busdma_machdep-v6.c revision 269206
1/*-
2 * Copyright (c) 2012 Ian Lepore
3 * Copyright (c) 2010 Mark Tinguely
4 * Copyright (c) 2004 Olivier Houchard
5 * Copyright (c) 2002 Peter Grehan
6 * Copyright (c) 1997, 1998 Justin T. Gibbs.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions, and the following disclaimer,
14 *    without modification, immediately at the beginning of the file.
15 * 2. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/arm/arm/busdma_machdep-v6.c 269206 2014-07-29 02:31:29Z ian $");
35
36#define _ARM32_BUS_DMA_PRIVATE
37#include <sys/param.h>
38#include <sys/kdb.h>
39#include <ddb/ddb.h>
40#include <ddb/db_output.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/bus.h>
44#include <sys/busdma_bufalloc.h>
45#include <sys/interrupt.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/memdesc.h>
50#include <sys/proc.h>
51#include <sys/mutex.h>
52#include <sys/sysctl.h>
53#include <sys/uio.h>
54
55#include <vm/vm.h>
56#include <vm/vm_page.h>
57#include <vm/vm_map.h>
58#include <vm/vm_extern.h>
59#include <vm/vm_kern.h>
60
61#include <machine/atomic.h>
62#include <machine/bus.h>
63#include <machine/cpufunc.h>
64#include <machine/md_var.h>
65
66#define MAX_BPAGES 64
67#define BUS_DMA_COULD_BOUNCE	BUS_DMA_BUS3
68#define BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4
69
70struct bounce_zone;
71
72struct bus_dma_tag {
73	bus_dma_tag_t	  parent;
74	bus_size_t	  alignment;
75	bus_size_t	  boundary;
76	bus_addr_t	  lowaddr;
77	bus_addr_t	  highaddr;
78	bus_dma_filter_t *filter;
79	void		 *filterarg;
80	bus_size_t	  maxsize;
81	u_int		  nsegments;
82	bus_size_t	  maxsegsz;
83	int		  flags;
84	int		  ref_count;
85	int		  map_count;
86	bus_dma_lock_t	 *lockfunc;
87	void		 *lockfuncarg;
88	struct bounce_zone *bounce_zone;
89	/*
90	 * DMA range for this tag.  If the page doesn't fall within
91	 * one of these ranges, an error is returned.  The caller
92	 * may then decide what to do with the transfer.  If the
93	 * range pointer is NULL, it is ignored.
94	 */
95	struct arm32_dma_range	*ranges;
96	int			_nranges;
97	/*
98	 * Most tags need one or two segments, and can use the local tagsegs
99	 * array.  For tags with a larger limit, we'll allocate a bigger array
100	 * on first use.
101	 */
102	bus_dma_segment_t	*segments;
103	bus_dma_segment_t	tagsegs[2];
104
105
106};
107
108struct bounce_page {
109	vm_offset_t	vaddr;		/* kva of bounce buffer */
110	bus_addr_t	busaddr;	/* Physical address */
111	vm_offset_t	datavaddr;	/* kva of client data */
112	bus_addr_t	dataaddr;	/* client physical address */
113	bus_size_t	datacount;	/* client data count */
114	STAILQ_ENTRY(bounce_page) links;
115};
116
117struct sync_list {
118	vm_offset_t	vaddr;		/* kva of bounce buffer */
119	bus_addr_t	busaddr;	/* Physical address */
120	bus_size_t	datacount;	/* client data count */
121};
122
123int busdma_swi_pending;
124
125struct bounce_zone {
126	STAILQ_ENTRY(bounce_zone) links;
127	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
128	int		total_bpages;
129	int		free_bpages;
130	int		reserved_bpages;
131	int		active_bpages;
132	int		total_bounced;
133	int		total_deferred;
134	int		map_count;
135	bus_size_t	alignment;
136	bus_addr_t	lowaddr;
137	char		zoneid[8];
138	char		lowaddrid[20];
139	struct sysctl_ctx_list sysctl_tree;
140	struct sysctl_oid *sysctl_tree_top;
141};
142
143static struct mtx bounce_lock;
144static int total_bpages;
145static int busdma_zonecount;
146static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
147
148SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
149SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
150	   "Total bounce pages");
151
152struct bus_dmamap {
153	struct bp_list	       bpages;
154	int		       pagesneeded;
155	int		       pagesreserved;
156	bus_dma_tag_t	       dmat;
157	struct memdesc	       mem;
158	pmap_t		       pmap;
159	bus_dmamap_callback_t *callback;
160	void		      *callback_arg;
161	int		      flags;
162#define DMAMAP_COHERENT		(1 << 0)
163	STAILQ_ENTRY(bus_dmamap) links;
164	int		       sync_count;
165	struct sync_list       slist[];
166};
167
168static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
169static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
170
171static void init_bounce_pages(void *dummy);
172static int alloc_bounce_zone(bus_dma_tag_t dmat);
173static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
174static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
175				int commit);
176static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
177				  vm_offset_t vaddr, bus_addr_t addr,
178				  bus_size_t size);
179static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
180int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr, bus_size_t size, int coherent);
181static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
182    void *buf, bus_size_t buflen, int flags);
183static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
184    vm_paddr_t buf, bus_size_t buflen, int flags);
185static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
186    int flags);
187
188static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
189static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */
190static void
191busdma_init(void *dummy)
192{
193	int uma_flags;
194
195	uma_flags = 0;
196
197	/* Create a cache of buffers in standard (cacheable) memory. */
198	standard_allocator = busdma_bufalloc_create("buffer",
199	    arm_dcache_align,	/* minimum_alignment */
200	    NULL,		/* uma_alloc func */
201	    NULL,		/* uma_free func */
202	    uma_flags);		/* uma_zcreate_flags */
203
204#ifdef INVARIANTS
205	/*
206	 * Force UMA zone to allocate service structures like
207	 * slabs using own allocator. uma_debug code performs
208	 * atomic ops on uma_slab_t fields and safety of this
209	 * operation is not guaranteed for write-back caches
210	 */
211	uma_flags = UMA_ZONE_OFFPAGE;
212#endif
213	/*
214	 * Create a cache of buffers in uncacheable memory, to implement the
215	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
216	 */
217	coherent_allocator = busdma_bufalloc_create("coherent",
218	    arm_dcache_align,	/* minimum_alignment */
219	    busdma_bufalloc_alloc_uncacheable,
220	    busdma_bufalloc_free_uncacheable,
221	    uma_flags);	/* uma_zcreate_flags */
222}
223
224/*
225 * This init historically used SI_SUB_VM, but now the init code requires
226 * malloc(9) using M_DEVBUF memory, which is set up later than SI_SUB_VM, by
227 * SI_SUB_KMEM and SI_ORDER_THIRD, so we'll go right after that by using
228 * SI_SUB_KMEM and SI_ORDER_FOURTH.
229 */
230SYSINIT(busdma, SI_SUB_KMEM, SI_ORDER_FOURTH, busdma_init, NULL);
231
232/*
233 * This routine checks the exclusion zone constraints from a tag against the
234 * physical RAM available on the machine.  If a tag specifies an exclusion zone
235 * but there's no RAM in that zone, then we avoid allocating resources to bounce
236 * a request, and we can use any memory allocator (as opposed to needing
237 * kmem_alloc_contig() just because it can allocate pages in an address range).
238 *
239 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
240 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
241 * possibly have RAM at an address higher than the highest address we can
242 * express, so we take a fast out.
243 */
244static int
245exclusion_bounce(vm_offset_t lowaddr, vm_offset_t highaddr)
246{
247	int i;
248
249	if (lowaddr >= BUS_SPACE_MAXADDR)
250		return (0);
251
252	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
253		if ((lowaddr >= phys_avail[i] && lowaddr <= phys_avail[i + 1])
254		    || (lowaddr < phys_avail[i] &&
255		    highaddr > phys_avail[i]))
256			return (1);
257	}
258	return (0);
259}
260
261/*
262 * Return true if the given address does not fall on the alignment boundary.
263 */
264static __inline int
265alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
266{
267
268	return (addr & (dmat->alignment - 1));
269}
270
271/*
272 * Return true if the buffer start or end does not fall on a cacheline boundary.
273 */
274static __inline int
275cacheline_bounce(bus_addr_t addr, bus_size_t size)
276{
277
278	return ((addr | size) & arm_dcache_align_mask);
279}
280
281static __inline struct arm32_dma_range *
282_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
283    bus_addr_t curaddr)
284{
285	struct arm32_dma_range *dr;
286	int i;
287
288	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
289		if (curaddr >= dr->dr_sysbase &&
290		    round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
291			return (dr);
292	}
293
294	return (NULL);
295}
296
297/*
298 * Return true if a match is made.
299 *
300 * To find a match walk the chain of bus_dma_tag_t's looking for 'paddr'.
301 *
302 * If paddr is within the bounds of the dma tag then call the filter callback
303 * to check for a match, if there is no filter callback then assume a match.
304 */
305int
306run_filter(bus_dma_tag_t dmat, bus_addr_t paddr, bus_size_t size, int coherent)
307{
308	int retval;
309
310	retval = 0;
311
312	do {
313		if (((paddr > dmat->lowaddr && paddr <= dmat->highaddr)
314		 || alignment_bounce(dmat, paddr) ||
315		 (!coherent && cacheline_bounce(paddr, size)))
316		 && (dmat->filter == NULL
317		  || (*dmat->filter)(dmat->filterarg, paddr) != 0))
318			retval = 1;
319
320		dmat = dmat->parent;
321	} while (retval == 0 && dmat != NULL);
322	return (retval);
323}
324
325/*
326 * Convenience function for manipulating driver locks from busdma (during
327 * busdma_swi, for example).  Drivers that don't provide their own locks
328 * should specify &Giant to dmat->lockfuncarg.  Drivers that use their own
329 * non-mutex locking scheme don't have to use this at all.
330 */
331void
332busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
333{
334	struct mtx *dmtx;
335
336	dmtx = (struct mtx *)arg;
337	switch (op) {
338	case BUS_DMA_LOCK:
339		mtx_lock(dmtx);
340		break;
341	case BUS_DMA_UNLOCK:
342		mtx_unlock(dmtx);
343		break;
344	default:
345		panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
346	}
347}
348
349/*
350 * dflt_lock should never get called.  It gets put into the dma tag when
351 * lockfunc == NULL, which is only valid if the maps that are associated
352 * with the tag are meant to never be defered.
353 * XXX Should have a way to identify which driver is responsible here.
354 */
355static void
356dflt_lock(void *arg, bus_dma_lock_op_t op)
357{
358	panic("driver error: busdma dflt_lock called");
359}
360
361/*
362 * Allocate a device specific dma_tag.
363 */
364int
365bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
366		   bus_size_t boundary, bus_addr_t lowaddr,
367		   bus_addr_t highaddr, bus_dma_filter_t *filter,
368		   void *filterarg, bus_size_t maxsize, int nsegments,
369		   bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
370		   void *lockfuncarg, bus_dma_tag_t *dmat)
371{
372	bus_dma_tag_t newtag;
373	int error = 0;
374
375#if 0
376	if (!parent)
377		parent = arm_root_dma_tag;
378#endif
379
380	/* Basic sanity checking */
381	if (boundary != 0 && boundary < maxsegsz)
382		maxsegsz = boundary;
383
384	/* Return a NULL tag on failure */
385	*dmat = NULL;
386
387	if (maxsegsz == 0) {
388		return (EINVAL);
389	}
390
391	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
392	    M_ZERO | M_NOWAIT);
393	if (newtag == NULL) {
394		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
395		    __func__, newtag, 0, error);
396		return (ENOMEM);
397	}
398
399	newtag->parent = parent;
400	newtag->alignment = alignment;
401	newtag->boundary = boundary;
402	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
403	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
404	    (PAGE_SIZE - 1);
405	newtag->filter = filter;
406	newtag->filterarg = filterarg;
407	newtag->maxsize = maxsize;
408	newtag->nsegments = nsegments;
409	newtag->maxsegsz = maxsegsz;
410	newtag->flags = flags;
411	newtag->ref_count = 1; /* Count ourself */
412	newtag->map_count = 0;
413	newtag->ranges = bus_dma_get_range();
414	newtag->_nranges = bus_dma_get_range_nb();
415	if (lockfunc != NULL) {
416		newtag->lockfunc = lockfunc;
417		newtag->lockfuncarg = lockfuncarg;
418	} else {
419		newtag->lockfunc = dflt_lock;
420		newtag->lockfuncarg = NULL;
421	}
422	/*
423	 * If all the segments we need fit into the local tagsegs array, set the
424	 * pointer now.  Otherwise NULL the pointer and an array of segments
425	 * will be allocated later, on first use.  We don't pre-allocate now
426	 * because some tags exist just to pass contraints to children in the
427	 * device hierarchy, and they tend to use BUS_SPACE_UNRESTRICTED and we
428	 * sure don't want to try to allocate an array for that.
429	 */
430	if (newtag->nsegments <= nitems(newtag->tagsegs))
431		newtag->segments = newtag->tagsegs;
432	else
433		newtag->segments = NULL;
434
435	/* Take into account any restrictions imposed by our parent tag */
436	if (parent != NULL) {
437		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
438		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
439		if (newtag->boundary == 0)
440			newtag->boundary = parent->boundary;
441		else if (parent->boundary != 0)
442			newtag->boundary = MIN(parent->boundary,
443					       newtag->boundary);
444		if ((newtag->filter != NULL) ||
445		    ((parent->flags & BUS_DMA_COULD_BOUNCE) != 0))
446			newtag->flags |= BUS_DMA_COULD_BOUNCE;
447		if (newtag->filter == NULL) {
448			/*
449			 * Short circuit looking at our parent directly
450			 * since we have encapsulated all of its information
451			 */
452			newtag->filter = parent->filter;
453			newtag->filterarg = parent->filterarg;
454			newtag->parent = parent->parent;
455		}
456		if (newtag->parent != NULL)
457			atomic_add_int(&parent->ref_count, 1);
458	}
459
460	if (exclusion_bounce(newtag->lowaddr, newtag->highaddr)
461	 || alignment_bounce(newtag, 1))
462		newtag->flags |= BUS_DMA_COULD_BOUNCE;
463
464	/*
465	 * Any request can auto-bounce due to cacheline alignment, in addition
466	 * to any alignment or boundary specifications in the tag, so if the
467	 * ALLOCNOW flag is set, there's always work to do.
468	 */
469	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
470		struct bounce_zone *bz;
471		/*
472		 * Round size up to a full page, and add one more page because
473		 * there can always be one more boundary crossing than the
474		 * number of pages in a transfer.
475		 */
476		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
477
478		if ((error = alloc_bounce_zone(newtag)) != 0) {
479			free(newtag, M_DEVBUF);
480			return (error);
481		}
482		bz = newtag->bounce_zone;
483
484		if (ptoa(bz->total_bpages) < maxsize) {
485			int pages;
486
487			pages = atop(maxsize) - bz->total_bpages;
488
489			/* Add pages to our bounce pool */
490			if (alloc_bounce_pages(newtag, pages) < pages)
491				error = ENOMEM;
492		}
493		/* Performed initial allocation */
494		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
495	} else
496		newtag->bounce_zone = NULL;
497
498	if (error != 0) {
499		free(newtag, M_DEVBUF);
500	} else {
501		*dmat = newtag;
502	}
503	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
504	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
505	return (error);
506}
507
508int
509bus_dma_tag_destroy(bus_dma_tag_t dmat)
510{
511	bus_dma_tag_t dmat_copy;
512	int error;
513
514	error = 0;
515	dmat_copy = dmat;
516
517	if (dmat != NULL) {
518
519		if (dmat->map_count != 0) {
520			error = EBUSY;
521			goto out;
522		}
523
524		while (dmat != NULL) {
525			bus_dma_tag_t parent;
526
527			parent = dmat->parent;
528			atomic_subtract_int(&dmat->ref_count, 1);
529			if (dmat->ref_count == 0) {
530				if (dmat->segments != NULL &&
531				    dmat->segments != dmat->tagsegs)
532					free(dmat->segments, M_DEVBUF);
533				free(dmat, M_DEVBUF);
534				/*
535				 * Last reference count, so
536				 * release our reference
537				 * count on our parent.
538				 */
539				dmat = parent;
540			} else
541				dmat = NULL;
542		}
543	}
544out:
545	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
546	return (error);
547}
548
549static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
550{
551        struct bounce_zone *bz;
552	int maxpages;
553	int error;
554
555	if (dmat->bounce_zone == NULL)
556		if ((error = alloc_bounce_zone(dmat)) != 0)
557			return (error);
558	bz = dmat->bounce_zone;
559	/* Initialize the new map */
560	STAILQ_INIT(&(mapp->bpages));
561
562	/*
563	 * Attempt to add pages to our pool on a per-instance basis up to a sane
564	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
565	 * alignment and boundary constraints, it could still auto-bounce due to
566	 * cacheline alignment, which requires at most two bounce pages.
567	 */
568	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
569		maxpages = MAX_BPAGES;
570	else
571		maxpages = 2 * bz->map_count;
572	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0
573	    || (bz->map_count > 0 && bz->total_bpages < maxpages)) {
574		int pages;
575
576		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
577		pages = MIN(maxpages - bz->total_bpages, pages);
578		pages = MAX(pages, 2);
579		if (alloc_bounce_pages(dmat, pages) < pages)
580			return (ENOMEM);
581
582		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
583			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
584	}
585	bz->map_count++;
586	return (0);
587}
588
589/*
590 * Allocate a handle for mapping from kva/uva/physical
591 * address space into bus device space.
592 */
593int
594bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
595{
596	int mapsize;
597	int error = 0;
598
599	mapsize = sizeof(**mapp) + (sizeof(struct sync_list) * dmat->nsegments);
600	*mapp = (bus_dmamap_t)malloc(mapsize, M_DEVBUF, M_NOWAIT | M_ZERO);
601	if (*mapp == NULL) {
602		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
603		return (ENOMEM);
604	}
605	(*mapp)->sync_count = 0;
606
607	if (dmat->segments == NULL) {
608		dmat->segments = (bus_dma_segment_t *)malloc(
609		    sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF,
610		    M_NOWAIT);
611		if (dmat->segments == NULL) {
612			CTR3(KTR_BUSDMA, "%s: tag %p error %d",
613			    __func__, dmat, ENOMEM);
614			free(*mapp, M_DEVBUF);
615			*mapp = NULL;
616			return (ENOMEM);
617		}
618	}
619	/*
620	 * Bouncing might be required if the driver asks for an active
621	 * exclusion region, a data alignment that is stricter than 1, and/or
622	 * an active address boundary.
623	 */
624	error = allocate_bz_and_pages(dmat, *mapp);
625	if (error != 0) {
626		free(*mapp, M_DEVBUF);
627		*mapp = NULL;
628		return (error);
629	}
630	return (error);
631}
632
633/*
634 * Destroy a handle for mapping from kva/uva/physical
635 * address space into bus device space.
636 */
637int
638bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
639{
640	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
641		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
642		    __func__, dmat, EBUSY);
643		return (EBUSY);
644	}
645	if (dmat->bounce_zone)
646		dmat->bounce_zone->map_count--;
647	free(map, M_DEVBUF);
648	dmat->map_count--;
649	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
650	return (0);
651}
652
653
654/*
655 * Allocate a piece of memory that can be efficiently mapped into
656 * bus device space based on the constraints lited in the dma tag.
657 * A dmamap to for use with dmamap_load is also allocated.
658 */
659int
660bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
661		 bus_dmamap_t *mapp)
662{
663	busdma_bufalloc_t ba;
664	struct busdma_bufzone *bufzone;
665	vm_memattr_t memattr;
666	int mflags;
667	int mapsize;
668	int error;
669
670	if (flags & BUS_DMA_NOWAIT)
671		mflags = M_NOWAIT;
672	else
673		mflags = M_WAITOK;
674
675	/* ARM non-snooping caches need a map for the VA cache sync structure */
676
677	mapsize = sizeof(**mapp) + (sizeof(struct sync_list) * dmat->nsegments);
678	*mapp = (bus_dmamap_t)malloc(mapsize, M_DEVBUF, M_NOWAIT | M_ZERO);
679	if (*mapp == NULL) {
680		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
681		    __func__, dmat, dmat->flags, ENOMEM);
682		return (ENOMEM);
683	}
684
685	(*mapp)->sync_count = 0;
686	/* We may need bounce pages, even for allocated memory */
687	error = allocate_bz_and_pages(dmat, *mapp);
688	if (error != 0) {
689		free(*mapp, M_DEVBUF);
690		*mapp = NULL;
691		return (error);
692	}
693
694	if (dmat->segments == NULL) {
695		dmat->segments = (bus_dma_segment_t *)malloc(
696		    sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF,
697		    mflags);
698		if (dmat->segments == NULL) {
699			CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
700			    __func__, dmat, dmat->flags, ENOMEM);
701			free(*mapp, M_DEVBUF);
702			*mapp = NULL;
703			return (ENOMEM);
704		}
705	}
706
707	if (flags & BUS_DMA_ZERO)
708		mflags |= M_ZERO;
709	if (flags & BUS_DMA_COHERENT) {
710		memattr = VM_MEMATTR_UNCACHEABLE;
711		ba = coherent_allocator;
712		(*mapp)->flags |= DMAMAP_COHERENT;
713	} else {
714		memattr = VM_MEMATTR_DEFAULT;
715		ba = standard_allocator;
716		(*mapp)->flags = 0;
717	}
718
719	/*
720	 * Try to find a bufzone in the allocator that holds a cache of buffers
721	 * of the right size for this request.  If the buffer is too big to be
722	 * held in the allocator cache, this returns NULL.
723	 */
724	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
725
726	/*
727	 * Allocate the buffer from the uma(9) allocator if...
728	 *  - It's small enough to be in the allocator (bufzone not NULL).
729	 *  - The alignment constraint isn't larger than the allocation size
730	 *    (the allocator aligns buffers to their size boundaries).
731	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
732	 * else allocate non-contiguous pages if...
733	 *  - The page count that could get allocated doesn't exceed nsegments.
734	 *  - The alignment constraint isn't larger than a page boundary.
735	 *  - There are no boundary-crossing constraints.
736	 * else allocate a block of contiguous pages because one or more of the
737	 * constraints is something that only the contig allocator can fulfill.
738	 */
739	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
740	    !exclusion_bounce(dmat->lowaddr, dmat->highaddr)) {
741		*vaddr = uma_zalloc(bufzone->umazone, mflags);
742	} else if (dmat->nsegments >= btoc(dmat->maxsize) &&
743	    dmat->alignment <= PAGE_SIZE && dmat->boundary == 0) {
744		*vaddr = (void *)kmem_alloc_attr(kernel_arena, dmat->maxsize,
745		    mflags, 0, dmat->lowaddr, memattr);
746	} else {
747		*vaddr = (void *)kmem_alloc_contig(kernel_arena, dmat->maxsize,
748		    mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary,
749		    memattr);
750	}
751
752
753	if (*vaddr == NULL) {
754		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
755		    __func__, dmat, dmat->flags, ENOMEM);
756		free(*mapp, M_DEVBUF);
757		*mapp = NULL;
758		return (ENOMEM);
759	}
760	dmat->map_count++;
761
762	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
763	    __func__, dmat, dmat->flags, 0);
764	return (0);
765}
766
767/*
768 * Free a piece of memory and it's allociated dmamap, that was allocated
769 * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
770 */
771void
772bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
773{
774	struct busdma_bufzone *bufzone;
775	busdma_bufalloc_t ba;
776
777	if (map->flags & DMAMAP_COHERENT)
778		ba = coherent_allocator;
779	else
780		ba = standard_allocator;
781
782	/* Be careful not to access map from here on. */
783
784	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
785
786	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
787	    !exclusion_bounce(dmat->lowaddr, dmat->highaddr))
788		uma_zfree(bufzone->umazone, vaddr);
789	else
790		kmem_free(kernel_arena, (vm_offset_t)vaddr, dmat->maxsize);
791
792	dmat->map_count--;
793	free(map, M_DEVBUF);
794	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
795}
796
797static void
798_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
799    bus_size_t buflen, int flags)
800{
801	bus_addr_t curaddr;
802	bus_size_t sgsize;
803
804	if (map->pagesneeded == 0) {
805		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
806		    " map= %p, pagesneeded= %d",
807		    dmat->lowaddr, dmat->boundary, dmat->alignment,
808		    map, map->pagesneeded);
809		/*
810		 * Count the number of bounce pages
811		 * needed in order to complete this transfer
812		 */
813		curaddr = buf;
814		while (buflen != 0) {
815			sgsize = MIN(buflen, dmat->maxsegsz);
816			if (run_filter(dmat, curaddr, sgsize,
817			    map->flags & DMAMAP_COHERENT) != 0) {
818				sgsize = MIN(sgsize, PAGE_SIZE);
819				map->pagesneeded++;
820			}
821			curaddr += sgsize;
822			buflen -= sgsize;
823		}
824		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
825	}
826}
827
828static void
829_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
830    void *buf, bus_size_t buflen, int flags)
831{
832	vm_offset_t vaddr;
833	vm_offset_t vendaddr;
834	bus_addr_t paddr;
835
836	if (map->pagesneeded == 0) {
837		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
838		    " map= %p, pagesneeded= %d",
839		    dmat->lowaddr, dmat->boundary, dmat->alignment,
840		    map, map->pagesneeded);
841		/*
842		 * Count the number of bounce pages
843		 * needed in order to complete this transfer
844		 */
845		vaddr = (vm_offset_t)buf;
846		vendaddr = (vm_offset_t)buf + buflen;
847
848		while (vaddr < vendaddr) {
849			if (__predict_true(map->pmap == kernel_pmap))
850				paddr = pmap_kextract(vaddr);
851			else
852				paddr = pmap_extract(map->pmap, vaddr);
853			if (run_filter(dmat, paddr,
854			    min(vendaddr - vaddr,
855			    (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK))),
856			    map->flags & DMAMAP_COHERENT) != 0) {
857				map->pagesneeded++;
858			}
859			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
860
861		}
862		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
863	}
864}
865
866static int
867_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
868{
869
870	/* Reserve Necessary Bounce Pages */
871	mtx_lock(&bounce_lock);
872	if (flags & BUS_DMA_NOWAIT) {
873		if (reserve_bounce_pages(dmat, map, 0) != 0) {
874			map->pagesneeded = 0;
875			mtx_unlock(&bounce_lock);
876			return (ENOMEM);
877		}
878	} else {
879		if (reserve_bounce_pages(dmat, map, 1) != 0) {
880			/* Queue us for resources */
881			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
882			mtx_unlock(&bounce_lock);
883			return (EINPROGRESS);
884		}
885	}
886	mtx_unlock(&bounce_lock);
887
888	return (0);
889}
890
891/*
892 * Add a single contiguous physical range to the segment list.
893 */
894static int
895_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
896		   bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
897{
898	bus_addr_t baddr, bmask;
899	int seg;
900
901	/*
902	 * Make sure we don't cross any boundaries.
903	 */
904	bmask = ~(dmat->boundary - 1);
905	if (dmat->boundary > 0) {
906		baddr = (curaddr + dmat->boundary) & bmask;
907		if (sgsize > (baddr - curaddr))
908			sgsize = (baddr - curaddr);
909	}
910
911	if (dmat->ranges) {
912		struct arm32_dma_range *dr;
913
914		dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges,
915		    curaddr);
916		if (dr == NULL) {
917			_bus_dmamap_unload(dmat, map);
918			return (0);
919		}
920		/*
921		 * In a valid DMA range.  Translate the physical
922		 * memory address to an address in the DMA window.
923		 */
924		curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase;
925	}
926
927	/*
928	 * Insert chunk into a segment, coalescing with
929	 * previous segment if possible.
930	 */
931	seg = *segp;
932	if (seg == -1) {
933		seg = 0;
934		segs[seg].ds_addr = curaddr;
935		segs[seg].ds_len = sgsize;
936	} else {
937		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
938		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
939		    (dmat->boundary == 0 ||
940		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
941			segs[seg].ds_len += sgsize;
942		else {
943			if (++seg >= dmat->nsegments)
944				return (0);
945			segs[seg].ds_addr = curaddr;
946			segs[seg].ds_len = sgsize;
947		}
948	}
949	*segp = seg;
950	return (sgsize);
951}
952
953/*
954 * Utility function to load a physical buffer.  segp contains
955 * the starting segment on entrace, and the ending segment on exit.
956 */
957int
958_bus_dmamap_load_phys(bus_dma_tag_t dmat,
959		      bus_dmamap_t map,
960		      vm_paddr_t buf, bus_size_t buflen,
961		      int flags,
962		      bus_dma_segment_t *segs,
963		      int *segp)
964{
965	bus_addr_t curaddr;
966	bus_size_t sgsize;
967	int error;
968
969	if (segs == NULL)
970		segs = dmat->segments;
971
972	if (((map->flags & DMAMAP_COHERENT) == 0) ||
973	    (dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) {
974		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
975		if (map->pagesneeded != 0) {
976			error = _bus_dmamap_reserve_pages(dmat, map, flags);
977			if (error)
978				return (error);
979		}
980	}
981
982	while (buflen > 0) {
983		curaddr = buf;
984		sgsize = MIN(buflen, dmat->maxsegsz);
985		if ((((map->flags & DMAMAP_COHERENT) == 0) ||
986		    ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0)) &&
987		    map->pagesneeded != 0 && run_filter(dmat, curaddr,
988		    sgsize, map->flags & DMAMAP_COHERENT)) {
989			sgsize = MIN(sgsize, PAGE_SIZE);
990			curaddr = add_bounce_page(dmat, map, 0, curaddr,
991						  sgsize);
992		}
993		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
994		    segp);
995		if (sgsize == 0)
996			break;
997		buf += sgsize;
998		buflen -= sgsize;
999	}
1000
1001	/*
1002	 * Did we fit?
1003	 */
1004	if (buflen != 0) {
1005		_bus_dmamap_unload(dmat, map);
1006		return (EFBIG); /* XXX better return value here? */
1007	}
1008	return (0);
1009}
1010
1011int
1012_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1013    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1014    bus_dma_segment_t *segs, int *segp)
1015{
1016
1017	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1018	    segs, segp));
1019}
1020
1021/*
1022 * Utility function to load a linear buffer.  segp contains
1023 * the starting segment on entrace, and the ending segment on exit.
1024 */
1025int
1026_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
1027			bus_dmamap_t map,
1028			void *buf, bus_size_t buflen,
1029			pmap_t pmap,
1030			int flags,
1031			bus_dma_segment_t *segs,
1032			int *segp)
1033{
1034	bus_size_t sgsize;
1035	bus_addr_t curaddr;
1036	vm_offset_t vaddr;
1037	struct sync_list *sl;
1038	int error;
1039
1040	if (segs == NULL)
1041		segs = dmat->segments;
1042
1043	map->pmap = pmap;
1044
1045	if (!(map->flags & DMAMAP_COHERENT) ||
1046	    (dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) {
1047		_bus_dmamap_count_pages(dmat, map, buf, buflen, flags);
1048		if (map->pagesneeded != 0) {
1049			error = _bus_dmamap_reserve_pages(dmat, map, flags);
1050			if (error)
1051				return (error);
1052		}
1053	}
1054
1055	sl = NULL;
1056	vaddr = (vm_offset_t)buf;
1057
1058	while (buflen > 0) {
1059		/*
1060		 * Get the physical address for this segment.
1061		 */
1062		if (__predict_true(map->pmap == kernel_pmap))
1063			curaddr = pmap_kextract(vaddr);
1064		else
1065			curaddr = pmap_extract(map->pmap, vaddr);
1066
1067		/*
1068		 * Compute the segment size, and adjust counts.
1069		 */
1070		sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
1071		if (sgsize > dmat->maxsegsz)
1072			sgsize = dmat->maxsegsz;
1073		if (buflen < sgsize)
1074			sgsize = buflen;
1075
1076		if ((((map->flags & DMAMAP_COHERENT) == 0) ||
1077		    ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0)) &&
1078		    map->pagesneeded != 0 && run_filter(dmat, curaddr,
1079		    sgsize, map->flags & DMAMAP_COHERENT)) {
1080			curaddr = add_bounce_page(dmat, map, vaddr, curaddr,
1081						  sgsize);
1082		} else {
1083			sl = &map->slist[map->sync_count - 1];
1084			if (map->sync_count == 0 ||
1085#ifdef ARM_L2_PIPT
1086			    curaddr != sl->busaddr + sl->datacount ||
1087#endif
1088			    vaddr != sl->vaddr + sl->datacount) {
1089				if (++map->sync_count > dmat->nsegments)
1090					goto cleanup;
1091				sl++;
1092				sl->vaddr = vaddr;
1093				sl->datacount = sgsize;
1094				sl->busaddr = curaddr;
1095			} else
1096				sl->datacount += sgsize;
1097		}
1098		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1099					    segp);
1100		if (sgsize == 0)
1101			break;
1102		vaddr += sgsize;
1103		buflen -= sgsize;
1104	}
1105
1106cleanup:
1107	/*
1108	 * Did we fit?
1109	 */
1110	if (buflen != 0) {
1111		_bus_dmamap_unload(dmat, map);
1112		return (EFBIG); /* XXX better return value here? */
1113	}
1114	return (0);
1115}
1116
1117
1118void
1119__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1120		    struct memdesc *mem, bus_dmamap_callback_t *callback,
1121		    void *callback_arg)
1122{
1123
1124	map->mem = *mem;
1125	map->dmat = dmat;
1126	map->callback = callback;
1127	map->callback_arg = callback_arg;
1128}
1129
1130bus_dma_segment_t *
1131_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1132		     bus_dma_segment_t *segs, int nsegs, int error)
1133{
1134
1135	if (segs == NULL)
1136		segs = dmat->segments;
1137	return (segs);
1138}
1139
1140/*
1141 * Release the mapping held by map.
1142 */
1143void
1144_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1145{
1146	struct bounce_page *bpage;
1147	struct bounce_zone *bz;
1148
1149	if ((bz = dmat->bounce_zone) != NULL) {
1150		while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1151			STAILQ_REMOVE_HEAD(&map->bpages, links);
1152			free_bounce_page(dmat, bpage);
1153		}
1154
1155		bz = dmat->bounce_zone;
1156		bz->free_bpages += map->pagesreserved;
1157		bz->reserved_bpages -= map->pagesreserved;
1158		map->pagesreserved = 0;
1159		map->pagesneeded = 0;
1160	}
1161	map->sync_count = 0;
1162}
1163
1164#ifdef notyetbounceuser
1165	/* If busdma uses user pages, then the interrupt handler could
1166	 * be use the kernel vm mapping. Both bounce pages and sync list
1167	 * do not cross page boundaries.
1168	 * Below is a rough sequence that a person would do to fix the
1169	 * user page reference in the kernel vmspace. This would be
1170	 * done in the dma post routine.
1171	 */
1172void
1173_bus_dmamap_fix_user(vm_offset_t buf, bus_size_t len,
1174			pmap_t pmap, int op)
1175{
1176	bus_size_t sgsize;
1177	bus_addr_t curaddr;
1178	vm_offset_t va;
1179
1180		/* each synclist entry is contained within a single page.
1181		 *
1182		 * this would be needed if BUS_DMASYNC_POSTxxxx was implemented
1183		*/
1184	curaddr = pmap_extract(pmap, buf);
1185	va = pmap_dma_map(curaddr);
1186	switch (op) {
1187	case SYNC_USER_INV:
1188		cpu_dcache_wb_range(va, sgsize);
1189		break;
1190
1191	case SYNC_USER_COPYTO:
1192		bcopy((void *)va, (void *)bounce, sgsize);
1193		break;
1194
1195	case SYNC_USER_COPYFROM:
1196		bcopy((void *) bounce, (void *)va, sgsize);
1197		break;
1198
1199	default:
1200		break;
1201	}
1202
1203	pmap_dma_unmap(va);
1204}
1205#endif
1206
1207#ifdef ARM_L2_PIPT
1208#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(pa, size)
1209#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(pa, size)
1210#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(pa, size)
1211#else
1212#define l2cache_wb_range(va, pa, size) cpu_l2cache_wb_range(va, size)
1213#define l2cache_wbinv_range(va, pa, size) cpu_l2cache_wbinv_range(va, size)
1214#define l2cache_inv_range(va, pa, size) cpu_l2cache_inv_range(va, size)
1215#endif
1216
1217void
1218_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1219{
1220	struct bounce_page *bpage;
1221	struct sync_list *sl, *end;
1222	/*
1223	 * If the buffer was from user space, it is possible that this is not
1224	 * the same vm map, especially on a POST operation.  It's not clear that
1225	 * dma on userland buffers can work at all right now, certainly not if a
1226	 * partial cacheline flush has to be handled.  To be safe, until we're
1227	 * able to test direct userland dma, panic on a map mismatch.
1228	 */
1229	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1230		if (!pmap_dmap_iscurrent(map->pmap))
1231			panic("_bus_dmamap_sync: wrong user map for bounce sync.");
1232		/* Handle data bouncing. */
1233		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1234		    "performing bounce", __func__, dmat, dmat->flags, op);
1235
1236		if (op & BUS_DMASYNC_PREWRITE) {
1237			while (bpage != NULL) {
1238				if (bpage->datavaddr != 0)
1239					bcopy((void *)bpage->datavaddr,
1240					      (void *)bpage->vaddr,
1241					      bpage->datacount);
1242				else
1243					physcopyout(bpage->dataaddr,
1244					      (void *)bpage->vaddr,
1245					      bpage->datacount);
1246				cpu_dcache_wb_range((vm_offset_t)bpage->vaddr,
1247					bpage->datacount);
1248				l2cache_wb_range((vm_offset_t)bpage->vaddr,
1249				    (vm_offset_t)bpage->busaddr,
1250				    bpage->datacount);
1251				bpage = STAILQ_NEXT(bpage, links);
1252			}
1253			dmat->bounce_zone->total_bounced++;
1254		}
1255
1256		if (op & BUS_DMASYNC_PREREAD) {
1257			bpage = STAILQ_FIRST(&map->bpages);
1258			while (bpage != NULL) {
1259				cpu_dcache_inv_range((vm_offset_t)bpage->vaddr,
1260				    bpage->datacount);
1261				l2cache_inv_range((vm_offset_t)bpage->vaddr,
1262				    (vm_offset_t)bpage->busaddr,
1263				    bpage->datacount);
1264				bpage = STAILQ_NEXT(bpage, links);
1265			}
1266		}
1267		if (op & BUS_DMASYNC_POSTREAD) {
1268			while (bpage != NULL) {
1269				vm_offset_t startv;
1270				vm_paddr_t startp;
1271				int len;
1272
1273				startv = bpage->vaddr &~ arm_dcache_align_mask;
1274				startp = bpage->busaddr &~ arm_dcache_align_mask;
1275				len = bpage->datacount;
1276
1277				if (startv != bpage->vaddr)
1278					len += bpage->vaddr & arm_dcache_align_mask;
1279				if (len & arm_dcache_align_mask)
1280					len = (len -
1281					    (len & arm_dcache_align_mask)) +
1282					    arm_dcache_align;
1283				cpu_dcache_inv_range(startv, len);
1284				l2cache_inv_range(startv, startp, len);
1285				if (bpage->datavaddr != 0)
1286					bcopy((void *)bpage->vaddr,
1287					      (void *)bpage->datavaddr,
1288					      bpage->datacount);
1289				else
1290					physcopyin((void *)bpage->vaddr,
1291					      bpage->dataaddr,
1292					      bpage->datacount);
1293				bpage = STAILQ_NEXT(bpage, links);
1294			}
1295			dmat->bounce_zone->total_bounced++;
1296		}
1297	}
1298	if (map->flags & DMAMAP_COHERENT)
1299		return;
1300
1301	if (map->sync_count != 0) {
1302		if (!pmap_dmap_iscurrent(map->pmap))
1303			panic("_bus_dmamap_sync: wrong user map for sync.");
1304		/* ARM caches are not self-snooping for dma */
1305
1306		sl = &map->slist[0];
1307		end = &map->slist[map->sync_count];
1308		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1309		    "performing sync", __func__, dmat, dmat->flags, op);
1310
1311		switch (op) {
1312		case BUS_DMASYNC_PREWRITE:
1313			while (sl != end) {
1314			    cpu_dcache_wb_range(sl->vaddr, sl->datacount);
1315			    l2cache_wb_range(sl->vaddr, sl->busaddr,
1316				sl->datacount);
1317			    sl++;
1318			}
1319			break;
1320
1321		case BUS_DMASYNC_PREREAD:
1322			while (sl != end) {
1323				cpu_dcache_inv_range(sl->vaddr, sl->datacount);
1324				l2cache_inv_range(sl->vaddr, sl->busaddr,
1325				    sl->datacount);
1326				sl++;
1327			}
1328			break;
1329
1330		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1331			while (sl != end) {
1332				cpu_dcache_wbinv_range(sl->vaddr, sl->datacount);
1333				l2cache_wbinv_range(sl->vaddr,
1334				    sl->busaddr, sl->datacount);
1335				sl++;
1336			}
1337			break;
1338
1339		case BUS_DMASYNC_POSTREAD:
1340		case BUS_DMASYNC_POSTWRITE:
1341		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1342			break;
1343		default:
1344			panic("unsupported combination of sync operations: 0x%08x\n", op);
1345			break;
1346		}
1347	}
1348}
1349
1350static void
1351init_bounce_pages(void *dummy __unused)
1352{
1353
1354	total_bpages = 0;
1355	STAILQ_INIT(&bounce_zone_list);
1356	STAILQ_INIT(&bounce_map_waitinglist);
1357	STAILQ_INIT(&bounce_map_callbacklist);
1358	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1359}
1360SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1361
1362static struct sysctl_ctx_list *
1363busdma_sysctl_tree(struct bounce_zone *bz)
1364{
1365	return (&bz->sysctl_tree);
1366}
1367
1368static struct sysctl_oid *
1369busdma_sysctl_tree_top(struct bounce_zone *bz)
1370{
1371	return (bz->sysctl_tree_top);
1372}
1373
1374static int
1375alloc_bounce_zone(bus_dma_tag_t dmat)
1376{
1377	struct bounce_zone *bz;
1378
1379	/* Check to see if we already have a suitable zone */
1380	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1381		if ((dmat->alignment <= bz->alignment)
1382		 && (dmat->lowaddr >= bz->lowaddr)) {
1383			dmat->bounce_zone = bz;
1384			return (0);
1385		}
1386	}
1387
1388	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1389	    M_NOWAIT | M_ZERO)) == NULL)
1390		return (ENOMEM);
1391
1392	STAILQ_INIT(&bz->bounce_page_list);
1393	bz->free_bpages = 0;
1394	bz->reserved_bpages = 0;
1395	bz->active_bpages = 0;
1396	bz->lowaddr = dmat->lowaddr;
1397	bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
1398	bz->map_count = 0;
1399	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1400	busdma_zonecount++;
1401	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1402	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1403	dmat->bounce_zone = bz;
1404
1405	sysctl_ctx_init(&bz->sysctl_tree);
1406	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1407	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1408	    CTLFLAG_RD, 0, "");
1409	if (bz->sysctl_tree_top == NULL) {
1410		sysctl_ctx_free(&bz->sysctl_tree);
1411		return (0);	/* XXX error code? */
1412	}
1413
1414	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1415	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1416	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1417	    "Total bounce pages");
1418	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1419	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1420	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1421	    "Free bounce pages");
1422	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1423	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1424	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1425	    "Reserved bounce pages");
1426	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1427	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1428	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1429	    "Active bounce pages");
1430	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1431	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1432	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1433	    "Total bounce requests");
1434	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1435	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1436	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1437	    "Total bounce requests that were deferred");
1438	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1439	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1440	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1441	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1442	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1443	    "alignment", CTLFLAG_RD, &bz->alignment, 0, "");
1444
1445	return (0);
1446}
1447
1448static int
1449alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1450{
1451	struct bounce_zone *bz;
1452	int count;
1453
1454	bz = dmat->bounce_zone;
1455	count = 0;
1456	while (numpages > 0) {
1457		struct bounce_page *bpage;
1458
1459		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1460						     M_NOWAIT | M_ZERO);
1461
1462		if (bpage == NULL)
1463			break;
1464		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1465							 M_NOWAIT, 0ul,
1466							 bz->lowaddr,
1467							 PAGE_SIZE,
1468							 0);
1469		if (bpage->vaddr == 0) {
1470			free(bpage, M_DEVBUF);
1471			break;
1472		}
1473		bpage->busaddr = pmap_kextract(bpage->vaddr);
1474		mtx_lock(&bounce_lock);
1475		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1476		total_bpages++;
1477		bz->total_bpages++;
1478		bz->free_bpages++;
1479		mtx_unlock(&bounce_lock);
1480		count++;
1481		numpages--;
1482	}
1483	return (count);
1484}
1485
1486static int
1487reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1488{
1489	struct bounce_zone *bz;
1490	int pages;
1491
1492	mtx_assert(&bounce_lock, MA_OWNED);
1493	bz = dmat->bounce_zone;
1494	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1495	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1496		return (map->pagesneeded - (map->pagesreserved + pages));
1497	bz->free_bpages -= pages;
1498	bz->reserved_bpages += pages;
1499	map->pagesreserved += pages;
1500	pages = map->pagesneeded - map->pagesreserved;
1501
1502	return (pages);
1503}
1504
1505static bus_addr_t
1506add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1507		bus_addr_t addr, bus_size_t size)
1508{
1509	struct bounce_zone *bz;
1510	struct bounce_page *bpage;
1511
1512	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1513	KASSERT(map != NULL,
1514	    ("add_bounce_page: bad map %p", map));
1515
1516	bz = dmat->bounce_zone;
1517	if (map->pagesneeded == 0)
1518		panic("add_bounce_page: map doesn't need any pages");
1519	map->pagesneeded--;
1520
1521	if (map->pagesreserved == 0)
1522		panic("add_bounce_page: map doesn't need any pages");
1523	map->pagesreserved--;
1524
1525	mtx_lock(&bounce_lock);
1526	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1527	if (bpage == NULL)
1528		panic("add_bounce_page: free page list is empty");
1529
1530	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1531	bz->reserved_bpages--;
1532	bz->active_bpages++;
1533	mtx_unlock(&bounce_lock);
1534
1535	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1536		/* Page offset needs to be preserved. */
1537		bpage->vaddr |= vaddr & PAGE_MASK;
1538		bpage->busaddr |= vaddr & PAGE_MASK;
1539	}
1540	bpage->datavaddr = vaddr;
1541	bpage->dataaddr = addr;
1542	bpage->datacount = size;
1543	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1544	return (bpage->busaddr);
1545}
1546
1547static void
1548free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1549{
1550	struct bus_dmamap *map;
1551	struct bounce_zone *bz;
1552
1553	bz = dmat->bounce_zone;
1554	bpage->datavaddr = 0;
1555	bpage->datacount = 0;
1556	if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
1557		/*
1558		 * Reset the bounce page to start at offset 0.  Other uses
1559		 * of this bounce page may need to store a full page of
1560		 * data and/or assume it starts on a page boundary.
1561		 */
1562		bpage->vaddr &= ~PAGE_MASK;
1563		bpage->busaddr &= ~PAGE_MASK;
1564	}
1565
1566	mtx_lock(&bounce_lock);
1567	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1568	bz->free_bpages++;
1569	bz->active_bpages--;
1570	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1571		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1572			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1573			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1574					   map, links);
1575			busdma_swi_pending = 1;
1576			bz->total_deferred++;
1577			swi_sched(vm_ih, 0);
1578		}
1579	}
1580	mtx_unlock(&bounce_lock);
1581}
1582
1583void
1584busdma_swi(void)
1585{
1586	bus_dma_tag_t dmat;
1587	struct bus_dmamap *map;
1588
1589	mtx_lock(&bounce_lock);
1590	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1591		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1592		mtx_unlock(&bounce_lock);
1593		dmat = map->dmat;
1594		(dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_LOCK);
1595		bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback,
1596				    map->callback_arg, BUS_DMA_WAITOK);
1597		(dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_UNLOCK);
1598		mtx_lock(&bounce_lock);
1599	}
1600	mtx_unlock(&bounce_lock);
1601}
1602