vmx.c revision 347416
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 * Copyright (c) 2018 Joyent, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: stable/11/sys/amd64/vmm/intel/vmx.c 347416 2019-05-09 23:57:02Z jhb $
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/amd64/vmm/intel/vmx.c 347416 2019-05-09 23:57:02Z jhb $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/smp.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/pcpu.h>
39#include <sys/proc.h>
40#include <sys/sysctl.h>
41
42#include <vm/vm.h>
43#include <vm/pmap.h>
44
45#include <machine/psl.h>
46#include <machine/cpufunc.h>
47#include <machine/md_var.h>
48#include <machine/reg.h>
49#include <machine/segments.h>
50#include <machine/smp.h>
51#include <machine/specialreg.h>
52#include <machine/vmparam.h>
53
54#include <machine/vmm.h>
55#include <machine/vmm_dev.h>
56#include <machine/vmm_instruction_emul.h>
57#include "vmm_lapic.h"
58#include "vmm_host.h"
59#include "vmm_ioport.h"
60#include "vmm_ktr.h"
61#include "vmm_stat.h"
62#include "vatpic.h"
63#include "vlapic.h"
64#include "vlapic_priv.h"
65
66#include "ept.h"
67#include "vmx_cpufunc.h"
68#include "vmx.h"
69#include "vmx_msr.h"
70#include "x86.h"
71#include "vmx_controls.h"
72
73#define	PINBASED_CTLS_ONE_SETTING					\
74	(PINBASED_EXTINT_EXITING	|				\
75	 PINBASED_NMI_EXITING		|				\
76	 PINBASED_VIRTUAL_NMI)
77#define	PINBASED_CTLS_ZERO_SETTING	0
78
79#define PROCBASED_CTLS_WINDOW_SETTING					\
80	(PROCBASED_INT_WINDOW_EXITING	|				\
81	 PROCBASED_NMI_WINDOW_EXITING)
82
83#define	PROCBASED_CTLS_ONE_SETTING					\
84	(PROCBASED_SECONDARY_CONTROLS	|				\
85	 PROCBASED_MWAIT_EXITING	|				\
86	 PROCBASED_MONITOR_EXITING	|				\
87	 PROCBASED_IO_EXITING		|				\
88	 PROCBASED_MSR_BITMAPS		|				\
89	 PROCBASED_CTLS_WINDOW_SETTING	|				\
90	 PROCBASED_CR8_LOAD_EXITING	|				\
91	 PROCBASED_CR8_STORE_EXITING)
92#define	PROCBASED_CTLS_ZERO_SETTING	\
93	(PROCBASED_CR3_LOAD_EXITING |	\
94	PROCBASED_CR3_STORE_EXITING |	\
95	PROCBASED_IO_BITMAPS)
96
97#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
98#define	PROCBASED_CTLS2_ZERO_SETTING	0
99
100#define	VM_EXIT_CTLS_ONE_SETTING					\
101	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
102	VM_EXIT_HOST_LMA			|			\
103	VM_EXIT_SAVE_EFER			|			\
104	VM_EXIT_LOAD_EFER			|			\
105	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
106
107#define	VM_EXIT_CTLS_ZERO_SETTING	0
108
109#define	VM_ENTRY_CTLS_ONE_SETTING					\
110	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
111	VM_ENTRY_LOAD_EFER)
112
113#define	VM_ENTRY_CTLS_ZERO_SETTING					\
114	(VM_ENTRY_INTO_SMM			|			\
115	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
116
117#define	HANDLED		1
118#define	UNHANDLED	0
119
120static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
121static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
122
123SYSCTL_DECL(_hw_vmm);
124SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
125
126int vmxon_enabled[MAXCPU];
127static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
128
129static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
130static uint32_t exit_ctls, entry_ctls;
131
132static uint64_t cr0_ones_mask, cr0_zeros_mask;
133SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
134	     &cr0_ones_mask, 0, NULL);
135SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
136	     &cr0_zeros_mask, 0, NULL);
137
138static uint64_t cr4_ones_mask, cr4_zeros_mask;
139SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
140	     &cr4_ones_mask, 0, NULL);
141SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
142	     &cr4_zeros_mask, 0, NULL);
143
144static int vmx_initialized;
145SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
146	   &vmx_initialized, 0, "Intel VMX initialized");
147
148/*
149 * Optional capabilities
150 */
151static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
152
153static int cap_halt_exit;
154SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
155    "HLT triggers a VM-exit");
156
157static int cap_pause_exit;
158SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
159    0, "PAUSE triggers a VM-exit");
160
161static int cap_unrestricted_guest;
162SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
163    &cap_unrestricted_guest, 0, "Unrestricted guests");
164
165static int cap_monitor_trap;
166SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
167    &cap_monitor_trap, 0, "Monitor trap flag");
168
169static int cap_invpcid;
170SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
171    0, "Guests are allowed to use INVPCID");
172
173static int virtual_interrupt_delivery;
174SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
175    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
176
177static int posted_interrupts;
178SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
179    &posted_interrupts, 0, "APICv posted interrupt support");
180
181static int pirvec = -1;
182SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
183    &pirvec, 0, "APICv posted interrupt vector");
184
185static struct unrhdr *vpid_unr;
186static u_int vpid_alloc_failed;
187SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
188	    &vpid_alloc_failed, 0, NULL);
189
190static int guest_l1d_flush;
191SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
192    &guest_l1d_flush, 0, NULL);
193static int guest_l1d_flush_sw;
194SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
195    &guest_l1d_flush_sw, 0, NULL);
196
197static struct msr_entry msr_load_list[1] __aligned(16);
198
199/*
200 * The definitions of SDT probes for VMX.
201 */
202
203SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
204    "struct vmx *", "int", "struct vm_exit *");
205
206SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
207    "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
208
209SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
210    "struct vmx *", "int", "struct vm_exit *", "uint64_t");
211
212SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
213    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
214
215SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
216    "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
217
218SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
219    "struct vmx *", "int", "struct vm_exit *");
220
221SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
222    "struct vmx *", "int", "struct vm_exit *");
223
224SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
225    "struct vmx *", "int", "struct vm_exit *");
226
227SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
228    "struct vmx *", "int", "struct vm_exit *");
229
230SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
231    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
232
233SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
234    "struct vmx *", "int", "struct vm_exit *");
235
236SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
237    "struct vmx *", "int", "struct vm_exit *");
238
239SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
240    "struct vmx *", "int", "struct vm_exit *");
241
242SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
243    "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
244
245SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
246    "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
247
248SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
249    "struct vmx *", "int", "struct vm_exit *", "uint64_t");
250
251SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
252    "struct vmx *", "int", "struct vm_exit *");
253
254SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
255    "struct vmx *", "int", "struct vm_exit *");
256
257SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
258    "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
259
260SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
261    "struct vmx *", "int", "struct vm_exit *");
262
263SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
264    "struct vmx *", "int", "struct vm_exit *");
265
266SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
267    "struct vmx *", "int", "struct vm_exit *");
268
269SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
270    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
271
272SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
273    "struct vmx *", "int", "struct vm_exit *", "int");
274
275/*
276 * Use the last page below 4GB as the APIC access address. This address is
277 * occupied by the boot firmware so it is guaranteed that it will not conflict
278 * with a page in system memory.
279 */
280#define	APIC_ACCESS_ADDRESS	0xFFFFF000
281
282static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
283static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
284static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
285static void vmx_inject_pir(struct vlapic *vlapic);
286
287#ifdef KTR
288static const char *
289exit_reason_to_str(int reason)
290{
291	static char reasonbuf[32];
292
293	switch (reason) {
294	case EXIT_REASON_EXCEPTION:
295		return "exception";
296	case EXIT_REASON_EXT_INTR:
297		return "extint";
298	case EXIT_REASON_TRIPLE_FAULT:
299		return "triplefault";
300	case EXIT_REASON_INIT:
301		return "init";
302	case EXIT_REASON_SIPI:
303		return "sipi";
304	case EXIT_REASON_IO_SMI:
305		return "iosmi";
306	case EXIT_REASON_SMI:
307		return "smi";
308	case EXIT_REASON_INTR_WINDOW:
309		return "intrwindow";
310	case EXIT_REASON_NMI_WINDOW:
311		return "nmiwindow";
312	case EXIT_REASON_TASK_SWITCH:
313		return "taskswitch";
314	case EXIT_REASON_CPUID:
315		return "cpuid";
316	case EXIT_REASON_GETSEC:
317		return "getsec";
318	case EXIT_REASON_HLT:
319		return "hlt";
320	case EXIT_REASON_INVD:
321		return "invd";
322	case EXIT_REASON_INVLPG:
323		return "invlpg";
324	case EXIT_REASON_RDPMC:
325		return "rdpmc";
326	case EXIT_REASON_RDTSC:
327		return "rdtsc";
328	case EXIT_REASON_RSM:
329		return "rsm";
330	case EXIT_REASON_VMCALL:
331		return "vmcall";
332	case EXIT_REASON_VMCLEAR:
333		return "vmclear";
334	case EXIT_REASON_VMLAUNCH:
335		return "vmlaunch";
336	case EXIT_REASON_VMPTRLD:
337		return "vmptrld";
338	case EXIT_REASON_VMPTRST:
339		return "vmptrst";
340	case EXIT_REASON_VMREAD:
341		return "vmread";
342	case EXIT_REASON_VMRESUME:
343		return "vmresume";
344	case EXIT_REASON_VMWRITE:
345		return "vmwrite";
346	case EXIT_REASON_VMXOFF:
347		return "vmxoff";
348	case EXIT_REASON_VMXON:
349		return "vmxon";
350	case EXIT_REASON_CR_ACCESS:
351		return "craccess";
352	case EXIT_REASON_DR_ACCESS:
353		return "draccess";
354	case EXIT_REASON_INOUT:
355		return "inout";
356	case EXIT_REASON_RDMSR:
357		return "rdmsr";
358	case EXIT_REASON_WRMSR:
359		return "wrmsr";
360	case EXIT_REASON_INVAL_VMCS:
361		return "invalvmcs";
362	case EXIT_REASON_INVAL_MSR:
363		return "invalmsr";
364	case EXIT_REASON_MWAIT:
365		return "mwait";
366	case EXIT_REASON_MTF:
367		return "mtf";
368	case EXIT_REASON_MONITOR:
369		return "monitor";
370	case EXIT_REASON_PAUSE:
371		return "pause";
372	case EXIT_REASON_MCE_DURING_ENTRY:
373		return "mce-during-entry";
374	case EXIT_REASON_TPR:
375		return "tpr";
376	case EXIT_REASON_APIC_ACCESS:
377		return "apic-access";
378	case EXIT_REASON_GDTR_IDTR:
379		return "gdtridtr";
380	case EXIT_REASON_LDTR_TR:
381		return "ldtrtr";
382	case EXIT_REASON_EPT_FAULT:
383		return "eptfault";
384	case EXIT_REASON_EPT_MISCONFIG:
385		return "eptmisconfig";
386	case EXIT_REASON_INVEPT:
387		return "invept";
388	case EXIT_REASON_RDTSCP:
389		return "rdtscp";
390	case EXIT_REASON_VMX_PREEMPT:
391		return "vmxpreempt";
392	case EXIT_REASON_INVVPID:
393		return "invvpid";
394	case EXIT_REASON_WBINVD:
395		return "wbinvd";
396	case EXIT_REASON_XSETBV:
397		return "xsetbv";
398	case EXIT_REASON_APIC_WRITE:
399		return "apic-write";
400	default:
401		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
402		return (reasonbuf);
403	}
404}
405#endif	/* KTR */
406
407static int
408vmx_allow_x2apic_msrs(struct vmx *vmx)
409{
410	int i, error;
411
412	error = 0;
413
414	/*
415	 * Allow readonly access to the following x2APIC MSRs from the guest.
416	 */
417	error += guest_msr_ro(vmx, MSR_APIC_ID);
418	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
419	error += guest_msr_ro(vmx, MSR_APIC_LDR);
420	error += guest_msr_ro(vmx, MSR_APIC_SVR);
421
422	for (i = 0; i < 8; i++)
423		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
424
425	for (i = 0; i < 8; i++)
426		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
427
428	for (i = 0; i < 8; i++)
429		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
430
431	error += guest_msr_ro(vmx, MSR_APIC_ESR);
432	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
433	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
434	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
435	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
436	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
437	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
438	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
439	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
440	error += guest_msr_ro(vmx, MSR_APIC_ICR);
441
442	/*
443	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
444	 *
445	 * These registers get special treatment described in the section
446	 * "Virtualizing MSR-Based APIC Accesses".
447	 */
448	error += guest_msr_rw(vmx, MSR_APIC_TPR);
449	error += guest_msr_rw(vmx, MSR_APIC_EOI);
450	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
451
452	return (error);
453}
454
455u_long
456vmx_fix_cr0(u_long cr0)
457{
458
459	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
460}
461
462u_long
463vmx_fix_cr4(u_long cr4)
464{
465
466	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
467}
468
469static void
470vpid_free(int vpid)
471{
472	if (vpid < 0 || vpid > 0xffff)
473		panic("vpid_free: invalid vpid %d", vpid);
474
475	/*
476	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
477	 * the unit number allocator.
478	 */
479
480	if (vpid > VM_MAXCPU)
481		free_unr(vpid_unr, vpid);
482}
483
484static void
485vpid_alloc(uint16_t *vpid, int num)
486{
487	int i, x;
488
489	if (num <= 0 || num > VM_MAXCPU)
490		panic("invalid number of vpids requested: %d", num);
491
492	/*
493	 * If the "enable vpid" execution control is not enabled then the
494	 * VPID is required to be 0 for all vcpus.
495	 */
496	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
497		for (i = 0; i < num; i++)
498			vpid[i] = 0;
499		return;
500	}
501
502	/*
503	 * Allocate a unique VPID for each vcpu from the unit number allocator.
504	 */
505	for (i = 0; i < num; i++) {
506		x = alloc_unr(vpid_unr);
507		if (x == -1)
508			break;
509		else
510			vpid[i] = x;
511	}
512
513	if (i < num) {
514		atomic_add_int(&vpid_alloc_failed, 1);
515
516		/*
517		 * If the unit number allocator does not have enough unique
518		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
519		 *
520		 * These VPIDs are not be unique across VMs but this does not
521		 * affect correctness because the combined mappings are also
522		 * tagged with the EP4TA which is unique for each VM.
523		 *
524		 * It is still sub-optimal because the invvpid will invalidate
525		 * combined mappings for a particular VPID across all EP4TAs.
526		 */
527		while (i-- > 0)
528			vpid_free(vpid[i]);
529
530		for (i = 0; i < num; i++)
531			vpid[i] = i + 1;
532	}
533}
534
535static void
536vpid_init(void)
537{
538	/*
539	 * VPID 0 is required when the "enable VPID" execution control is
540	 * disabled.
541	 *
542	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
543	 * unit number allocator does not have sufficient unique VPIDs to
544	 * satisfy the allocation.
545	 *
546	 * The remaining VPIDs are managed by the unit number allocator.
547	 */
548	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
549}
550
551static void
552vmx_disable(void *arg __unused)
553{
554	struct invvpid_desc invvpid_desc = { 0 };
555	struct invept_desc invept_desc = { 0 };
556
557	if (vmxon_enabled[curcpu]) {
558		/*
559		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
560		 *
561		 * VMXON or VMXOFF are not required to invalidate any TLB
562		 * caching structures. This prevents potential retention of
563		 * cached information in the TLB between distinct VMX episodes.
564		 */
565		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
566		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
567		vmxoff();
568	}
569	load_cr4(rcr4() & ~CR4_VMXE);
570}
571
572static int
573vmx_cleanup(void)
574{
575
576	if (pirvec >= 0)
577		lapic_ipi_free(pirvec);
578
579	if (vpid_unr != NULL) {
580		delete_unrhdr(vpid_unr);
581		vpid_unr = NULL;
582	}
583
584	if (nmi_flush_l1d_sw == 1)
585		nmi_flush_l1d_sw = 0;
586
587	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
588
589	return (0);
590}
591
592static void
593vmx_enable(void *arg __unused)
594{
595	int error;
596	uint64_t feature_control;
597
598	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
599	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
600	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
601		wrmsr(MSR_IA32_FEATURE_CONTROL,
602		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
603		    IA32_FEATURE_CONTROL_LOCK);
604	}
605
606	load_cr4(rcr4() | CR4_VMXE);
607
608	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
609	error = vmxon(vmxon_region[curcpu]);
610	if (error == 0)
611		vmxon_enabled[curcpu] = 1;
612}
613
614static void
615vmx_restore(void)
616{
617
618	if (vmxon_enabled[curcpu])
619		vmxon(vmxon_region[curcpu]);
620}
621
622static int
623vmx_init(int ipinum)
624{
625	int error, use_tpr_shadow;
626	uint64_t basic, fixed0, fixed1, feature_control;
627	uint32_t tmp, procbased2_vid_bits;
628
629	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
630	if (!(cpu_feature2 & CPUID2_VMX)) {
631		printf("vmx_init: processor does not support VMX operation\n");
632		return (ENXIO);
633	}
634
635	/*
636	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
637	 * are set (bits 0 and 2 respectively).
638	 */
639	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
640	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
641	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
642		printf("vmx_init: VMX operation disabled by BIOS\n");
643		return (ENXIO);
644	}
645
646	/*
647	 * Verify capabilities MSR_VMX_BASIC:
648	 * - bit 54 indicates support for INS/OUTS decoding
649	 */
650	basic = rdmsr(MSR_VMX_BASIC);
651	if ((basic & (1UL << 54)) == 0) {
652		printf("vmx_init: processor does not support desired basic "
653		    "capabilities\n");
654		return (EINVAL);
655	}
656
657	/* Check support for primary processor-based VM-execution controls */
658	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
659			       MSR_VMX_TRUE_PROCBASED_CTLS,
660			       PROCBASED_CTLS_ONE_SETTING,
661			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
662	if (error) {
663		printf("vmx_init: processor does not support desired primary "
664		       "processor-based controls\n");
665		return (error);
666	}
667
668	/* Clear the processor-based ctl bits that are set on demand */
669	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
670
671	/* Check support for secondary processor-based VM-execution controls */
672	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
673			       MSR_VMX_PROCBASED_CTLS2,
674			       PROCBASED_CTLS2_ONE_SETTING,
675			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
676	if (error) {
677		printf("vmx_init: processor does not support desired secondary "
678		       "processor-based controls\n");
679		return (error);
680	}
681
682	/* Check support for VPID */
683	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
684			       PROCBASED2_ENABLE_VPID, 0, &tmp);
685	if (error == 0)
686		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
687
688	/* Check support for pin-based VM-execution controls */
689	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
690			       MSR_VMX_TRUE_PINBASED_CTLS,
691			       PINBASED_CTLS_ONE_SETTING,
692			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
693	if (error) {
694		printf("vmx_init: processor does not support desired "
695		       "pin-based controls\n");
696		return (error);
697	}
698
699	/* Check support for VM-exit controls */
700	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
701			       VM_EXIT_CTLS_ONE_SETTING,
702			       VM_EXIT_CTLS_ZERO_SETTING,
703			       &exit_ctls);
704	if (error) {
705		printf("vmx_init: processor does not support desired "
706		    "exit controls\n");
707		return (error);
708	}
709
710	/* Check support for VM-entry controls */
711	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
712	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
713	    &entry_ctls);
714	if (error) {
715		printf("vmx_init: processor does not support desired "
716		    "entry controls\n");
717		return (error);
718	}
719
720	/*
721	 * Check support for optional features by testing them
722	 * as individual bits
723	 */
724	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
725					MSR_VMX_TRUE_PROCBASED_CTLS,
726					PROCBASED_HLT_EXITING, 0,
727					&tmp) == 0);
728
729	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
730					MSR_VMX_PROCBASED_CTLS,
731					PROCBASED_MTF, 0,
732					&tmp) == 0);
733
734	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
735					 MSR_VMX_TRUE_PROCBASED_CTLS,
736					 PROCBASED_PAUSE_EXITING, 0,
737					 &tmp) == 0);
738
739	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
740					MSR_VMX_PROCBASED_CTLS2,
741					PROCBASED2_UNRESTRICTED_GUEST, 0,
742				        &tmp) == 0);
743
744	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
745	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
746	    &tmp) == 0);
747
748	/*
749	 * Check support for virtual interrupt delivery.
750	 */
751	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
752	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
753	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
754	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
755
756	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
757	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
758	    &tmp) == 0);
759
760	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
761	    procbased2_vid_bits, 0, &tmp);
762	if (error == 0 && use_tpr_shadow) {
763		virtual_interrupt_delivery = 1;
764		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
765		    &virtual_interrupt_delivery);
766	}
767
768	if (virtual_interrupt_delivery) {
769		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
770		procbased_ctls2 |= procbased2_vid_bits;
771		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
772
773		/*
774		 * No need to emulate accesses to %CR8 if virtual
775		 * interrupt delivery is enabled.
776		 */
777		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
778		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
779
780		/*
781		 * Check for Posted Interrupts only if Virtual Interrupt
782		 * Delivery is enabled.
783		 */
784		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
785		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
786		    &tmp);
787		if (error == 0) {
788			pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
789			    &IDTVEC(justreturn));
790			if (pirvec < 0) {
791				if (bootverbose) {
792					printf("vmx_init: unable to allocate "
793					    "posted interrupt vector\n");
794				}
795			} else {
796				posted_interrupts = 1;
797				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
798				    &posted_interrupts);
799			}
800		}
801	}
802
803	if (posted_interrupts)
804		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
805
806	/* Initialize EPT */
807	error = ept_init(ipinum);
808	if (error) {
809		printf("vmx_init: ept initialization failed (%d)\n", error);
810		return (error);
811	}
812
813	guest_l1d_flush = (cpu_ia32_arch_caps &
814	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
815	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
816
817	/*
818	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
819	 * available.  Otherwise fall back to the software flush
820	 * method which loads enough data from the kernel text to
821	 * flush existing L1D content, both on VMX entry and on NMI
822	 * return.
823	 */
824	if (guest_l1d_flush) {
825		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
826			guest_l1d_flush_sw = 1;
827			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
828			    &guest_l1d_flush_sw);
829		}
830		if (guest_l1d_flush_sw) {
831			if (nmi_flush_l1d_sw <= 1)
832				nmi_flush_l1d_sw = 1;
833		} else {
834			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
835			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
836		}
837	}
838
839	/*
840	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
841	 */
842	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
843	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
844	cr0_ones_mask = fixed0 & fixed1;
845	cr0_zeros_mask = ~fixed0 & ~fixed1;
846
847	/*
848	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
849	 * if unrestricted guest execution is allowed.
850	 */
851	if (cap_unrestricted_guest)
852		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
853
854	/*
855	 * Do not allow the guest to set CR0_NW or CR0_CD.
856	 */
857	cr0_zeros_mask |= (CR0_NW | CR0_CD);
858
859	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
860	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
861	cr4_ones_mask = fixed0 & fixed1;
862	cr4_zeros_mask = ~fixed0 & ~fixed1;
863
864	vpid_init();
865
866	vmx_msr_init();
867
868	/* enable VMX operation */
869	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
870
871	vmx_initialized = 1;
872
873	return (0);
874}
875
876static void
877vmx_trigger_hostintr(int vector)
878{
879	uintptr_t func;
880	struct gate_descriptor *gd;
881
882	gd = &idt[vector];
883
884	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
885	    "invalid vector %d", vector));
886	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
887	    vector));
888	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
889	    "has invalid type %d", vector, gd->gd_type));
890	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
891	    "has invalid dpl %d", vector, gd->gd_dpl));
892	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
893	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
894	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
895	    "IST %d", vector, gd->gd_ist));
896
897	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
898	vmx_call_isr(func);
899}
900
901static int
902vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
903{
904	int error, mask_ident, shadow_ident;
905	uint64_t mask_value;
906
907	if (which != 0 && which != 4)
908		panic("vmx_setup_cr_shadow: unknown cr%d", which);
909
910	if (which == 0) {
911		mask_ident = VMCS_CR0_MASK;
912		mask_value = cr0_ones_mask | cr0_zeros_mask;
913		shadow_ident = VMCS_CR0_SHADOW;
914	} else {
915		mask_ident = VMCS_CR4_MASK;
916		mask_value = cr4_ones_mask | cr4_zeros_mask;
917		shadow_ident = VMCS_CR4_SHADOW;
918	}
919
920	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
921	if (error)
922		return (error);
923
924	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
925	if (error)
926		return (error);
927
928	return (0);
929}
930#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
931#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
932
933static void *
934vmx_vminit(struct vm *vm, pmap_t pmap)
935{
936	uint16_t vpid[VM_MAXCPU];
937	int i, error;
938	struct vmx *vmx;
939	struct vmcs *vmcs;
940	uint32_t exc_bitmap;
941
942	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
943	if ((uintptr_t)vmx & PAGE_MASK) {
944		panic("malloc of struct vmx not aligned on %d byte boundary",
945		      PAGE_SIZE);
946	}
947	vmx->vm = vm;
948
949	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
950
951	/*
952	 * Clean up EPTP-tagged guest physical and combined mappings
953	 *
954	 * VMX transitions are not required to invalidate any guest physical
955	 * mappings. So, it may be possible for stale guest physical mappings
956	 * to be present in the processor TLBs.
957	 *
958	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
959	 */
960	ept_invalidate_mappings(vmx->eptp);
961
962	msr_bitmap_initialize(vmx->msr_bitmap);
963
964	/*
965	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
966	 * The guest FSBASE and GSBASE are saved and restored during
967	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
968	 * always restored from the vmcs host state area on vm-exit.
969	 *
970	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
971	 * how they are saved/restored so can be directly accessed by the
972	 * guest.
973	 *
974	 * MSR_EFER is saved and restored in the guest VMCS area on a
975	 * VM exit and entry respectively. It is also restored from the
976	 * host VMCS area on a VM exit.
977	 *
978	 * The TSC MSR is exposed read-only. Writes are disallowed as
979	 * that will impact the host TSC.  If the guest does a write
980	 * the "use TSC offsetting" execution control is enabled and the
981	 * difference between the host TSC and the guest TSC is written
982	 * into the TSC offset in the VMCS.
983	 */
984	if (guest_msr_rw(vmx, MSR_GSBASE) ||
985	    guest_msr_rw(vmx, MSR_FSBASE) ||
986	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
987	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
988	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
989	    guest_msr_rw(vmx, MSR_EFER) ||
990	    guest_msr_ro(vmx, MSR_TSC))
991		panic("vmx_vminit: error setting guest msr access");
992
993	vpid_alloc(vpid, VM_MAXCPU);
994
995	if (virtual_interrupt_delivery) {
996		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
997		    APIC_ACCESS_ADDRESS);
998		/* XXX this should really return an error to the caller */
999		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1000	}
1001
1002	for (i = 0; i < VM_MAXCPU; i++) {
1003		vmcs = &vmx->vmcs[i];
1004		vmcs->identifier = vmx_revision();
1005		error = vmclear(vmcs);
1006		if (error != 0) {
1007			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
1008			      error, i);
1009		}
1010
1011		vmx_msr_guest_init(vmx, i);
1012
1013		error = vmcs_init(vmcs);
1014		KASSERT(error == 0, ("vmcs_init error %d", error));
1015
1016		VMPTRLD(vmcs);
1017		error = 0;
1018		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1019		error += vmwrite(VMCS_EPTP, vmx->eptp);
1020		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1021		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1022		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1023		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1024		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1025		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1026		error += vmwrite(VMCS_VPID, vpid[i]);
1027
1028		if (guest_l1d_flush && !guest_l1d_flush_sw) {
1029			vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1030			    (vm_offset_t)&msr_load_list[0]));
1031			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1032			    nitems(msr_load_list));
1033			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1034			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1035		}
1036
1037		/* exception bitmap */
1038		if (vcpu_trace_exceptions(vm, i))
1039			exc_bitmap = 0xffffffff;
1040		else
1041			exc_bitmap = 1 << IDT_MC;
1042		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1043
1044		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1045		error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1046
1047		if (virtual_interrupt_delivery) {
1048			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1049			error += vmwrite(VMCS_VIRTUAL_APIC,
1050			    vtophys(&vmx->apic_page[i]));
1051			error += vmwrite(VMCS_EOI_EXIT0, 0);
1052			error += vmwrite(VMCS_EOI_EXIT1, 0);
1053			error += vmwrite(VMCS_EOI_EXIT2, 0);
1054			error += vmwrite(VMCS_EOI_EXIT3, 0);
1055		}
1056		if (posted_interrupts) {
1057			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1058			error += vmwrite(VMCS_PIR_DESC,
1059			    vtophys(&vmx->pir_desc[i]));
1060		}
1061		VMCLEAR(vmcs);
1062		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1063
1064		vmx->cap[i].set = 0;
1065		vmx->cap[i].proc_ctls = procbased_ctls;
1066		vmx->cap[i].proc_ctls2 = procbased_ctls2;
1067
1068		vmx->state[i].nextrip = ~0;
1069		vmx->state[i].lastcpu = NOCPU;
1070		vmx->state[i].vpid = vpid[i];
1071
1072		/*
1073		 * Set up the CR0/4 shadows, and init the read shadow
1074		 * to the power-on register value from the Intel Sys Arch.
1075		 *  CR0 - 0x60000010
1076		 *  CR4 - 0
1077		 */
1078		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1079		if (error != 0)
1080			panic("vmx_setup_cr0_shadow %d", error);
1081
1082		error = vmx_setup_cr4_shadow(vmcs, 0);
1083		if (error != 0)
1084			panic("vmx_setup_cr4_shadow %d", error);
1085
1086		vmx->ctx[i].pmap = pmap;
1087	}
1088
1089	return (vmx);
1090}
1091
1092static int
1093vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1094{
1095	int handled, func;
1096
1097	func = vmxctx->guest_rax;
1098
1099	handled = x86_emulate_cpuid(vm, vcpu,
1100				    (uint32_t*)(&vmxctx->guest_rax),
1101				    (uint32_t*)(&vmxctx->guest_rbx),
1102				    (uint32_t*)(&vmxctx->guest_rcx),
1103				    (uint32_t*)(&vmxctx->guest_rdx));
1104	return (handled);
1105}
1106
1107static __inline void
1108vmx_run_trace(struct vmx *vmx, int vcpu)
1109{
1110#ifdef KTR
1111	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1112#endif
1113}
1114
1115static __inline void
1116vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1117	       int handled)
1118{
1119#ifdef KTR
1120	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1121		 handled ? "handled" : "unhandled",
1122		 exit_reason_to_str(exit_reason), rip);
1123#endif
1124}
1125
1126static __inline void
1127vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1128{
1129#ifdef KTR
1130	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1131#endif
1132}
1133
1134static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1135static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1136
1137/*
1138 * Invalidate guest mappings identified by its vpid from the TLB.
1139 */
1140static __inline void
1141vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1142{
1143	struct vmxstate *vmxstate;
1144	struct invvpid_desc invvpid_desc;
1145
1146	vmxstate = &vmx->state[vcpu];
1147	if (vmxstate->vpid == 0)
1148		return;
1149
1150	if (!running) {
1151		/*
1152		 * Set the 'lastcpu' to an invalid host cpu.
1153		 *
1154		 * This will invalidate TLB entries tagged with the vcpu's
1155		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1156		 */
1157		vmxstate->lastcpu = NOCPU;
1158		return;
1159	}
1160
1161	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1162	    "critical section", __func__, vcpu));
1163
1164	/*
1165	 * Invalidate all mappings tagged with 'vpid'
1166	 *
1167	 * We do this because this vcpu was executing on a different host
1168	 * cpu when it last ran. We do not track whether it invalidated
1169	 * mappings associated with its 'vpid' during that run. So we must
1170	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1171	 * stale and invalidate them.
1172	 *
1173	 * Note that we incur this penalty only when the scheduler chooses to
1174	 * move the thread associated with this vcpu between host cpus.
1175	 *
1176	 * Note also that this will invalidate mappings tagged with 'vpid'
1177	 * for "all" EP4TAs.
1178	 */
1179	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1180		invvpid_desc._res1 = 0;
1181		invvpid_desc._res2 = 0;
1182		invvpid_desc.vpid = vmxstate->vpid;
1183		invvpid_desc.linear_addr = 0;
1184		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1185		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1186	} else {
1187		/*
1188		 * The invvpid can be skipped if an invept is going to
1189		 * be performed before entering the guest. The invept
1190		 * will invalidate combined mappings tagged with
1191		 * 'vmx->eptp' for all vpids.
1192		 */
1193		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1194	}
1195}
1196
1197static void
1198vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1199{
1200	struct vmxstate *vmxstate;
1201
1202	vmxstate = &vmx->state[vcpu];
1203	if (vmxstate->lastcpu == curcpu)
1204		return;
1205
1206	vmxstate->lastcpu = curcpu;
1207
1208	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1209
1210	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1211	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1212	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1213	vmx_invvpid(vmx, vcpu, pmap, 1);
1214}
1215
1216/*
1217 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1218 */
1219CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1220
1221static void __inline
1222vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1223{
1224
1225	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1226		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1227		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1228		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1229	}
1230}
1231
1232static void __inline
1233vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1234{
1235
1236	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1237	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1238	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1239	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1240	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1241}
1242
1243static void __inline
1244vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1245{
1246
1247	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1248		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1249		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1250		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1251	}
1252}
1253
1254static void __inline
1255vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1256{
1257
1258	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1259	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1260	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1261	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1262	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1263}
1264
1265int
1266vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1267{
1268	int error;
1269
1270	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1271		vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1272		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1273		VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1274	}
1275
1276	error = vmwrite(VMCS_TSC_OFFSET, offset);
1277
1278	return (error);
1279}
1280
1281#define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1282			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1283#define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1284			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1285
1286static void
1287vmx_inject_nmi(struct vmx *vmx, int vcpu)
1288{
1289	uint32_t gi, info;
1290
1291	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1292	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1293	    "interruptibility-state %#x", gi));
1294
1295	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1296	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1297	    "VM-entry interruption information %#x", info));
1298
1299	/*
1300	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1301	 * or the VMCS entry check will fail.
1302	 */
1303	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1304	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1305
1306	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1307
1308	/* Clear the request */
1309	vm_nmi_clear(vmx->vm, vcpu);
1310}
1311
1312static void
1313vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1314    uint64_t guestrip)
1315{
1316	int vector, need_nmi_exiting, extint_pending;
1317	uint64_t rflags, entryinfo;
1318	uint32_t gi, info;
1319
1320	if (vmx->state[vcpu].nextrip != guestrip) {
1321		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1322		if (gi & HWINTR_BLOCKING) {
1323			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1324			    "cleared due to rip change: %#lx/%#lx",
1325			    vmx->state[vcpu].nextrip, guestrip);
1326			gi &= ~HWINTR_BLOCKING;
1327			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1328		}
1329	}
1330
1331	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1332		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1333		    "intinfo is not valid: %#lx", __func__, entryinfo));
1334
1335		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1336		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1337		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1338
1339		info = entryinfo;
1340		vector = info & 0xff;
1341		if (vector == IDT_BP || vector == IDT_OF) {
1342			/*
1343			 * VT-x requires #BP and #OF to be injected as software
1344			 * exceptions.
1345			 */
1346			info &= ~VMCS_INTR_T_MASK;
1347			info |= VMCS_INTR_T_SWEXCEPTION;
1348		}
1349
1350		if (info & VMCS_INTR_DEL_ERRCODE)
1351			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1352
1353		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1354	}
1355
1356	if (vm_nmi_pending(vmx->vm, vcpu)) {
1357		/*
1358		 * If there are no conditions blocking NMI injection then
1359		 * inject it directly here otherwise enable "NMI window
1360		 * exiting" to inject it as soon as we can.
1361		 *
1362		 * We also check for STI_BLOCKING because some implementations
1363		 * don't allow NMI injection in this case. If we are running
1364		 * on a processor that doesn't have this restriction it will
1365		 * immediately exit and the NMI will be injected in the
1366		 * "NMI window exiting" handler.
1367		 */
1368		need_nmi_exiting = 1;
1369		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1370		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1371			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1372			if ((info & VMCS_INTR_VALID) == 0) {
1373				vmx_inject_nmi(vmx, vcpu);
1374				need_nmi_exiting = 0;
1375			} else {
1376				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1377				    "due to VM-entry intr info %#x", info);
1378			}
1379		} else {
1380			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1381			    "Guest Interruptibility-state %#x", gi);
1382		}
1383
1384		if (need_nmi_exiting)
1385			vmx_set_nmi_window_exiting(vmx, vcpu);
1386	}
1387
1388	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1389
1390	if (!extint_pending && virtual_interrupt_delivery) {
1391		vmx_inject_pir(vlapic);
1392		return;
1393	}
1394
1395	/*
1396	 * If interrupt-window exiting is already in effect then don't bother
1397	 * checking for pending interrupts. This is just an optimization and
1398	 * not needed for correctness.
1399	 */
1400	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1401		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1402		    "pending int_window_exiting");
1403		return;
1404	}
1405
1406	if (!extint_pending) {
1407		/* Ask the local apic for a vector to inject */
1408		if (!vlapic_pending_intr(vlapic, &vector))
1409			return;
1410
1411		/*
1412		 * From the Intel SDM, Volume 3, Section "Maskable
1413		 * Hardware Interrupts":
1414		 * - maskable interrupt vectors [16,255] can be delivered
1415		 *   through the local APIC.
1416		*/
1417		KASSERT(vector >= 16 && vector <= 255,
1418		    ("invalid vector %d from local APIC", vector));
1419	} else {
1420		/* Ask the legacy pic for a vector to inject */
1421		vatpic_pending_intr(vmx->vm, &vector);
1422
1423		/*
1424		 * From the Intel SDM, Volume 3, Section "Maskable
1425		 * Hardware Interrupts":
1426		 * - maskable interrupt vectors [0,255] can be delivered
1427		 *   through the INTR pin.
1428		 */
1429		KASSERT(vector >= 0 && vector <= 255,
1430		    ("invalid vector %d from INTR", vector));
1431	}
1432
1433	/* Check RFLAGS.IF and the interruptibility state of the guest */
1434	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1435	if ((rflags & PSL_I) == 0) {
1436		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1437		    "rflags %#lx", vector, rflags);
1438		goto cantinject;
1439	}
1440
1441	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1442	if (gi & HWINTR_BLOCKING) {
1443		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1444		    "Guest Interruptibility-state %#x", vector, gi);
1445		goto cantinject;
1446	}
1447
1448	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1449	if (info & VMCS_INTR_VALID) {
1450		/*
1451		 * This is expected and could happen for multiple reasons:
1452		 * - A vectoring VM-entry was aborted due to astpending
1453		 * - A VM-exit happened during event injection.
1454		 * - An exception was injected above.
1455		 * - An NMI was injected above or after "NMI window exiting"
1456		 */
1457		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1458		    "VM-entry intr info %#x", vector, info);
1459		goto cantinject;
1460	}
1461
1462	/* Inject the interrupt */
1463	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1464	info |= vector;
1465	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1466
1467	if (!extint_pending) {
1468		/* Update the Local APIC ISR */
1469		vlapic_intr_accepted(vlapic, vector);
1470	} else {
1471		vm_extint_clear(vmx->vm, vcpu);
1472		vatpic_intr_accepted(vmx->vm, vector);
1473
1474		/*
1475		 * After we accepted the current ExtINT the PIC may
1476		 * have posted another one.  If that is the case, set
1477		 * the Interrupt Window Exiting execution control so
1478		 * we can inject that one too.
1479		 *
1480		 * Also, interrupt window exiting allows us to inject any
1481		 * pending APIC vector that was preempted by the ExtINT
1482		 * as soon as possible. This applies both for the software
1483		 * emulated vlapic and the hardware assisted virtual APIC.
1484		 */
1485		vmx_set_int_window_exiting(vmx, vcpu);
1486	}
1487
1488	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1489
1490	return;
1491
1492cantinject:
1493	/*
1494	 * Set the Interrupt Window Exiting execution control so we can inject
1495	 * the interrupt as soon as blocking condition goes away.
1496	 */
1497	vmx_set_int_window_exiting(vmx, vcpu);
1498}
1499
1500/*
1501 * If the Virtual NMIs execution control is '1' then the logical processor
1502 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1503 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1504 * virtual-NMI blocking.
1505 *
1506 * This unblocking occurs even if the IRET causes a fault. In this case the
1507 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1508 */
1509static void
1510vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1511{
1512	uint32_t gi;
1513
1514	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1515	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1516	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1517	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1518}
1519
1520static void
1521vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1522{
1523	uint32_t gi;
1524
1525	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1526	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1527	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1528	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1529}
1530
1531static void
1532vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1533{
1534	uint32_t gi;
1535
1536	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1537	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1538	    ("NMI blocking is not in effect %#x", gi));
1539}
1540
1541static int
1542vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1543{
1544	struct vmxctx *vmxctx;
1545	uint64_t xcrval;
1546	const struct xsave_limits *limits;
1547
1548	vmxctx = &vmx->ctx[vcpu];
1549	limits = vmm_get_xsave_limits();
1550
1551	/*
1552	 * Note that the processor raises a GP# fault on its own if
1553	 * xsetbv is executed for CPL != 0, so we do not have to
1554	 * emulate that fault here.
1555	 */
1556
1557	/* Only xcr0 is supported. */
1558	if (vmxctx->guest_rcx != 0) {
1559		vm_inject_gp(vmx->vm, vcpu);
1560		return (HANDLED);
1561	}
1562
1563	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1564	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1565		vm_inject_ud(vmx->vm, vcpu);
1566		return (HANDLED);
1567	}
1568
1569	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1570	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1571		vm_inject_gp(vmx->vm, vcpu);
1572		return (HANDLED);
1573	}
1574
1575	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1576		vm_inject_gp(vmx->vm, vcpu);
1577		return (HANDLED);
1578	}
1579
1580	/* AVX (YMM_Hi128) requires SSE. */
1581	if (xcrval & XFEATURE_ENABLED_AVX &&
1582	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1583		vm_inject_gp(vmx->vm, vcpu);
1584		return (HANDLED);
1585	}
1586
1587	/*
1588	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1589	 * ZMM_Hi256, and Hi16_ZMM.
1590	 */
1591	if (xcrval & XFEATURE_AVX512 &&
1592	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1593	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1594		vm_inject_gp(vmx->vm, vcpu);
1595		return (HANDLED);
1596	}
1597
1598	/*
1599	 * Intel MPX requires both bound register state flags to be
1600	 * set.
1601	 */
1602	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1603	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1604		vm_inject_gp(vmx->vm, vcpu);
1605		return (HANDLED);
1606	}
1607
1608	/*
1609	 * This runs "inside" vmrun() with the guest's FPU state, so
1610	 * modifying xcr0 directly modifies the guest's xcr0, not the
1611	 * host's.
1612	 */
1613	load_xcr(0, xcrval);
1614	return (HANDLED);
1615}
1616
1617static uint64_t
1618vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1619{
1620	const struct vmxctx *vmxctx;
1621
1622	vmxctx = &vmx->ctx[vcpu];
1623
1624	switch (ident) {
1625	case 0:
1626		return (vmxctx->guest_rax);
1627	case 1:
1628		return (vmxctx->guest_rcx);
1629	case 2:
1630		return (vmxctx->guest_rdx);
1631	case 3:
1632		return (vmxctx->guest_rbx);
1633	case 4:
1634		return (vmcs_read(VMCS_GUEST_RSP));
1635	case 5:
1636		return (vmxctx->guest_rbp);
1637	case 6:
1638		return (vmxctx->guest_rsi);
1639	case 7:
1640		return (vmxctx->guest_rdi);
1641	case 8:
1642		return (vmxctx->guest_r8);
1643	case 9:
1644		return (vmxctx->guest_r9);
1645	case 10:
1646		return (vmxctx->guest_r10);
1647	case 11:
1648		return (vmxctx->guest_r11);
1649	case 12:
1650		return (vmxctx->guest_r12);
1651	case 13:
1652		return (vmxctx->guest_r13);
1653	case 14:
1654		return (vmxctx->guest_r14);
1655	case 15:
1656		return (vmxctx->guest_r15);
1657	default:
1658		panic("invalid vmx register %d", ident);
1659	}
1660}
1661
1662static void
1663vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1664{
1665	struct vmxctx *vmxctx;
1666
1667	vmxctx = &vmx->ctx[vcpu];
1668
1669	switch (ident) {
1670	case 0:
1671		vmxctx->guest_rax = regval;
1672		break;
1673	case 1:
1674		vmxctx->guest_rcx = regval;
1675		break;
1676	case 2:
1677		vmxctx->guest_rdx = regval;
1678		break;
1679	case 3:
1680		vmxctx->guest_rbx = regval;
1681		break;
1682	case 4:
1683		vmcs_write(VMCS_GUEST_RSP, regval);
1684		break;
1685	case 5:
1686		vmxctx->guest_rbp = regval;
1687		break;
1688	case 6:
1689		vmxctx->guest_rsi = regval;
1690		break;
1691	case 7:
1692		vmxctx->guest_rdi = regval;
1693		break;
1694	case 8:
1695		vmxctx->guest_r8 = regval;
1696		break;
1697	case 9:
1698		vmxctx->guest_r9 = regval;
1699		break;
1700	case 10:
1701		vmxctx->guest_r10 = regval;
1702		break;
1703	case 11:
1704		vmxctx->guest_r11 = regval;
1705		break;
1706	case 12:
1707		vmxctx->guest_r12 = regval;
1708		break;
1709	case 13:
1710		vmxctx->guest_r13 = regval;
1711		break;
1712	case 14:
1713		vmxctx->guest_r14 = regval;
1714		break;
1715	case 15:
1716		vmxctx->guest_r15 = regval;
1717		break;
1718	default:
1719		panic("invalid vmx register %d", ident);
1720	}
1721}
1722
1723static int
1724vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1725{
1726	uint64_t crval, regval;
1727
1728	/* We only handle mov to %cr0 at this time */
1729	if ((exitqual & 0xf0) != 0x00)
1730		return (UNHANDLED);
1731
1732	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1733
1734	vmcs_write(VMCS_CR0_SHADOW, regval);
1735
1736	crval = regval | cr0_ones_mask;
1737	crval &= ~cr0_zeros_mask;
1738	vmcs_write(VMCS_GUEST_CR0, crval);
1739
1740	if (regval & CR0_PG) {
1741		uint64_t efer, entry_ctls;
1742
1743		/*
1744		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1745		 * the "IA-32e mode guest" bit in VM-entry control must be
1746		 * equal.
1747		 */
1748		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1749		if (efer & EFER_LME) {
1750			efer |= EFER_LMA;
1751			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1752			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1753			entry_ctls |= VM_ENTRY_GUEST_LMA;
1754			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1755		}
1756	}
1757
1758	return (HANDLED);
1759}
1760
1761static int
1762vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1763{
1764	uint64_t crval, regval;
1765
1766	/* We only handle mov to %cr4 at this time */
1767	if ((exitqual & 0xf0) != 0x00)
1768		return (UNHANDLED);
1769
1770	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1771
1772	vmcs_write(VMCS_CR4_SHADOW, regval);
1773
1774	crval = regval | cr4_ones_mask;
1775	crval &= ~cr4_zeros_mask;
1776	vmcs_write(VMCS_GUEST_CR4, crval);
1777
1778	return (HANDLED);
1779}
1780
1781static int
1782vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1783{
1784	struct vlapic *vlapic;
1785	uint64_t cr8;
1786	int regnum;
1787
1788	/* We only handle mov %cr8 to/from a register at this time. */
1789	if ((exitqual & 0xe0) != 0x00) {
1790		return (UNHANDLED);
1791	}
1792
1793	vlapic = vm_lapic(vmx->vm, vcpu);
1794	regnum = (exitqual >> 8) & 0xf;
1795	if (exitqual & 0x10) {
1796		cr8 = vlapic_get_cr8(vlapic);
1797		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1798	} else {
1799		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1800		vlapic_set_cr8(vlapic, cr8);
1801	}
1802
1803	return (HANDLED);
1804}
1805
1806/*
1807 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1808 */
1809static int
1810vmx_cpl(void)
1811{
1812	uint32_t ssar;
1813
1814	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1815	return ((ssar >> 5) & 0x3);
1816}
1817
1818static enum vm_cpu_mode
1819vmx_cpu_mode(void)
1820{
1821	uint32_t csar;
1822
1823	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1824		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1825		if (csar & 0x2000)
1826			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1827		else
1828			return (CPU_MODE_COMPATIBILITY);
1829	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1830		return (CPU_MODE_PROTECTED);
1831	} else {
1832		return (CPU_MODE_REAL);
1833	}
1834}
1835
1836static enum vm_paging_mode
1837vmx_paging_mode(void)
1838{
1839
1840	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1841		return (PAGING_MODE_FLAT);
1842	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1843		return (PAGING_MODE_32);
1844	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1845		return (PAGING_MODE_64);
1846	else
1847		return (PAGING_MODE_PAE);
1848}
1849
1850static uint64_t
1851inout_str_index(struct vmx *vmx, int vcpuid, int in)
1852{
1853	uint64_t val;
1854	int error;
1855	enum vm_reg_name reg;
1856
1857	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1858	error = vmx_getreg(vmx, vcpuid, reg, &val);
1859	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1860	return (val);
1861}
1862
1863static uint64_t
1864inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1865{
1866	uint64_t val;
1867	int error;
1868
1869	if (rep) {
1870		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1871		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1872	} else {
1873		val = 1;
1874	}
1875	return (val);
1876}
1877
1878static int
1879inout_str_addrsize(uint32_t inst_info)
1880{
1881	uint32_t size;
1882
1883	size = (inst_info >> 7) & 0x7;
1884	switch (size) {
1885	case 0:
1886		return (2);	/* 16 bit */
1887	case 1:
1888		return (4);	/* 32 bit */
1889	case 2:
1890		return (8);	/* 64 bit */
1891	default:
1892		panic("%s: invalid size encoding %d", __func__, size);
1893	}
1894}
1895
1896static void
1897inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1898    struct vm_inout_str *vis)
1899{
1900	int error, s;
1901
1902	if (in) {
1903		vis->seg_name = VM_REG_GUEST_ES;
1904	} else {
1905		s = (inst_info >> 15) & 0x7;
1906		vis->seg_name = vm_segment_name(s);
1907	}
1908
1909	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1910	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1911}
1912
1913static void
1914vmx_paging_info(struct vm_guest_paging *paging)
1915{
1916	paging->cr3 = vmcs_guest_cr3();
1917	paging->cpl = vmx_cpl();
1918	paging->cpu_mode = vmx_cpu_mode();
1919	paging->paging_mode = vmx_paging_mode();
1920}
1921
1922static void
1923vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1924{
1925	struct vm_guest_paging *paging;
1926	uint32_t csar;
1927
1928	paging = &vmexit->u.inst_emul.paging;
1929
1930	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1931	vmexit->inst_length = 0;
1932	vmexit->u.inst_emul.gpa = gpa;
1933	vmexit->u.inst_emul.gla = gla;
1934	vmx_paging_info(paging);
1935	switch (paging->cpu_mode) {
1936	case CPU_MODE_REAL:
1937		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1938		vmexit->u.inst_emul.cs_d = 0;
1939		break;
1940	case CPU_MODE_PROTECTED:
1941	case CPU_MODE_COMPATIBILITY:
1942		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1943		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1944		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1945		break;
1946	default:
1947		vmexit->u.inst_emul.cs_base = 0;
1948		vmexit->u.inst_emul.cs_d = 0;
1949		break;
1950	}
1951	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1952}
1953
1954static int
1955ept_fault_type(uint64_t ept_qual)
1956{
1957	int fault_type;
1958
1959	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1960		fault_type = VM_PROT_WRITE;
1961	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1962		fault_type = VM_PROT_EXECUTE;
1963	else
1964		fault_type= VM_PROT_READ;
1965
1966	return (fault_type);
1967}
1968
1969static boolean_t
1970ept_emulation_fault(uint64_t ept_qual)
1971{
1972	int read, write;
1973
1974	/* EPT fault on an instruction fetch doesn't make sense here */
1975	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1976		return (FALSE);
1977
1978	/* EPT fault must be a read fault or a write fault */
1979	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1980	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1981	if ((read | write) == 0)
1982		return (FALSE);
1983
1984	/*
1985	 * The EPT violation must have been caused by accessing a
1986	 * guest-physical address that is a translation of a guest-linear
1987	 * address.
1988	 */
1989	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1990	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1991		return (FALSE);
1992	}
1993
1994	return (TRUE);
1995}
1996
1997static __inline int
1998apic_access_virtualization(struct vmx *vmx, int vcpuid)
1999{
2000	uint32_t proc_ctls2;
2001
2002	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2003	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2004}
2005
2006static __inline int
2007x2apic_virtualization(struct vmx *vmx, int vcpuid)
2008{
2009	uint32_t proc_ctls2;
2010
2011	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2012	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2013}
2014
2015static int
2016vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2017    uint64_t qual)
2018{
2019	int error, handled, offset;
2020	uint32_t *apic_regs, vector;
2021	bool retu;
2022
2023	handled = HANDLED;
2024	offset = APIC_WRITE_OFFSET(qual);
2025
2026	if (!apic_access_virtualization(vmx, vcpuid)) {
2027		/*
2028		 * In general there should not be any APIC write VM-exits
2029		 * unless APIC-access virtualization is enabled.
2030		 *
2031		 * However self-IPI virtualization can legitimately trigger
2032		 * an APIC-write VM-exit so treat it specially.
2033		 */
2034		if (x2apic_virtualization(vmx, vcpuid) &&
2035		    offset == APIC_OFFSET_SELF_IPI) {
2036			apic_regs = (uint32_t *)(vlapic->apic_page);
2037			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2038			vlapic_self_ipi_handler(vlapic, vector);
2039			return (HANDLED);
2040		} else
2041			return (UNHANDLED);
2042	}
2043
2044	switch (offset) {
2045	case APIC_OFFSET_ID:
2046		vlapic_id_write_handler(vlapic);
2047		break;
2048	case APIC_OFFSET_LDR:
2049		vlapic_ldr_write_handler(vlapic);
2050		break;
2051	case APIC_OFFSET_DFR:
2052		vlapic_dfr_write_handler(vlapic);
2053		break;
2054	case APIC_OFFSET_SVR:
2055		vlapic_svr_write_handler(vlapic);
2056		break;
2057	case APIC_OFFSET_ESR:
2058		vlapic_esr_write_handler(vlapic);
2059		break;
2060	case APIC_OFFSET_ICR_LOW:
2061		retu = false;
2062		error = vlapic_icrlo_write_handler(vlapic, &retu);
2063		if (error != 0 || retu)
2064			handled = UNHANDLED;
2065		break;
2066	case APIC_OFFSET_CMCI_LVT:
2067	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2068		vlapic_lvt_write_handler(vlapic, offset);
2069		break;
2070	case APIC_OFFSET_TIMER_ICR:
2071		vlapic_icrtmr_write_handler(vlapic);
2072		break;
2073	case APIC_OFFSET_TIMER_DCR:
2074		vlapic_dcr_write_handler(vlapic);
2075		break;
2076	default:
2077		handled = UNHANDLED;
2078		break;
2079	}
2080	return (handled);
2081}
2082
2083static bool
2084apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2085{
2086
2087	if (apic_access_virtualization(vmx, vcpuid) &&
2088	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2089		return (true);
2090	else
2091		return (false);
2092}
2093
2094static int
2095vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2096{
2097	uint64_t qual;
2098	int access_type, offset, allowed;
2099
2100	if (!apic_access_virtualization(vmx, vcpuid))
2101		return (UNHANDLED);
2102
2103	qual = vmexit->u.vmx.exit_qualification;
2104	access_type = APIC_ACCESS_TYPE(qual);
2105	offset = APIC_ACCESS_OFFSET(qual);
2106
2107	allowed = 0;
2108	if (access_type == 0) {
2109		/*
2110		 * Read data access to the following registers is expected.
2111		 */
2112		switch (offset) {
2113		case APIC_OFFSET_APR:
2114		case APIC_OFFSET_PPR:
2115		case APIC_OFFSET_RRR:
2116		case APIC_OFFSET_CMCI_LVT:
2117		case APIC_OFFSET_TIMER_CCR:
2118			allowed = 1;
2119			break;
2120		default:
2121			break;
2122		}
2123	} else if (access_type == 1) {
2124		/*
2125		 * Write data access to the following registers is expected.
2126		 */
2127		switch (offset) {
2128		case APIC_OFFSET_VER:
2129		case APIC_OFFSET_APR:
2130		case APIC_OFFSET_PPR:
2131		case APIC_OFFSET_RRR:
2132		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2133		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2134		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2135		case APIC_OFFSET_CMCI_LVT:
2136		case APIC_OFFSET_TIMER_CCR:
2137			allowed = 1;
2138			break;
2139		default:
2140			break;
2141		}
2142	}
2143
2144	if (allowed) {
2145		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2146		    VIE_INVALID_GLA);
2147	}
2148
2149	/*
2150	 * Regardless of whether the APIC-access is allowed this handler
2151	 * always returns UNHANDLED:
2152	 * - if the access is allowed then it is handled by emulating the
2153	 *   instruction that caused the VM-exit (outside the critical section)
2154	 * - if the access is not allowed then it will be converted to an
2155	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2156	 */
2157	return (UNHANDLED);
2158}
2159
2160static enum task_switch_reason
2161vmx_task_switch_reason(uint64_t qual)
2162{
2163	int reason;
2164
2165	reason = (qual >> 30) & 0x3;
2166	switch (reason) {
2167	case 0:
2168		return (TSR_CALL);
2169	case 1:
2170		return (TSR_IRET);
2171	case 2:
2172		return (TSR_JMP);
2173	case 3:
2174		return (TSR_IDT_GATE);
2175	default:
2176		panic("%s: invalid reason %d", __func__, reason);
2177	}
2178}
2179
2180static int
2181emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2182{
2183	int error;
2184
2185	if (lapic_msr(num))
2186		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2187	else
2188		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2189
2190	return (error);
2191}
2192
2193static int
2194emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2195{
2196	struct vmxctx *vmxctx;
2197	uint64_t result;
2198	uint32_t eax, edx;
2199	int error;
2200
2201	if (lapic_msr(num))
2202		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2203	else
2204		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2205
2206	if (error == 0) {
2207		eax = result;
2208		vmxctx = &vmx->ctx[vcpuid];
2209		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2210		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2211
2212		edx = result >> 32;
2213		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2214		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2215	}
2216
2217	return (error);
2218}
2219
2220static int
2221vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2222{
2223	int error, errcode, errcode_valid, handled, in;
2224	struct vmxctx *vmxctx;
2225	struct vlapic *vlapic;
2226	struct vm_inout_str *vis;
2227	struct vm_task_switch *ts;
2228	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2229	uint32_t intr_type, intr_vec, reason;
2230	uint64_t exitintinfo, qual, gpa;
2231	bool retu;
2232
2233	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2234	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2235
2236	handled = UNHANDLED;
2237	vmxctx = &vmx->ctx[vcpu];
2238
2239	qual = vmexit->u.vmx.exit_qualification;
2240	reason = vmexit->u.vmx.exit_reason;
2241	vmexit->exitcode = VM_EXITCODE_BOGUS;
2242
2243	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2244	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2245
2246	/*
2247	 * VM-entry failures during or after loading guest state.
2248	 *
2249	 * These VM-exits are uncommon but must be handled specially
2250	 * as most VM-exit fields are not populated as usual.
2251	 */
2252	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2253		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2254		__asm __volatile("int $18");
2255		return (1);
2256	}
2257
2258	/*
2259	 * VM exits that can be triggered during event delivery need to
2260	 * be handled specially by re-injecting the event if the IDT
2261	 * vectoring information field's valid bit is set.
2262	 *
2263	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2264	 * for details.
2265	 */
2266	idtvec_info = vmcs_idt_vectoring_info();
2267	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2268		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2269		exitintinfo = idtvec_info;
2270		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2271			idtvec_err = vmcs_idt_vectoring_err();
2272			exitintinfo |= (uint64_t)idtvec_err << 32;
2273		}
2274		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2275		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2276		    __func__, error));
2277
2278		/*
2279		 * If 'virtual NMIs' are being used and the VM-exit
2280		 * happened while injecting an NMI during the previous
2281		 * VM-entry, then clear "blocking by NMI" in the
2282		 * Guest Interruptibility-State so the NMI can be
2283		 * reinjected on the subsequent VM-entry.
2284		 *
2285		 * However, if the NMI was being delivered through a task
2286		 * gate, then the new task must start execution with NMIs
2287		 * blocked so don't clear NMI blocking in this case.
2288		 */
2289		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2290		if (intr_type == VMCS_INTR_T_NMI) {
2291			if (reason != EXIT_REASON_TASK_SWITCH)
2292				vmx_clear_nmi_blocking(vmx, vcpu);
2293			else
2294				vmx_assert_nmi_blocking(vmx, vcpu);
2295		}
2296
2297		/*
2298		 * Update VM-entry instruction length if the event being
2299		 * delivered was a software interrupt or software exception.
2300		 */
2301		if (intr_type == VMCS_INTR_T_SWINTR ||
2302		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2303		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2304			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2305		}
2306	}
2307
2308	switch (reason) {
2309	case EXIT_REASON_TASK_SWITCH:
2310		ts = &vmexit->u.task_switch;
2311		ts->tsssel = qual & 0xffff;
2312		ts->reason = vmx_task_switch_reason(qual);
2313		ts->ext = 0;
2314		ts->errcode_valid = 0;
2315		vmx_paging_info(&ts->paging);
2316		/*
2317		 * If the task switch was due to a CALL, JMP, IRET, software
2318		 * interrupt (INT n) or software exception (INT3, INTO),
2319		 * then the saved %rip references the instruction that caused
2320		 * the task switch. The instruction length field in the VMCS
2321		 * is valid in this case.
2322		 *
2323		 * In all other cases (e.g., NMI, hardware exception) the
2324		 * saved %rip is one that would have been saved in the old TSS
2325		 * had the task switch completed normally so the instruction
2326		 * length field is not needed in this case and is explicitly
2327		 * set to 0.
2328		 */
2329		if (ts->reason == TSR_IDT_GATE) {
2330			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2331			    ("invalid idtvec_info %#x for IDT task switch",
2332			    idtvec_info));
2333			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2334			if (intr_type != VMCS_INTR_T_SWINTR &&
2335			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2336			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2337				/* Task switch triggered by external event */
2338				ts->ext = 1;
2339				vmexit->inst_length = 0;
2340				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2341					ts->errcode_valid = 1;
2342					ts->errcode = vmcs_idt_vectoring_err();
2343				}
2344			}
2345		}
2346		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2347		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2348		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2349		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2350		    ts->ext ? "external" : "internal",
2351		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2352		break;
2353	case EXIT_REASON_CR_ACCESS:
2354		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2355		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2356		switch (qual & 0xf) {
2357		case 0:
2358			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2359			break;
2360		case 4:
2361			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2362			break;
2363		case 8:
2364			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2365			break;
2366		}
2367		break;
2368	case EXIT_REASON_RDMSR:
2369		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2370		retu = false;
2371		ecx = vmxctx->guest_rcx;
2372		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2373		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2374		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2375		if (error) {
2376			vmexit->exitcode = VM_EXITCODE_RDMSR;
2377			vmexit->u.msr.code = ecx;
2378		} else if (!retu) {
2379			handled = HANDLED;
2380		} else {
2381			/* Return to userspace with a valid exitcode */
2382			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2383			    ("emulate_rdmsr retu with bogus exitcode"));
2384		}
2385		break;
2386	case EXIT_REASON_WRMSR:
2387		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2388		retu = false;
2389		eax = vmxctx->guest_rax;
2390		ecx = vmxctx->guest_rcx;
2391		edx = vmxctx->guest_rdx;
2392		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2393		    ecx, (uint64_t)edx << 32 | eax);
2394		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2395		    (uint64_t)edx << 32 | eax);
2396		error = emulate_wrmsr(vmx, vcpu, ecx,
2397		    (uint64_t)edx << 32 | eax, &retu);
2398		if (error) {
2399			vmexit->exitcode = VM_EXITCODE_WRMSR;
2400			vmexit->u.msr.code = ecx;
2401			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2402		} else if (!retu) {
2403			handled = HANDLED;
2404		} else {
2405			/* Return to userspace with a valid exitcode */
2406			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2407			    ("emulate_wrmsr retu with bogus exitcode"));
2408		}
2409		break;
2410	case EXIT_REASON_HLT:
2411		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2412		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2413		vmexit->exitcode = VM_EXITCODE_HLT;
2414		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2415		if (virtual_interrupt_delivery)
2416			vmexit->u.hlt.intr_status =
2417			    vmcs_read(VMCS_GUEST_INTR_STATUS);
2418		else
2419			vmexit->u.hlt.intr_status = 0;
2420		break;
2421	case EXIT_REASON_MTF:
2422		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2423		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2424		vmexit->exitcode = VM_EXITCODE_MTRAP;
2425		vmexit->inst_length = 0;
2426		break;
2427	case EXIT_REASON_PAUSE:
2428		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2429		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2430		vmexit->exitcode = VM_EXITCODE_PAUSE;
2431		break;
2432	case EXIT_REASON_INTR_WINDOW:
2433		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2434		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2435		vmx_clear_int_window_exiting(vmx, vcpu);
2436		return (1);
2437	case EXIT_REASON_EXT_INTR:
2438		/*
2439		 * External interrupts serve only to cause VM exits and allow
2440		 * the host interrupt handler to run.
2441		 *
2442		 * If this external interrupt triggers a virtual interrupt
2443		 * to a VM, then that state will be recorded by the
2444		 * host interrupt handler in the VM's softc. We will inject
2445		 * this virtual interrupt during the subsequent VM enter.
2446		 */
2447		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2448		SDT_PROBE4(vmm, vmx, exit, interrupt,
2449		    vmx, vcpu, vmexit, intr_info);
2450
2451		/*
2452		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2453		 * This appears to be a bug in VMware Fusion?
2454		 */
2455		if (!(intr_info & VMCS_INTR_VALID))
2456			return (1);
2457		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2458		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2459		    ("VM exit interruption info invalid: %#x", intr_info));
2460		vmx_trigger_hostintr(intr_info & 0xff);
2461
2462		/*
2463		 * This is special. We want to treat this as an 'handled'
2464		 * VM-exit but not increment the instruction pointer.
2465		 */
2466		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2467		return (1);
2468	case EXIT_REASON_NMI_WINDOW:
2469		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2470		/* Exit to allow the pending virtual NMI to be injected */
2471		if (vm_nmi_pending(vmx->vm, vcpu))
2472			vmx_inject_nmi(vmx, vcpu);
2473		vmx_clear_nmi_window_exiting(vmx, vcpu);
2474		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2475		return (1);
2476	case EXIT_REASON_INOUT:
2477		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2478		vmexit->exitcode = VM_EXITCODE_INOUT;
2479		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2480		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2481		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2482		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2483		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2484		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2485		if (vmexit->u.inout.string) {
2486			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2487			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2488			vis = &vmexit->u.inout_str;
2489			vmx_paging_info(&vis->paging);
2490			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2491			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2492			vis->index = inout_str_index(vmx, vcpu, in);
2493			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2494			vis->addrsize = inout_str_addrsize(inst_info);
2495			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2496		}
2497		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2498		break;
2499	case EXIT_REASON_CPUID:
2500		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2501		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2502		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2503		break;
2504	case EXIT_REASON_EXCEPTION:
2505		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2506		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2507		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2508		    ("VM exit interruption info invalid: %#x", intr_info));
2509
2510		intr_vec = intr_info & 0xff;
2511		intr_type = intr_info & VMCS_INTR_T_MASK;
2512
2513		/*
2514		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2515		 * fault encountered during the execution of IRET then we must
2516		 * restore the state of "virtual-NMI blocking" before resuming
2517		 * the guest.
2518		 *
2519		 * See "Resuming Guest Software after Handling an Exception".
2520		 * See "Information for VM Exits Due to Vectored Events".
2521		 */
2522		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2523		    (intr_vec != IDT_DF) &&
2524		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2525			vmx_restore_nmi_blocking(vmx, vcpu);
2526
2527		/*
2528		 * The NMI has already been handled in vmx_exit_handle_nmi().
2529		 */
2530		if (intr_type == VMCS_INTR_T_NMI)
2531			return (1);
2532
2533		/*
2534		 * Call the machine check handler by hand. Also don't reflect
2535		 * the machine check back into the guest.
2536		 */
2537		if (intr_vec == IDT_MC) {
2538			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2539			__asm __volatile("int $18");
2540			return (1);
2541		}
2542
2543		if (intr_vec == IDT_PF) {
2544			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2545			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2546			    __func__, error));
2547		}
2548
2549		/*
2550		 * Software exceptions exhibit trap-like behavior. This in
2551		 * turn requires populating the VM-entry instruction length
2552		 * so that the %rip in the trap frame is past the INT3/INTO
2553		 * instruction.
2554		 */
2555		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2556			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2557
2558		/* Reflect all other exceptions back into the guest */
2559		errcode_valid = errcode = 0;
2560		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2561			errcode_valid = 1;
2562			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2563		}
2564		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2565		    "the guest", intr_vec, errcode);
2566		SDT_PROBE5(vmm, vmx, exit, exception,
2567		    vmx, vcpu, vmexit, intr_vec, errcode);
2568		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2569		    errcode_valid, errcode, 0);
2570		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2571		    __func__, error));
2572		return (1);
2573
2574	case EXIT_REASON_EPT_FAULT:
2575		/*
2576		 * If 'gpa' lies within the address space allocated to
2577		 * memory then this must be a nested page fault otherwise
2578		 * this must be an instruction that accesses MMIO space.
2579		 */
2580		gpa = vmcs_gpa();
2581		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2582		    apic_access_fault(vmx, vcpu, gpa)) {
2583			vmexit->exitcode = VM_EXITCODE_PAGING;
2584			vmexit->inst_length = 0;
2585			vmexit->u.paging.gpa = gpa;
2586			vmexit->u.paging.fault_type = ept_fault_type(qual);
2587			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2588			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2589			    vmx, vcpu, vmexit, gpa, qual);
2590		} else if (ept_emulation_fault(qual)) {
2591			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2592			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2593			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2594			    vmx, vcpu, vmexit, gpa);
2595		}
2596		/*
2597		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2598		 * EPT fault during the execution of IRET then we must restore
2599		 * the state of "virtual-NMI blocking" before resuming.
2600		 *
2601		 * See description of "NMI unblocking due to IRET" in
2602		 * "Exit Qualification for EPT Violations".
2603		 */
2604		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2605		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2606			vmx_restore_nmi_blocking(vmx, vcpu);
2607		break;
2608	case EXIT_REASON_VIRTUALIZED_EOI:
2609		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2610		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2611		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2612		vmexit->inst_length = 0;	/* trap-like */
2613		break;
2614	case EXIT_REASON_APIC_ACCESS:
2615		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2616		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2617		break;
2618	case EXIT_REASON_APIC_WRITE:
2619		/*
2620		 * APIC-write VM exit is trap-like so the %rip is already
2621		 * pointing to the next instruction.
2622		 */
2623		vmexit->inst_length = 0;
2624		vlapic = vm_lapic(vmx->vm, vcpu);
2625		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2626		    vmx, vcpu, vmexit, vlapic);
2627		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2628		break;
2629	case EXIT_REASON_XSETBV:
2630		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2631		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2632		break;
2633	case EXIT_REASON_MONITOR:
2634		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2635		vmexit->exitcode = VM_EXITCODE_MONITOR;
2636		break;
2637	case EXIT_REASON_MWAIT:
2638		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2639		vmexit->exitcode = VM_EXITCODE_MWAIT;
2640		break;
2641	default:
2642		SDT_PROBE4(vmm, vmx, exit, unknown,
2643		    vmx, vcpu, vmexit, reason);
2644		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2645		break;
2646	}
2647
2648	if (handled) {
2649		/*
2650		 * It is possible that control is returned to userland
2651		 * even though we were able to handle the VM exit in the
2652		 * kernel.
2653		 *
2654		 * In such a case we want to make sure that the userland
2655		 * restarts guest execution at the instruction *after*
2656		 * the one we just processed. Therefore we update the
2657		 * guest rip in the VMCS and in 'vmexit'.
2658		 */
2659		vmexit->rip += vmexit->inst_length;
2660		vmexit->inst_length = 0;
2661		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2662	} else {
2663		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2664			/*
2665			 * If this VM exit was not claimed by anybody then
2666			 * treat it as a generic VMX exit.
2667			 */
2668			vmexit->exitcode = VM_EXITCODE_VMX;
2669			vmexit->u.vmx.status = VM_SUCCESS;
2670			vmexit->u.vmx.inst_type = 0;
2671			vmexit->u.vmx.inst_error = 0;
2672		} else {
2673			/*
2674			 * The exitcode and collateral have been populated.
2675			 * The VM exit will be processed further in userland.
2676			 */
2677		}
2678	}
2679
2680	SDT_PROBE4(vmm, vmx, exit, return,
2681	    vmx, vcpu, vmexit, handled);
2682	return (handled);
2683}
2684
2685static __inline void
2686vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2687{
2688
2689	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2690	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2691	    vmxctx->inst_fail_status));
2692
2693	vmexit->inst_length = 0;
2694	vmexit->exitcode = VM_EXITCODE_VMX;
2695	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2696	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2697	vmexit->u.vmx.exit_reason = ~0;
2698	vmexit->u.vmx.exit_qualification = ~0;
2699
2700	switch (rc) {
2701	case VMX_VMRESUME_ERROR:
2702	case VMX_VMLAUNCH_ERROR:
2703	case VMX_INVEPT_ERROR:
2704		vmexit->u.vmx.inst_type = rc;
2705		break;
2706	default:
2707		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2708	}
2709}
2710
2711/*
2712 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2713 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2714 * sufficient to simply vector to the NMI handler via a software interrupt.
2715 * However, this must be done before maskable interrupts are enabled
2716 * otherwise the "iret" issued by an interrupt handler will incorrectly
2717 * clear NMI blocking.
2718 */
2719static __inline void
2720vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2721{
2722	uint32_t intr_info;
2723
2724	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2725
2726	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2727		return;
2728
2729	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2730	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2731	    ("VM exit interruption info invalid: %#x", intr_info));
2732
2733	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2734		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2735		    "to NMI has invalid vector: %#x", intr_info));
2736		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2737		__asm __volatile("int $2");
2738	}
2739}
2740
2741static __inline void
2742vmx_dr_enter_guest(struct vmxctx *vmxctx)
2743{
2744	register_t rflags;
2745
2746	/* Save host control debug registers. */
2747	vmxctx->host_dr7 = rdr7();
2748	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2749
2750	/*
2751	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2752	 * exceptions in the host based on the guest DRx values.  The
2753	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2754	 */
2755	load_dr7(0);
2756	wrmsr(MSR_DEBUGCTLMSR, 0);
2757
2758	/*
2759	 * Disable single stepping the kernel to avoid corrupting the
2760	 * guest DR6.  A debugger might still be able to corrupt the
2761	 * guest DR6 by setting a breakpoint after this point and then
2762	 * single stepping.
2763	 */
2764	rflags = read_rflags();
2765	vmxctx->host_tf = rflags & PSL_T;
2766	write_rflags(rflags & ~PSL_T);
2767
2768	/* Save host debug registers. */
2769	vmxctx->host_dr0 = rdr0();
2770	vmxctx->host_dr1 = rdr1();
2771	vmxctx->host_dr2 = rdr2();
2772	vmxctx->host_dr3 = rdr3();
2773	vmxctx->host_dr6 = rdr6();
2774
2775	/* Restore guest debug registers. */
2776	load_dr0(vmxctx->guest_dr0);
2777	load_dr1(vmxctx->guest_dr1);
2778	load_dr2(vmxctx->guest_dr2);
2779	load_dr3(vmxctx->guest_dr3);
2780	load_dr6(vmxctx->guest_dr6);
2781}
2782
2783static __inline void
2784vmx_dr_leave_guest(struct vmxctx *vmxctx)
2785{
2786
2787	/* Save guest debug registers. */
2788	vmxctx->guest_dr0 = rdr0();
2789	vmxctx->guest_dr1 = rdr1();
2790	vmxctx->guest_dr2 = rdr2();
2791	vmxctx->guest_dr3 = rdr3();
2792	vmxctx->guest_dr6 = rdr6();
2793
2794	/*
2795	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2796	 * PSL_T last.
2797	 */
2798	load_dr0(vmxctx->host_dr0);
2799	load_dr1(vmxctx->host_dr1);
2800	load_dr2(vmxctx->host_dr2);
2801	load_dr3(vmxctx->host_dr3);
2802	load_dr6(vmxctx->host_dr6);
2803	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2804	load_dr7(vmxctx->host_dr7);
2805	write_rflags(read_rflags() | vmxctx->host_tf);
2806}
2807
2808static int
2809vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2810    struct vm_eventinfo *evinfo)
2811{
2812	int rc, handled, launched;
2813	struct vmx *vmx;
2814	struct vm *vm;
2815	struct vmxctx *vmxctx;
2816	struct vmcs *vmcs;
2817	struct vm_exit *vmexit;
2818	struct vlapic *vlapic;
2819	uint32_t exit_reason;
2820	struct region_descriptor gdtr, idtr;
2821	uint16_t ldt_sel;
2822
2823	vmx = arg;
2824	vm = vmx->vm;
2825	vmcs = &vmx->vmcs[vcpu];
2826	vmxctx = &vmx->ctx[vcpu];
2827	vlapic = vm_lapic(vm, vcpu);
2828	vmexit = vm_exitinfo(vm, vcpu);
2829	launched = 0;
2830
2831	KASSERT(vmxctx->pmap == pmap,
2832	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2833
2834	vmx_msr_guest_enter(vmx, vcpu);
2835
2836	VMPTRLD(vmcs);
2837
2838	/*
2839	 * XXX
2840	 * We do this every time because we may setup the virtual machine
2841	 * from a different process than the one that actually runs it.
2842	 *
2843	 * If the life of a virtual machine was spent entirely in the context
2844	 * of a single process we could do this once in vmx_vminit().
2845	 */
2846	vmcs_write(VMCS_HOST_CR3, rcr3());
2847
2848	vmcs_write(VMCS_GUEST_RIP, rip);
2849	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2850	do {
2851		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2852		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2853
2854		handled = UNHANDLED;
2855		/*
2856		 * Interrupts are disabled from this point on until the
2857		 * guest starts executing. This is done for the following
2858		 * reasons:
2859		 *
2860		 * If an AST is asserted on this thread after the check below,
2861		 * then the IPI_AST notification will not be lost, because it
2862		 * will cause a VM exit due to external interrupt as soon as
2863		 * the guest state is loaded.
2864		 *
2865		 * A posted interrupt after 'vmx_inject_interrupts()' will
2866		 * not be "lost" because it will be held pending in the host
2867		 * APIC because interrupts are disabled. The pending interrupt
2868		 * will be recognized as soon as the guest state is loaded.
2869		 *
2870		 * The same reasoning applies to the IPI generated by
2871		 * pmap_invalidate_ept().
2872		 */
2873		disable_intr();
2874		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2875
2876		/*
2877		 * Check for vcpu suspension after injecting events because
2878		 * vmx_inject_interrupts() can suspend the vcpu due to a
2879		 * triple fault.
2880		 */
2881		if (vcpu_suspended(evinfo)) {
2882			enable_intr();
2883			vm_exit_suspended(vmx->vm, vcpu, rip);
2884			break;
2885		}
2886
2887		if (vcpu_rendezvous_pending(evinfo)) {
2888			enable_intr();
2889			vm_exit_rendezvous(vmx->vm, vcpu, rip);
2890			break;
2891		}
2892
2893		if (vcpu_reqidle(evinfo)) {
2894			enable_intr();
2895			vm_exit_reqidle(vmx->vm, vcpu, rip);
2896			break;
2897		}
2898
2899		if (vcpu_should_yield(vm, vcpu)) {
2900			enable_intr();
2901			vm_exit_astpending(vmx->vm, vcpu, rip);
2902			vmx_astpending_trace(vmx, vcpu, rip);
2903			handled = HANDLED;
2904			break;
2905		}
2906
2907		/*
2908		 * VM exits restore the base address but not the
2909		 * limits of GDTR and IDTR.  The VMCS only stores the
2910		 * base address, so VM exits set the limits to 0xffff.
2911		 * Save and restore the full GDTR and IDTR to restore
2912		 * the limits.
2913		 *
2914		 * The VMCS does not save the LDTR at all, and VM
2915		 * exits clear LDTR as if a NULL selector were loaded.
2916		 * The userspace hypervisor probably doesn't use a
2917		 * LDT, but save and restore it to be safe.
2918		 */
2919		sgdt(&gdtr);
2920		sidt(&idtr);
2921		ldt_sel = sldt();
2922
2923		vmx_run_trace(vmx, vcpu);
2924		vmx_dr_enter_guest(vmxctx);
2925		rc = vmx_enter_guest(vmxctx, vmx, launched);
2926		vmx_dr_leave_guest(vmxctx);
2927
2928		bare_lgdt(&gdtr);
2929		lidt(&idtr);
2930		lldt(ldt_sel);
2931
2932		/* Collect some information for VM exit processing */
2933		vmexit->rip = rip = vmcs_guest_rip();
2934		vmexit->inst_length = vmexit_instruction_length();
2935		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2936		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2937
2938		/* Update 'nextrip' */
2939		vmx->state[vcpu].nextrip = rip;
2940
2941		if (rc == VMX_GUEST_VMEXIT) {
2942			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2943			enable_intr();
2944			handled = vmx_exit_process(vmx, vcpu, vmexit);
2945		} else {
2946			enable_intr();
2947			vmx_exit_inst_error(vmxctx, rc, vmexit);
2948		}
2949		launched = 1;
2950		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2951		rip = vmexit->rip;
2952	} while (handled);
2953
2954	/*
2955	 * If a VM exit has been handled then the exitcode must be BOGUS
2956	 * If a VM exit is not handled then the exitcode must not be BOGUS
2957	 */
2958	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2959	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2960		panic("Mismatch between handled (%d) and exitcode (%d)",
2961		      handled, vmexit->exitcode);
2962	}
2963
2964	if (!handled)
2965		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2966
2967	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2968	    vmexit->exitcode);
2969
2970	VMCLEAR(vmcs);
2971	vmx_msr_guest_exit(vmx, vcpu);
2972
2973	return (0);
2974}
2975
2976static void
2977vmx_vmcleanup(void *arg)
2978{
2979	int i;
2980	struct vmx *vmx = arg;
2981
2982	if (apic_access_virtualization(vmx, 0))
2983		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2984
2985	for (i = 0; i < VM_MAXCPU; i++)
2986		vpid_free(vmx->state[i].vpid);
2987
2988	free(vmx, M_VMX);
2989
2990	return;
2991}
2992
2993static register_t *
2994vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2995{
2996
2997	switch (reg) {
2998	case VM_REG_GUEST_RAX:
2999		return (&vmxctx->guest_rax);
3000	case VM_REG_GUEST_RBX:
3001		return (&vmxctx->guest_rbx);
3002	case VM_REG_GUEST_RCX:
3003		return (&vmxctx->guest_rcx);
3004	case VM_REG_GUEST_RDX:
3005		return (&vmxctx->guest_rdx);
3006	case VM_REG_GUEST_RSI:
3007		return (&vmxctx->guest_rsi);
3008	case VM_REG_GUEST_RDI:
3009		return (&vmxctx->guest_rdi);
3010	case VM_REG_GUEST_RBP:
3011		return (&vmxctx->guest_rbp);
3012	case VM_REG_GUEST_R8:
3013		return (&vmxctx->guest_r8);
3014	case VM_REG_GUEST_R9:
3015		return (&vmxctx->guest_r9);
3016	case VM_REG_GUEST_R10:
3017		return (&vmxctx->guest_r10);
3018	case VM_REG_GUEST_R11:
3019		return (&vmxctx->guest_r11);
3020	case VM_REG_GUEST_R12:
3021		return (&vmxctx->guest_r12);
3022	case VM_REG_GUEST_R13:
3023		return (&vmxctx->guest_r13);
3024	case VM_REG_GUEST_R14:
3025		return (&vmxctx->guest_r14);
3026	case VM_REG_GUEST_R15:
3027		return (&vmxctx->guest_r15);
3028	case VM_REG_GUEST_CR2:
3029		return (&vmxctx->guest_cr2);
3030	case VM_REG_GUEST_DR0:
3031		return (&vmxctx->guest_dr0);
3032	case VM_REG_GUEST_DR1:
3033		return (&vmxctx->guest_dr1);
3034	case VM_REG_GUEST_DR2:
3035		return (&vmxctx->guest_dr2);
3036	case VM_REG_GUEST_DR3:
3037		return (&vmxctx->guest_dr3);
3038	case VM_REG_GUEST_DR6:
3039		return (&vmxctx->guest_dr6);
3040	default:
3041		break;
3042	}
3043	return (NULL);
3044}
3045
3046static int
3047vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3048{
3049	register_t *regp;
3050
3051	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3052		*retval = *regp;
3053		return (0);
3054	} else
3055		return (EINVAL);
3056}
3057
3058static int
3059vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3060{
3061	register_t *regp;
3062
3063	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3064		*regp = val;
3065		return (0);
3066	} else
3067		return (EINVAL);
3068}
3069
3070static int
3071vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3072{
3073	uint64_t gi;
3074	int error;
3075
3076	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3077	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3078	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3079	return (error);
3080}
3081
3082static int
3083vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3084{
3085	struct vmcs *vmcs;
3086	uint64_t gi;
3087	int error, ident;
3088
3089	/*
3090	 * Forcing the vcpu into an interrupt shadow is not supported.
3091	 */
3092	if (val) {
3093		error = EINVAL;
3094		goto done;
3095	}
3096
3097	vmcs = &vmx->vmcs[vcpu];
3098	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3099	error = vmcs_getreg(vmcs, running, ident, &gi);
3100	if (error == 0) {
3101		gi &= ~HWINTR_BLOCKING;
3102		error = vmcs_setreg(vmcs, running, ident, gi);
3103	}
3104done:
3105	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3106	    error ? "failed" : "succeeded");
3107	return (error);
3108}
3109
3110static int
3111vmx_shadow_reg(int reg)
3112{
3113	int shreg;
3114
3115	shreg = -1;
3116
3117	switch (reg) {
3118	case VM_REG_GUEST_CR0:
3119		shreg = VMCS_CR0_SHADOW;
3120		break;
3121	case VM_REG_GUEST_CR4:
3122		shreg = VMCS_CR4_SHADOW;
3123		break;
3124	default:
3125		break;
3126	}
3127
3128	return (shreg);
3129}
3130
3131static int
3132vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3133{
3134	int running, hostcpu;
3135	struct vmx *vmx = arg;
3136
3137	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3138	if (running && hostcpu != curcpu)
3139		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3140
3141	if (reg == VM_REG_GUEST_INTR_SHADOW)
3142		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3143
3144	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3145		return (0);
3146
3147	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3148}
3149
3150static int
3151vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3152{
3153	int error, hostcpu, running, shadow;
3154	uint64_t ctls;
3155	pmap_t pmap;
3156	struct vmx *vmx = arg;
3157
3158	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3159	if (running && hostcpu != curcpu)
3160		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3161
3162	if (reg == VM_REG_GUEST_INTR_SHADOW)
3163		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3164
3165	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3166		return (0);
3167
3168	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3169
3170	if (error == 0) {
3171		/*
3172		 * If the "load EFER" VM-entry control is 1 then the
3173		 * value of EFER.LMA must be identical to "IA-32e mode guest"
3174		 * bit in the VM-entry control.
3175		 */
3176		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3177		    (reg == VM_REG_GUEST_EFER)) {
3178			vmcs_getreg(&vmx->vmcs[vcpu], running,
3179				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3180			if (val & EFER_LMA)
3181				ctls |= VM_ENTRY_GUEST_LMA;
3182			else
3183				ctls &= ~VM_ENTRY_GUEST_LMA;
3184			vmcs_setreg(&vmx->vmcs[vcpu], running,
3185				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3186		}
3187
3188		shadow = vmx_shadow_reg(reg);
3189		if (shadow > 0) {
3190			/*
3191			 * Store the unmodified value in the shadow
3192			 */
3193			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3194				    VMCS_IDENT(shadow), val);
3195		}
3196
3197		if (reg == VM_REG_GUEST_CR3) {
3198			/*
3199			 * Invalidate the guest vcpu's TLB mappings to emulate
3200			 * the behavior of updating %cr3.
3201			 *
3202			 * XXX the processor retains global mappings when %cr3
3203			 * is updated but vmx_invvpid() does not.
3204			 */
3205			pmap = vmx->ctx[vcpu].pmap;
3206			vmx_invvpid(vmx, vcpu, pmap, running);
3207		}
3208	}
3209
3210	return (error);
3211}
3212
3213static int
3214vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3215{
3216	int hostcpu, running;
3217	struct vmx *vmx = arg;
3218
3219	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3220	if (running && hostcpu != curcpu)
3221		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3222
3223	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3224}
3225
3226static int
3227vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3228{
3229	int hostcpu, running;
3230	struct vmx *vmx = arg;
3231
3232	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3233	if (running && hostcpu != curcpu)
3234		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3235
3236	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3237}
3238
3239static int
3240vmx_getcap(void *arg, int vcpu, int type, int *retval)
3241{
3242	struct vmx *vmx = arg;
3243	int vcap;
3244	int ret;
3245
3246	ret = ENOENT;
3247
3248	vcap = vmx->cap[vcpu].set;
3249
3250	switch (type) {
3251	case VM_CAP_HALT_EXIT:
3252		if (cap_halt_exit)
3253			ret = 0;
3254		break;
3255	case VM_CAP_PAUSE_EXIT:
3256		if (cap_pause_exit)
3257			ret = 0;
3258		break;
3259	case VM_CAP_MTRAP_EXIT:
3260		if (cap_monitor_trap)
3261			ret = 0;
3262		break;
3263	case VM_CAP_UNRESTRICTED_GUEST:
3264		if (cap_unrestricted_guest)
3265			ret = 0;
3266		break;
3267	case VM_CAP_ENABLE_INVPCID:
3268		if (cap_invpcid)
3269			ret = 0;
3270		break;
3271	default:
3272		break;
3273	}
3274
3275	if (ret == 0)
3276		*retval = (vcap & (1 << type)) ? 1 : 0;
3277
3278	return (ret);
3279}
3280
3281static int
3282vmx_setcap(void *arg, int vcpu, int type, int val)
3283{
3284	struct vmx *vmx = arg;
3285	struct vmcs *vmcs = &vmx->vmcs[vcpu];
3286	uint32_t baseval;
3287	uint32_t *pptr;
3288	int error;
3289	int flag;
3290	int reg;
3291	int retval;
3292
3293	retval = ENOENT;
3294	pptr = NULL;
3295
3296	switch (type) {
3297	case VM_CAP_HALT_EXIT:
3298		if (cap_halt_exit) {
3299			retval = 0;
3300			pptr = &vmx->cap[vcpu].proc_ctls;
3301			baseval = *pptr;
3302			flag = PROCBASED_HLT_EXITING;
3303			reg = VMCS_PRI_PROC_BASED_CTLS;
3304		}
3305		break;
3306	case VM_CAP_MTRAP_EXIT:
3307		if (cap_monitor_trap) {
3308			retval = 0;
3309			pptr = &vmx->cap[vcpu].proc_ctls;
3310			baseval = *pptr;
3311			flag = PROCBASED_MTF;
3312			reg = VMCS_PRI_PROC_BASED_CTLS;
3313		}
3314		break;
3315	case VM_CAP_PAUSE_EXIT:
3316		if (cap_pause_exit) {
3317			retval = 0;
3318			pptr = &vmx->cap[vcpu].proc_ctls;
3319			baseval = *pptr;
3320			flag = PROCBASED_PAUSE_EXITING;
3321			reg = VMCS_PRI_PROC_BASED_CTLS;
3322		}
3323		break;
3324	case VM_CAP_UNRESTRICTED_GUEST:
3325		if (cap_unrestricted_guest) {
3326			retval = 0;
3327			pptr = &vmx->cap[vcpu].proc_ctls2;
3328			baseval = *pptr;
3329			flag = PROCBASED2_UNRESTRICTED_GUEST;
3330			reg = VMCS_SEC_PROC_BASED_CTLS;
3331		}
3332		break;
3333	case VM_CAP_ENABLE_INVPCID:
3334		if (cap_invpcid) {
3335			retval = 0;
3336			pptr = &vmx->cap[vcpu].proc_ctls2;
3337			baseval = *pptr;
3338			flag = PROCBASED2_ENABLE_INVPCID;
3339			reg = VMCS_SEC_PROC_BASED_CTLS;
3340		}
3341		break;
3342	default:
3343		break;
3344	}
3345
3346	if (retval == 0) {
3347		if (val) {
3348			baseval |= flag;
3349		} else {
3350			baseval &= ~flag;
3351		}
3352		VMPTRLD(vmcs);
3353		error = vmwrite(reg, baseval);
3354		VMCLEAR(vmcs);
3355
3356		if (error) {
3357			retval = error;
3358		} else {
3359			/*
3360			 * Update optional stored flags, and record
3361			 * setting
3362			 */
3363			if (pptr != NULL) {
3364				*pptr = baseval;
3365			}
3366
3367			if (val) {
3368				vmx->cap[vcpu].set |= (1 << type);
3369			} else {
3370				vmx->cap[vcpu].set &= ~(1 << type);
3371			}
3372		}
3373	}
3374
3375	return (retval);
3376}
3377
3378struct vlapic_vtx {
3379	struct vlapic	vlapic;
3380	struct pir_desc	*pir_desc;
3381	struct vmx	*vmx;
3382	u_int	pending_prio;
3383};
3384
3385#define VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3386
3387#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3388do {									\
3389	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3390	    level ? "level" : "edge", vector);				\
3391	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3392	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3393	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3394	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3395	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3396} while (0)
3397
3398/*
3399 * vlapic->ops handlers that utilize the APICv hardware assist described in
3400 * Chapter 29 of the Intel SDM.
3401 */
3402static int
3403vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3404{
3405	struct vlapic_vtx *vlapic_vtx;
3406	struct pir_desc *pir_desc;
3407	uint64_t mask;
3408	int idx, notify = 0;
3409
3410	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3411	pir_desc = vlapic_vtx->pir_desc;
3412
3413	/*
3414	 * Keep track of interrupt requests in the PIR descriptor. This is
3415	 * because the virtual APIC page pointed to by the VMCS cannot be
3416	 * modified if the vcpu is running.
3417	 */
3418	idx = vector / 64;
3419	mask = 1UL << (vector % 64);
3420	atomic_set_long(&pir_desc->pir[idx], mask);
3421
3422	/*
3423	 * A notification is required whenever the 'pending' bit makes a
3424	 * transition from 0->1.
3425	 *
3426	 * Even if the 'pending' bit is already asserted, notification about
3427	 * the incoming interrupt may still be necessary.  For example, if a
3428	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3429	 * the 0->1 'pending' transition with a notification, but the vCPU
3430	 * would ignore the interrupt for the time being.  The same vCPU would
3431	 * need to then be notified if a high-priority interrupt arrived which
3432	 * satisfied the PPR.
3433	 *
3434	 * The priorities of interrupts injected while 'pending' is asserted
3435	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3436	 * to-be-injected interrupt exceed the priorities already present, the
3437	 * notification is sent.  The priorities recorded in 'pending_prio' are
3438	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3439	 */
3440	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3441		notify = 1;
3442		vlapic_vtx->pending_prio = 0;
3443	} else {
3444		const u_int old_prio = vlapic_vtx->pending_prio;
3445		const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3446
3447		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3448			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3449			notify = 1;
3450		}
3451	}
3452
3453	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3454	    level, "vmx_set_intr_ready");
3455	return (notify);
3456}
3457
3458static int
3459vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3460{
3461	struct vlapic_vtx *vlapic_vtx;
3462	struct pir_desc *pir_desc;
3463	struct LAPIC *lapic;
3464	uint64_t pending, pirval;
3465	uint32_t ppr, vpr;
3466	int i;
3467
3468	/*
3469	 * This function is only expected to be called from the 'HLT' exit
3470	 * handler which does not care about the vector that is pending.
3471	 */
3472	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3473
3474	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3475	pir_desc = vlapic_vtx->pir_desc;
3476
3477	pending = atomic_load_acq_long(&pir_desc->pending);
3478	if (!pending) {
3479		/*
3480		 * While a virtual interrupt may have already been
3481		 * processed the actual delivery maybe pending the
3482		 * interruptibility of the guest.  Recognize a pending
3483		 * interrupt by reevaluating virtual interrupts
3484		 * following Section 29.2.1 in the Intel SDM Volume 3.
3485		 */
3486		struct vm_exit *vmexit;
3487		uint8_t rvi, ppr;
3488
3489		vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3490		KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3491		    ("vmx_pending_intr: exitcode not 'HLT'"));
3492		rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3493		lapic = vlapic->apic_page;
3494		ppr = lapic->ppr & APIC_TPR_INT;
3495		if (rvi > ppr) {
3496			return (1);
3497		}
3498
3499		return (0);
3500	}
3501
3502	/*
3503	 * If there is an interrupt pending then it will be recognized only
3504	 * if its priority is greater than the processor priority.
3505	 *
3506	 * Special case: if the processor priority is zero then any pending
3507	 * interrupt will be recognized.
3508	 */
3509	lapic = vlapic->apic_page;
3510	ppr = lapic->ppr & APIC_TPR_INT;
3511	if (ppr == 0)
3512		return (1);
3513
3514	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3515	    lapic->ppr);
3516
3517	vpr = 0;
3518	for (i = 3; i >= 0; i--) {
3519		pirval = pir_desc->pir[i];
3520		if (pirval != 0) {
3521			vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3522			break;
3523		}
3524	}
3525
3526	/*
3527	 * If the highest-priority pending interrupt falls short of the
3528	 * processor priority of this vCPU, ensure that 'pending_prio' does not
3529	 * have any stale bits which would preclude a higher-priority interrupt
3530	 * from incurring a notification later.
3531	 */
3532	if (vpr <= ppr) {
3533		const u_int prio_bit = VPR_PRIO_BIT(vpr);
3534		const u_int old = vlapic_vtx->pending_prio;
3535
3536		if (old > prio_bit && (old & prio_bit) == 0) {
3537			vlapic_vtx->pending_prio = prio_bit;
3538		}
3539		return (0);
3540	}
3541	return (1);
3542}
3543
3544static void
3545vmx_intr_accepted(struct vlapic *vlapic, int vector)
3546{
3547
3548	panic("vmx_intr_accepted: not expected to be called");
3549}
3550
3551static void
3552vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3553{
3554	struct vlapic_vtx *vlapic_vtx;
3555	struct vmx *vmx;
3556	struct vmcs *vmcs;
3557	uint64_t mask, val;
3558
3559	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3560	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3561	    ("vmx_set_tmr: vcpu cannot be running"));
3562
3563	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3564	vmx = vlapic_vtx->vmx;
3565	vmcs = &vmx->vmcs[vlapic->vcpuid];
3566	mask = 1UL << (vector % 64);
3567
3568	VMPTRLD(vmcs);
3569	val = vmcs_read(VMCS_EOI_EXIT(vector));
3570	if (level)
3571		val |= mask;
3572	else
3573		val &= ~mask;
3574	vmcs_write(VMCS_EOI_EXIT(vector), val);
3575	VMCLEAR(vmcs);
3576}
3577
3578static void
3579vmx_enable_x2apic_mode(struct vlapic *vlapic)
3580{
3581	struct vmx *vmx;
3582	struct vmcs *vmcs;
3583	uint32_t proc_ctls2;
3584	int vcpuid, error;
3585
3586	vcpuid = vlapic->vcpuid;
3587	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3588	vmcs = &vmx->vmcs[vcpuid];
3589
3590	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3591	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3592	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3593
3594	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3595	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3596	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3597
3598	VMPTRLD(vmcs);
3599	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3600	VMCLEAR(vmcs);
3601
3602	if (vlapic->vcpuid == 0) {
3603		/*
3604		 * The nested page table mappings are shared by all vcpus
3605		 * so unmap the APIC access page just once.
3606		 */
3607		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3608		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3609		    __func__, error));
3610
3611		/*
3612		 * The MSR bitmap is shared by all vcpus so modify it only
3613		 * once in the context of vcpu 0.
3614		 */
3615		error = vmx_allow_x2apic_msrs(vmx);
3616		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3617		    __func__, error));
3618	}
3619}
3620
3621static void
3622vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3623{
3624
3625	ipi_cpu(hostcpu, pirvec);
3626}
3627
3628/*
3629 * Transfer the pending interrupts in the PIR descriptor to the IRR
3630 * in the virtual APIC page.
3631 */
3632static void
3633vmx_inject_pir(struct vlapic *vlapic)
3634{
3635	struct vlapic_vtx *vlapic_vtx;
3636	struct pir_desc *pir_desc;
3637	struct LAPIC *lapic;
3638	uint64_t val, pirval;
3639	int rvi, pirbase = -1;
3640	uint16_t intr_status_old, intr_status_new;
3641
3642	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3643	pir_desc = vlapic_vtx->pir_desc;
3644	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3645		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3646		    "no posted interrupt pending");
3647		return;
3648	}
3649
3650	pirval = 0;
3651	pirbase = -1;
3652	lapic = vlapic->apic_page;
3653
3654	val = atomic_readandclear_long(&pir_desc->pir[0]);
3655	if (val != 0) {
3656		lapic->irr0 |= val;
3657		lapic->irr1 |= val >> 32;
3658		pirbase = 0;
3659		pirval = val;
3660	}
3661
3662	val = atomic_readandclear_long(&pir_desc->pir[1]);
3663	if (val != 0) {
3664		lapic->irr2 |= val;
3665		lapic->irr3 |= val >> 32;
3666		pirbase = 64;
3667		pirval = val;
3668	}
3669
3670	val = atomic_readandclear_long(&pir_desc->pir[2]);
3671	if (val != 0) {
3672		lapic->irr4 |= val;
3673		lapic->irr5 |= val >> 32;
3674		pirbase = 128;
3675		pirval = val;
3676	}
3677
3678	val = atomic_readandclear_long(&pir_desc->pir[3]);
3679	if (val != 0) {
3680		lapic->irr6 |= val;
3681		lapic->irr7 |= val >> 32;
3682		pirbase = 192;
3683		pirval = val;
3684	}
3685
3686	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3687
3688	/*
3689	 * Update RVI so the processor can evaluate pending virtual
3690	 * interrupts on VM-entry.
3691	 *
3692	 * It is possible for pirval to be 0 here, even though the
3693	 * pending bit has been set. The scenario is:
3694	 * CPU-Y is sending a posted interrupt to CPU-X, which
3695	 * is running a guest and processing posted interrupts in h/w.
3696	 * CPU-X will eventually exit and the state seen in s/w is
3697	 * the pending bit set, but no PIR bits set.
3698	 *
3699	 *      CPU-X                      CPU-Y
3700	 *   (vm running)                (host running)
3701	 *   rx posted interrupt
3702	 *   CLEAR pending bit
3703	 *				 SET PIR bit
3704	 *   READ/CLEAR PIR bits
3705	 *				 SET pending bit
3706	 *   (vm exit)
3707	 *   pending bit set, PIR 0
3708	 */
3709	if (pirval != 0) {
3710		rvi = pirbase + flsl(pirval) - 1;
3711		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3712		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3713		if (intr_status_new > intr_status_old) {
3714			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3715			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3716			    "guest_intr_status changed from 0x%04x to 0x%04x",
3717			    intr_status_old, intr_status_new);
3718		}
3719	}
3720}
3721
3722static struct vlapic *
3723vmx_vlapic_init(void *arg, int vcpuid)
3724{
3725	struct vmx *vmx;
3726	struct vlapic *vlapic;
3727	struct vlapic_vtx *vlapic_vtx;
3728
3729	vmx = arg;
3730
3731	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3732	vlapic->vm = vmx->vm;
3733	vlapic->vcpuid = vcpuid;
3734	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3735
3736	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3737	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3738	vlapic_vtx->vmx = vmx;
3739
3740	if (virtual_interrupt_delivery) {
3741		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3742		vlapic->ops.pending_intr = vmx_pending_intr;
3743		vlapic->ops.intr_accepted = vmx_intr_accepted;
3744		vlapic->ops.set_tmr = vmx_set_tmr;
3745		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3746	}
3747
3748	if (posted_interrupts)
3749		vlapic->ops.post_intr = vmx_post_intr;
3750
3751	vlapic_init(vlapic);
3752
3753	return (vlapic);
3754}
3755
3756static void
3757vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3758{
3759
3760	vlapic_cleanup(vlapic);
3761	free(vlapic, M_VLAPIC);
3762}
3763
3764struct vmm_ops vmm_ops_intel = {
3765	vmx_init,
3766	vmx_cleanup,
3767	vmx_restore,
3768	vmx_vminit,
3769	vmx_run,
3770	vmx_vmcleanup,
3771	vmx_getreg,
3772	vmx_setreg,
3773	vmx_getdesc,
3774	vmx_setdesc,
3775	vmx_getcap,
3776	vmx_setcap,
3777	ept_vmspace_alloc,
3778	ept_vmspace_free,
3779	vmx_vlapic_init,
3780	vmx_vlapic_cleanup,
3781};
3782