 */
987	seg = *segp;
988	if (seg == -1) {
989		seg = 0;
990		segs[seg].ds_addr = curaddr;
991		segs[seg].ds_len = sgsize;
992	} else {
993		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
994		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
995		    (dmat->boundary == 0 ||
996		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
997			segs[seg].ds_len += sgsize;
998		else {
999			if (++seg >= dmat->nsegments)
1000				return (0);
1001			segs[seg].ds_addr = curaddr;
1002			segs[seg].ds_len = sgsize;
1003		}
1004	}
1005	*segp = seg;
1006	return (sgsize);
1007}
1008
1009/*
1010 * Utility function to load a physical buffer.  segp contains
1011 * the starting segment on entrace, and the ending segment on exit.
1012 */
1013int
1014_bus_dmamap_load_phys(bus_dma_tag_t dmat,
1015		      bus_dmamap_t map,
1016		      vm_paddr_t buf, bus_size_t buflen,
1017		      int flags,
1018		      bus_dma_segment_t *segs,
1019		      int *segp)
1020{
1021	bus_addr_t curaddr;
1022	bus_size_t sgsize;
1023	int error;
1024
1025	if (segs == NULL)
1026		segs = dmat->segments;
1027
1028	if (might_bounce(dmat, map, buflen, buflen)) {
1029		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
1030		if (map->pagesneeded != 0) {
1031			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1032			if (error)
1033				return (error);
1034		}
1035	}
1036
1037	while (buflen > 0) {
1038		curaddr = buf;
1039		sgsize = MIN(buflen, dmat->maxsegsz);
1040		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1041		    sgsize)) {
1042			sgsize = MIN(sgsize, PAGE_SIZE);
1043			curaddr = add_bounce_page(dmat, map, 0, curaddr,
1044						  sgsize);
1045		}
1046		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1047		    segp);
1048		if (sgsize == 0)
1049			break;
1050		buf += sgsize;
1051		buflen -= sgsize;
1052	}
1053
1054	/*
1055	 * Did we fit?
1056	 */
1057	if (buflen != 0) {
1058		_bus_dmamap_unload(dmat, map);
1059		return (EFBIG); /* XXX better return value here? */
1060	}
1061	return (0);
1062}
1063
1064int
1065_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1066    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1067    bus_dma_segment_t *segs, int *segp)
1068{
1069
1070	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1071	    segs, segp));
1072}
1073
1074/*
1075 * Utility function to load a linear buffer.  segp contains
1076 * the starting segment on entrace, and the ending segment on exit.
1077 */
1078int
1079_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
1080			bus_dmamap_t map,
1081			void *buf, bus_size_t buflen,
1082			pmap_t pmap,
1083			int flags,
1084			bus_dma_segment_t *segs,
1085			int *segp)
1086{
1087	bus_size_t sgsize;
1088	bus_addr_t curaddr;
1089	vm_offset_t vaddr;
1090	struct sync_list *sl;
1091	int error;
1092
1093	if (segs == NULL)
1094		segs = dmat->segments;
1095
1096	if (flags & BUS_DMA_LOAD_MBUF)
1097		map->flags |= DMAMAP_MBUF;
1098
1099	map->pmap = pmap;
1100
1101	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
1102		_bus_dmamap_count_pages(dmat, map, buf, buflen, flags);
1103		if (map->pagesneeded != 0) {
1104			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1105			if (error)
1106				return (error);
1107		}
1108	}
1109
1110	sl = NULL;
1111	vaddr = (vm_offset_t)buf;
1112
1113	while (buflen > 0) {
1114		/*
1115		 * Get the physical address for this segment.
1116		 */
1117		if (__predict_true(map->pmap == kernel_pmap))
1118			curaddr = pmap_kextract(vaddr);
1119		else
1120			curaddr = pmap_extract(map->pmap, vaddr);
1121
1122		/*
1123		 * Compute the segment size, and adjust counts.
1124		 */
1125		sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
1126		if (sgsize > dmat->maxsegsz)
1127			sgsize = dmat->maxsegsz;
1128		if (buflen < sgsize)
1129			sgsize = buflen;
1130
1131		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1132		    sgsize)) {
1133			curaddr = add_bounce_page(dmat, map, vaddr, curaddr,
1134						  sgsize);
1135		} else {
1136			sl = &map->slist[map->sync_count - 1];
1137			if (map->sync_count == 0 ||
1138#ifdef ARM_L2_PIPT
1139			    curaddr != sl->busaddr + sl->datacount ||
1140#endif
1141			    vaddr != sl->vaddr + sl->datacount) {
1142				if (++map->sync_count > dmat->nsegments)
1143					goto cleanup;
1144				sl++;
1145				sl->vaddr = vaddr;
1146				sl->datacount = sgsize;
1147				sl->busaddr = curaddr;
1148			} else
1149				sl->datacount += sgsize;
1150		}
1151		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1152					    segp);
1153		if (sgsize == 0)
1154			break;
1155		vaddr += sgsize;
1156		buflen -= sgsize;
1157	}
1158
1159cleanup:
1160	/*
1161	 * Did we fit?
1162	 */
1163	if (buflen != 0) {
1164		_bus_dmamap_unload(dmat, map);
1165		return (EFBIG); /* XXX better return value here? */
1166	}
1167	return (0);
1168}
1169
1170
1171void
1172__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1173		    struct memdesc *mem, bus_dmamap_callback_t *callback,
1174		    void *callback_arg)
1175{
1176
1177	map->mem = *mem;
1178	map->dmat = dmat;
1179	map->callback = callback;
1180	map->callback_arg = callback_arg;
1181}
1182
1183bus_dma_segment_t *
1184_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1185		     bus_dma_segment_t *segs, int nsegs, int error)
1186{
1187
1188	if (segs == NULL)
1189		segs = dmat->segments;
1190	return (segs);
1191}
1192
1193/*
1194 * Release the mapping held by map.
1195 */
1196void
1197_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1198{
1199	struct bounce_page *bpage;
1200	struct bounce_zone *bz;
1201
1202	if ((bz = dmat->bounce_zone) != NULL) {
1203		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1204			STAILQ_REMOVE_HEAD(&map->bpages, links);
1205			free_bounce_page(dmat, bpage);
1206		}
1207
1208		bz = dmat->bounce_zone;
1209		bz->free_bpages += map->pagesreserved;
1210		bz->reserved_bpages -= map->pagesreserved;
1211		map->pagesreserved = 0;
1212		map->pagesneeded = 0;
1213	}
1214	map->sync_count = 0;
1215	map->flags &= ~DMAMAP_MBUF;
1216}
1217
1218#ifdef notyetbounceuser
1219	/* If busdma uses user pages, then the interrupt handler could
1220	 * be use the kernel vm mapping. Both bounce pages and sync list
1221	 * do not cross page boundaries.
1222	 * Below is a rough sequence that a person would do to fix the
1223	 * user page reference in the kernel vmspace. This would be
1224	 * done in the dma post routine.
1225	 */
1226void
1227_bus_dmamap_fix_user(vm_offset_t buf, bus_size_t len,
1228			pmap_t pmap, int op)
1229{
1230	bus_size_t sgsize;
1231	bus_addr_t curaddr;
1232	vm_offset_t va;
1233
1234		/* each synclist entry is contained within a single page.
1235		 *
1236		 * this would be needed if BUS_DMASYNC_POSTxxxx was implemented
1237		*/
1238	curaddr = pmap_extract(pmap, buf);
1239	va = pmap_dma_map(curaddr);
1240	switch (op) {
1241	case SYNC_USER_INV:
1242		cpu_dcache_wb_range(va, sgsize);
1243		break;
1244
1245	case SYNC_USER_COPYTO:
1246		bcopy((void *)va, (void *)bounce, sgsize);
1247		break;
1248
1249	case SYNC_USER_COPYFROM:
1250		bcopy((void *) bounce, (void *)va, sgsize);
1251		break;
1252
1253	default:
1254		break;
1255	}
1256
1257	pmap_dma_unmap(va);
1258}
1259#endif
1260
1261#ifdef ARM_L2_PIPT
1262#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(pa, size)
1263#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(pa, size)
1264#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(pa, size)
1265#else
1266#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(va, size)
1267#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(va, size)
1268#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(va, size)
1269#endif
1270
1271void
1272_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1273{
1274	struct bounce_page *bpage;
1275	struct sync_list *sl, *end;
1276	/*
1277	 * If the buffer was from user space, it is possible that this is not
1278	 * the same vm map, especially on a POST operation.  It's not clear that
1279	 * dma on userland buffers can work at all right now, certainly not if a
1280	 * partial cacheline flush has to be handled.  To be safe, until we're
1281	 * able to test direct userland dma, panic on a map mismatch.
1282	 */
1283	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1284		if (!pmap_dmap_iscurrent(map->pmap))
1285			panic("_bus_dmamap_sync: wrong user map for bounce sync.");
1286		/* Handle data bouncing. */
1287		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1288		    "performing bounce", __func__, dmat, dmat->flags, op);
1289
1290		if (op & BUS_DMASYNC_PREWRITE) {
1291			while (bpage != NULL) {
1292				if (bpage->datavaddr != 0)
1293					bcopy((void *)bpage->datavaddr,
1294					    (void *)bpage->vaddr,
1295					    bpage->datacount);
1296				else
1297					physcopyout(bpage->dataaddr,
1298					    (void *)bpage->vaddr,
1299					    bpage->datacount);
1300				cpu_dcache_wb_range((vm_offset_t)bpage->vaddr,
1301					bpage->datacount);
1302				l2cache_wb_range((vm_offset_t)bpage->vaddr,
1303				    (vm_offset_t)bpage->busaddr,
1304				    bpage->datacount);
1305				bpage = STAILQ_NEXT(bpage, links);
1306			}
1307			dmat->bounce_zone->total_bounced++;
1308		}
1309
1310		if (op & BUS_DMASYNC_PREREAD) {
1311			bpage = STAILQ_FIRST(&map->bpages);
1312			while (bpage != NULL) {
1313				cpu_dcache_inv_range((vm_offset_t)bpage->vaddr,
1314				    bpage->datacount);
1315				l2cache_inv_range((vm_offset_t)bpage->vaddr,
1316				    (vm_offset_t)bpage->busaddr,
1317				    bpage->datacount);
1318				bpage = STAILQ_NEXT(bpage, links);
1319			}
1320		}
1321		if (op & BUS_DMASYNC_POSTREAD) {
1322			while (bpage != NULL) {
1323				vm_offset_t startv;
1324				vm_paddr_t startp;
1325				int len;
1326
1327				startv = bpage->vaddr &~ arm_dcache_align_mask;
1328				startp = bpage->busaddr &~ arm_dcache_align_mask;
1329				len = bpage->datacount;
1330
1331				if (startv != bpage->vaddr)
1332					len += bpage->vaddr & arm_dcache_align_mask;
1333				if (len & arm_dcache_align_mask)
1334					len = (len -
1335					    (len & arm_dcache_align_mask)) +
1336					    arm_dcache_align;
1337				cpu_dcache_inv_range(startv, len);
1338				l2cache_inv_range(startv, startp, len);
1339				if (bpage->datavaddr != 0)
1340					bcopy((void *)bpage->vaddr,
1341					    (void *)bpage->datavaddr,
1342					    bpage->datacount);
1343				else
1344					physcopyin((void *)bpage->vaddr,
1345					    bpage->dataaddr,
1346					    bpage->datacount);
1347				bpage = STAILQ_NEXT(bpage, links);
1348			}
1349			dmat->bounce_zone->total_bounced++;
1350		}
1351	}
1352	if (map->flags & DMAMAP_COHERENT)
1353		return;
1354
1355	if (map->sync_count != 0) {
1356		if (!pmap_dmap_iscurrent(map->pmap))
1357			panic("_bus_dmamap_sync: wrong user map for sync.");
1358		/* ARM caches are not self-snooping for dma */
1359
1360		sl = &map->slist[0];
1361		end = &map->slist[map->sync_count];
1362		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1363		    "performing sync", __func__, dmat, dmat->flags, op);
1364
1365		switch (op) {
1366		case BUS_DMASYNC_PREWRITE:
1367			while (sl != end) {
1368			    cpu_dcache_wb_range(sl->vaddr, sl->datacount);
1369			    l2cache_wb_range(sl->vaddr, sl->busaddr,
1370				sl->datacount);
1371			    sl++;
1372			}
1373			break;
1374
1375		case BUS_DMASYNC_PREREAD:
1376			while (sl != end) {
1377				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1378				l2cache_inv_range(sl->vaddr, sl->busaddr,
1379				    sl->datacount);
1380				sl++;
1381			}
1382			break;
1383
1384		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1385			while (sl != end) {
1386				cpu_dcache_wbinv_range(sl->vaddr, sl->datacount);
1387				l2cache_wbinv_range(sl->vaddr,
1388				    sl->busaddr, sl->datacount);
1389				sl++;
1390			}
1391			break;
1392
1393		case BUS_DMASYNC_POSTREAD:
1394		case BUS_DMASYNC_POSTWRITE:
1395		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1396			break;
1397		default:
1398			panic("unsupported combination of sync operations: 0x%08x\n", op);
1399			break;
1400		}
1401	}
1402}
1403
1404static void
1405init_bounce_pages(void *dummy __unused)
1406{
1407
1408	total_bpages = 0;
1409	STAILQ_INIT(&bounce_zone_list);
1410	STAILQ_INIT(&bounce_map_waitinglist);
1411	STAILQ_INIT(&bounce_map_callbacklist);
1412	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1413}
1414SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1415
1416static struct sysctl_ctx_list *
1417busdma_sysctl_tree(struct bounce_zone *bz)
1418{
1419	return (&bz->sysctl_tree);
1420}
1421
1422static struct sysctl_oid *
1423busdma_sysctl_tree_top(struct bounce_zone *bz)
1424{
1425	return (bz->sysctl_tree_top);
1426}
1427
1428static int
1429alloc_bounce_zone(bus_dma_tag_t dmat)
1430{
1431	struct bounce_zone *bz;
1432
1433	/* Check to see if we already have a suitable zone */
1434	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1435		if ((dmat->alignment <= bz->alignment) &&
1436		    (dmat->lowaddr >= bz->lowaddr)) {
1437			dmat->bounce_zone = bz;
1438			return (0);
1439		}
1440	}
1441
1442	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1443	    M_NOWAIT | M_ZERO)) == NULL)
1444		return (ENOMEM);
1445
1446	STAILQ_INIT(&bz->bounce_page_list);
1447	bz->free_bpages = 0;
1448	bz->reserved_bpages = 0;
1449	bz->active_bpages = 0;
1450	bz->lowaddr = dmat->lowaddr;
1451	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
1452	bz->map_count = 0;
1453	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1454	busdma_zonecount++;
1455	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1456	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1457	dmat->bounce_zone = bz;
1458
1459	sysctl_ctx_init(&bz->sysctl_tree);
1460	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1461	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1462	    CTLFLAG_RD, 0, "");
1463	if (bz->sysctl_tree_top == NULL) {
1464		sysctl_ctx_free(&bz->sysctl_tree);
1465		return (0);	/* XXX error code? */
1466	}
1467
1468	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1469	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1470	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1471	    "Total bounce pages");
1472	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1473	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1474	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1475	    "Free bounce pages");
1476	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1477	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1478	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1479	    "Reserved bounce pages");
1480	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1481	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1482	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1483	    "Active bounce pages");
1484	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1485	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1486	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1487	    "Total bounce requests");
1488	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1489	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1490	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1491	    "Total bounce requests that were deferred");
1492	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1493	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1494	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1495	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1496	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1497	    "alignment", CTLFLAG_RD, &bz->alignment, 0, "");
1498
1499	return (0);
1500}
1501
1502static int
1503alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1504{
1505	struct bounce_zone *bz;
1506	int count;
1507
1508	bz = dmat->bounce_zone;
1509	count = 0;
1510	while (numpages > 0) {
1511		struct bounce_page *bpage;
1512
1513		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1514		    M_NOWAIT | M_ZERO);
1515
1516		if (bpage == NULL)
1517			break;
1518		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1519		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1520		if (bpage->vaddr == 0) {
1521			free(bpage, M_DEVBUF);
1522			break;
1523		}
1524		bpage->busaddr = pmap_kextract(bpage->vaddr);
1525		mtx_lock(&bounce_lock);
1526		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1527		total_bpages++;
1528		bz->total_bpages++;
1529		bz->free_bpages++;
1530		mtx_unlock(&bounce_lock);
1531		count++;
1532		numpages--;
1533	}
1534	return (count);
1535}
1536
1537static int
1538reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1539{
1540	struct bounce_zone *bz;
1541	int pages;
1542
1543	mtx_assert(&bounce_lock, MA_OWNED);
1544	bz = dmat->bounce_zone;
1545	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1546	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1547		return (map->pagesneeded - (map->pagesreserved + pages));
1548	bz->free_bpages -= pages;
1549	bz->reserved_bpages += pages;
1550	map->pagesreserved += pages;
1551	pages = map->pagesneeded - map->pagesreserved;
1552
1553	return (pages);
1554}
1555
1556static bus_addr_t
1557add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1558		bus_addr_t addr, bus_size_t size)
1559{
1560	struct bounce_zone *bz;
1561	struct bounce_page *bpage;
1562
1563	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1564	KASSERT(map != NULL,
1565	    ("add_bounce_page: bad map %p", map));
1566
1567	bz = dmat->bounce_zone;
1568	if (map->pagesneeded == 0)
1569		panic("add_bounce_page: map doesn't need any pages");
1570	map->pagesneeded--;
1571
1572	if (map->pagesreserved == 0)
1573		panic("add_bounce_page: map doesn't need any pages");
1574	map->pagesreserved--;
1575
1576	mtx_lock(&bounce_lock);
1577	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1578	if (bpage == NULL)
1579		panic("add_bounce_page: free page list is empty");
1580
1581	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1582	bz->reserved_bpages--;
1583	bz->active_bpages++;
1584	mtx_unlock(&bounce_lock);
1585
1586	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1587		/* Page offset needs to be preserved. */
1588		bpage->vaddr |= vaddr & PAGE_MASK;
1589		bpage->busaddr |= vaddr & PAGE_MASK;
1590	}
1591	bpage->datavaddr = vaddr;
1592	bpage->dataaddr = addr;
1593	bpage->datacount = size;
1594	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1595	return (bpage->busaddr);
1596}
1597
1598static void
1599free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1600{
1601	struct bus_dmamap *map;
1602	struct bounce_zone *bz;
1603
1604	bz = dmat->bounce_zone;
1605	bpage->datavaddr = 0;
1606	bpage->datacount = 0;
1607	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1608		/*
1609		 * Reset the bounce page to start at offset 0.  Other uses
1610		 * of this bounce page may need to store a full page of
1611		 * data and/or assume it starts on a page boundary.
1612		 */
1613		bpage->vaddr &= ~PAGE_MASK;
1614		bpage->busaddr &= ~PAGE_MASK;
1615	}
1616
1617	mtx_lock(&bounce_lock);
1618	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1619	bz->free_bpages++;
1620	bz->active_bpages--;
1621	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1622		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1623			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1624			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1625			    map, links);
1626			busdma_swi_pending = 1;
1627			bz->total_deferred++;
1628			swi_sched(vm_ih, 0);
1629		}
1630	}
1631	mtx_unlock(&bounce_lock);
1632}
1633
1634void
1635busdma_swi(void)
1636{
1637	bus_dma_tag_t dmat;
1638	struct bus_dmamap *map;
1639
1640	mtx_lock(&bounce_lock);
1641	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1642		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1643		mtx_unlock(&bounce_lock);
1644		dmat = map->dmat;
1645		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK);
1646		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
1647		    map->callback_arg, BUS_DMA_WAITOK);
1648		dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK);
1649		mtx_lock(&bounce_lock);
1650	}
1651	mtx_unlock(&bounce_lock);
1652}
1653