vmx.c revision 261001
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/amd64/vmm/intel/vmx.c 261001 2014-01-22 04:03:11Z neel $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/amd64/vmm/intel/vmx.c 261001 2014-01-22 04:03:11Z neel $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/smp.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/pcpu.h>
38#include <sys/proc.h>
39#include <sys/sysctl.h>
40
41#include <vm/vm.h>
42#include <vm/pmap.h>
43
44#include <machine/psl.h>
45#include <machine/cpufunc.h>
46#include <machine/md_var.h>
47#include <machine/segments.h>
48#include <machine/smp.h>
49#include <machine/specialreg.h>
50#include <machine/vmparam.h>
51
52#include <machine/vmm.h>
53#include "vmm_host.h"
54#include "vmm_ipi.h"
55#include "vmm_msr.h"
56#include "vmm_ktr.h"
57#include "vmm_stat.h"
58#include "vlapic.h"
59#include "vlapic_priv.h"
60
61#include "vmx_msr.h"
62#include "ept.h"
63#include "vmx_cpufunc.h"
64#include "vmx.h"
65#include "x86.h"
66#include "vmx_controls.h"
67
68#define	PINBASED_CTLS_ONE_SETTING					\
69	(PINBASED_EXTINT_EXITING	|				\
70	 PINBASED_NMI_EXITING		|				\
71	 PINBASED_VIRTUAL_NMI)
72#define	PINBASED_CTLS_ZERO_SETTING	0
73
74#define PROCBASED_CTLS_WINDOW_SETTING					\
75	(PROCBASED_INT_WINDOW_EXITING	|				\
76	 PROCBASED_NMI_WINDOW_EXITING)
77
78#define	PROCBASED_CTLS_ONE_SETTING 					\
79	(PROCBASED_SECONDARY_CONTROLS	|				\
80	 PROCBASED_IO_EXITING		|				\
81	 PROCBASED_MSR_BITMAPS		|				\
82	 PROCBASED_CTLS_WINDOW_SETTING)
83#define	PROCBASED_CTLS_ZERO_SETTING	\
84	(PROCBASED_CR3_LOAD_EXITING |	\
85	PROCBASED_CR3_STORE_EXITING |	\
86	PROCBASED_IO_BITMAPS)
87
88#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
89#define	PROCBASED_CTLS2_ZERO_SETTING	0
90
91#define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
92	(VM_EXIT_HOST_LMA			|			\
93	VM_EXIT_SAVE_EFER			|			\
94	VM_EXIT_LOAD_EFER)
95
96#define	VM_EXIT_CTLS_ONE_SETTING					\
97	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
98	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
99	VM_EXIT_SAVE_PAT			|			\
100	VM_EXIT_LOAD_PAT)
101#define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
102
103#define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
104
105#define	VM_ENTRY_CTLS_ONE_SETTING					\
106	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
107	VM_ENTRY_LOAD_PAT)
108#define	VM_ENTRY_CTLS_ZERO_SETTING					\
109	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
110	VM_ENTRY_INTO_SMM			|			\
111	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112
113#define	guest_msr_rw(vmx, msr) \
114	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
115
116#define	HANDLED		1
117#define	UNHANDLED	0
118
119static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121
122SYSCTL_DECL(_hw_vmm);
123SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124
125int vmxon_enabled[MAXCPU];
126static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127
128static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129static uint32_t exit_ctls, entry_ctls;
130
131static uint64_t cr0_ones_mask, cr0_zeros_mask;
132SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133	     &cr0_ones_mask, 0, NULL);
134SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135	     &cr0_zeros_mask, 0, NULL);
136
137static uint64_t cr4_ones_mask, cr4_zeros_mask;
138SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139	     &cr4_ones_mask, 0, NULL);
140SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141	     &cr4_zeros_mask, 0, NULL);
142
143static int vmx_no_patmsr;
144
145static int vmx_initialized;
146SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147	   &vmx_initialized, 0, "Intel VMX initialized");
148
149/*
150 * Optional capabilities
151 */
152static int cap_halt_exit;
153static int cap_pause_exit;
154static int cap_unrestricted_guest;
155static int cap_monitor_trap;
156static int cap_invpcid;
157
158static int virtual_interrupt_delivery;
159SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
160    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
161
162static int posted_interrupts;
163SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD,
164    &posted_interrupts, 0, "APICv posted interrupt support");
165
166static int pirvec;
167SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
168    &pirvec, 0, "APICv posted interrupt vector");
169
170static struct unrhdr *vpid_unr;
171static u_int vpid_alloc_failed;
172SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
173	    &vpid_alloc_failed, 0, NULL);
174
175/*
176 * Use the last page below 4GB as the APIC access address. This address is
177 * occupied by the boot firmware so it is guaranteed that it will not conflict
178 * with a page in system memory.
179 */
180#define	APIC_ACCESS_ADDRESS	0xFFFFF000
181
182static void vmx_inject_pir(struct vlapic *vlapic);
183
184#ifdef KTR
185static const char *
186exit_reason_to_str(int reason)
187{
188	static char reasonbuf[32];
189
190	switch (reason) {
191	case EXIT_REASON_EXCEPTION:
192		return "exception";
193	case EXIT_REASON_EXT_INTR:
194		return "extint";
195	case EXIT_REASON_TRIPLE_FAULT:
196		return "triplefault";
197	case EXIT_REASON_INIT:
198		return "init";
199	case EXIT_REASON_SIPI:
200		return "sipi";
201	case EXIT_REASON_IO_SMI:
202		return "iosmi";
203	case EXIT_REASON_SMI:
204		return "smi";
205	case EXIT_REASON_INTR_WINDOW:
206		return "intrwindow";
207	case EXIT_REASON_NMI_WINDOW:
208		return "nmiwindow";
209	case EXIT_REASON_TASK_SWITCH:
210		return "taskswitch";
211	case EXIT_REASON_CPUID:
212		return "cpuid";
213	case EXIT_REASON_GETSEC:
214		return "getsec";
215	case EXIT_REASON_HLT:
216		return "hlt";
217	case EXIT_REASON_INVD:
218		return "invd";
219	case EXIT_REASON_INVLPG:
220		return "invlpg";
221	case EXIT_REASON_RDPMC:
222		return "rdpmc";
223	case EXIT_REASON_RDTSC:
224		return "rdtsc";
225	case EXIT_REASON_RSM:
226		return "rsm";
227	case EXIT_REASON_VMCALL:
228		return "vmcall";
229	case EXIT_REASON_VMCLEAR:
230		return "vmclear";
231	case EXIT_REASON_VMLAUNCH:
232		return "vmlaunch";
233	case EXIT_REASON_VMPTRLD:
234		return "vmptrld";
235	case EXIT_REASON_VMPTRST:
236		return "vmptrst";
237	case EXIT_REASON_VMREAD:
238		return "vmread";
239	case EXIT_REASON_VMRESUME:
240		return "vmresume";
241	case EXIT_REASON_VMWRITE:
242		return "vmwrite";
243	case EXIT_REASON_VMXOFF:
244		return "vmxoff";
245	case EXIT_REASON_VMXON:
246		return "vmxon";
247	case EXIT_REASON_CR_ACCESS:
248		return "craccess";
249	case EXIT_REASON_DR_ACCESS:
250		return "draccess";
251	case EXIT_REASON_INOUT:
252		return "inout";
253	case EXIT_REASON_RDMSR:
254		return "rdmsr";
255	case EXIT_REASON_WRMSR:
256		return "wrmsr";
257	case EXIT_REASON_INVAL_VMCS:
258		return "invalvmcs";
259	case EXIT_REASON_INVAL_MSR:
260		return "invalmsr";
261	case EXIT_REASON_MWAIT:
262		return "mwait";
263	case EXIT_REASON_MTF:
264		return "mtf";
265	case EXIT_REASON_MONITOR:
266		return "monitor";
267	case EXIT_REASON_PAUSE:
268		return "pause";
269	case EXIT_REASON_MCE:
270		return "mce";
271	case EXIT_REASON_TPR:
272		return "tpr";
273	case EXIT_REASON_APIC_ACCESS:
274		return "apic-access";
275	case EXIT_REASON_GDTR_IDTR:
276		return "gdtridtr";
277	case EXIT_REASON_LDTR_TR:
278		return "ldtrtr";
279	case EXIT_REASON_EPT_FAULT:
280		return "eptfault";
281	case EXIT_REASON_EPT_MISCONFIG:
282		return "eptmisconfig";
283	case EXIT_REASON_INVEPT:
284		return "invept";
285	case EXIT_REASON_RDTSCP:
286		return "rdtscp";
287	case EXIT_REASON_VMX_PREEMPT:
288		return "vmxpreempt";
289	case EXIT_REASON_INVVPID:
290		return "invvpid";
291	case EXIT_REASON_WBINVD:
292		return "wbinvd";
293	case EXIT_REASON_XSETBV:
294		return "xsetbv";
295	case EXIT_REASON_APIC_WRITE:
296		return "apic-write";
297	default:
298		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
299		return (reasonbuf);
300	}
301}
302#endif	/* KTR */
303
304u_long
305vmx_fix_cr0(u_long cr0)
306{
307
308	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
309}
310
311u_long
312vmx_fix_cr4(u_long cr4)
313{
314
315	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
316}
317
318static void
319vpid_free(int vpid)
320{
321	if (vpid < 0 || vpid > 0xffff)
322		panic("vpid_free: invalid vpid %d", vpid);
323
324	/*
325	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
326	 * the unit number allocator.
327	 */
328
329	if (vpid > VM_MAXCPU)
330		free_unr(vpid_unr, vpid);
331}
332
333static void
334vpid_alloc(uint16_t *vpid, int num)
335{
336	int i, x;
337
338	if (num <= 0 || num > VM_MAXCPU)
339		panic("invalid number of vpids requested: %d", num);
340
341	/*
342	 * If the "enable vpid" execution control is not enabled then the
343	 * VPID is required to be 0 for all vcpus.
344	 */
345	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
346		for (i = 0; i < num; i++)
347			vpid[i] = 0;
348		return;
349	}
350
351	/*
352	 * Allocate a unique VPID for each vcpu from the unit number allocator.
353	 */
354	for (i = 0; i < num; i++) {
355		x = alloc_unr(vpid_unr);
356		if (x == -1)
357			break;
358		else
359			vpid[i] = x;
360	}
361
362	if (i < num) {
363		atomic_add_int(&vpid_alloc_failed, 1);
364
365		/*
366		 * If the unit number allocator does not have enough unique
367		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
368		 *
369		 * These VPIDs are not be unique across VMs but this does not
370		 * affect correctness because the combined mappings are also
371		 * tagged with the EP4TA which is unique for each VM.
372		 *
373		 * It is still sub-optimal because the invvpid will invalidate
374		 * combined mappings for a particular VPID across all EP4TAs.
375		 */
376		while (i-- > 0)
377			vpid_free(vpid[i]);
378
379		for (i = 0; i < num; i++)
380			vpid[i] = i + 1;
381	}
382}
383
384static void
385vpid_init(void)
386{
387	/*
388	 * VPID 0 is required when the "enable VPID" execution control is
389	 * disabled.
390	 *
391	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
392	 * unit number allocator does not have sufficient unique VPIDs to
393	 * satisfy the allocation.
394	 *
395	 * The remaining VPIDs are managed by the unit number allocator.
396	 */
397	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
398}
399
400static void
401msr_save_area_init(struct msr_entry *g_area, int *g_count)
402{
403	int cnt;
404
405	static struct msr_entry guest_msrs[] = {
406		{ MSR_KGSBASE, 0, 0 },
407	};
408
409	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
410	if (cnt > GUEST_MSR_MAX_ENTRIES)
411		panic("guest msr save area overrun");
412	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
413	*g_count = cnt;
414}
415
416static void
417vmx_disable(void *arg __unused)
418{
419	struct invvpid_desc invvpid_desc = { 0 };
420	struct invept_desc invept_desc = { 0 };
421
422	if (vmxon_enabled[curcpu]) {
423		/*
424		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
425		 *
426		 * VMXON or VMXOFF are not required to invalidate any TLB
427		 * caching structures. This prevents potential retention of
428		 * cached information in the TLB between distinct VMX episodes.
429		 */
430		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
431		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
432		vmxoff();
433	}
434	load_cr4(rcr4() & ~CR4_VMXE);
435}
436
437static int
438vmx_cleanup(void)
439{
440
441	if (pirvec != 0)
442		vmm_ipi_free(pirvec);
443
444	if (vpid_unr != NULL) {
445		delete_unrhdr(vpid_unr);
446		vpid_unr = NULL;
447	}
448
449	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
450
451	return (0);
452}
453
454static void
455vmx_enable(void *arg __unused)
456{
457	int error;
458
459	load_cr4(rcr4() | CR4_VMXE);
460
461	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
462	error = vmxon(vmxon_region[curcpu]);
463	if (error == 0)
464		vmxon_enabled[curcpu] = 1;
465}
466
467static void
468vmx_restore(void)
469{
470
471	if (vmxon_enabled[curcpu])
472		vmxon(vmxon_region[curcpu]);
473}
474
475static int
476vmx_init(int ipinum)
477{
478	int error, use_tpr_shadow;
479	uint64_t fixed0, fixed1, feature_control;
480	uint32_t tmp, procbased2_vid_bits;
481
482	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
483	if (!(cpu_feature2 & CPUID2_VMX)) {
484		printf("vmx_init: processor does not support VMX operation\n");
485		return (ENXIO);
486	}
487
488	/*
489	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
490	 * are set (bits 0 and 2 respectively).
491	 */
492	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
493	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
494	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
495		printf("vmx_init: VMX operation disabled by BIOS\n");
496		return (ENXIO);
497	}
498
499	/* Check support for primary processor-based VM-execution controls */
500	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
501			       MSR_VMX_TRUE_PROCBASED_CTLS,
502			       PROCBASED_CTLS_ONE_SETTING,
503			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
504	if (error) {
505		printf("vmx_init: processor does not support desired primary "
506		       "processor-based controls\n");
507		return (error);
508	}
509
510	/* Clear the processor-based ctl bits that are set on demand */
511	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
512
513	/* Check support for secondary processor-based VM-execution controls */
514	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
515			       MSR_VMX_PROCBASED_CTLS2,
516			       PROCBASED_CTLS2_ONE_SETTING,
517			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
518	if (error) {
519		printf("vmx_init: processor does not support desired secondary "
520		       "processor-based controls\n");
521		return (error);
522	}
523
524	/* Check support for VPID */
525	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
526			       PROCBASED2_ENABLE_VPID, 0, &tmp);
527	if (error == 0)
528		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
529
530	/* Check support for pin-based VM-execution controls */
531	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
532			       MSR_VMX_TRUE_PINBASED_CTLS,
533			       PINBASED_CTLS_ONE_SETTING,
534			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
535	if (error) {
536		printf("vmx_init: processor does not support desired "
537		       "pin-based controls\n");
538		return (error);
539	}
540
541	/* Check support for VM-exit controls */
542	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
543			       VM_EXIT_CTLS_ONE_SETTING,
544			       VM_EXIT_CTLS_ZERO_SETTING,
545			       &exit_ctls);
546	if (error) {
547		/* Try again without the PAT MSR bits */
548		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
549				       MSR_VMX_TRUE_EXIT_CTLS,
550				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
551				       VM_EXIT_CTLS_ZERO_SETTING,
552				       &exit_ctls);
553		if (error) {
554			printf("vmx_init: processor does not support desired "
555			       "exit controls\n");
556			return (error);
557		} else {
558			if (bootverbose)
559				printf("vmm: PAT MSR access not supported\n");
560			guest_msr_valid(MSR_PAT);
561			vmx_no_patmsr = 1;
562		}
563	}
564
565	/* Check support for VM-entry controls */
566	if (!vmx_no_patmsr) {
567		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
568				       MSR_VMX_TRUE_ENTRY_CTLS,
569				       VM_ENTRY_CTLS_ONE_SETTING,
570				       VM_ENTRY_CTLS_ZERO_SETTING,
571				       &entry_ctls);
572	} else {
573		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
574				       MSR_VMX_TRUE_ENTRY_CTLS,
575				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
576				       VM_ENTRY_CTLS_ZERO_SETTING,
577				       &entry_ctls);
578	}
579
580	if (error) {
581		printf("vmx_init: processor does not support desired "
582		       "entry controls\n");
583		       return (error);
584	}
585
586	/*
587	 * Check support for optional features by testing them
588	 * as individual bits
589	 */
590	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
591					MSR_VMX_TRUE_PROCBASED_CTLS,
592					PROCBASED_HLT_EXITING, 0,
593					&tmp) == 0);
594
595	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
596					MSR_VMX_PROCBASED_CTLS,
597					PROCBASED_MTF, 0,
598					&tmp) == 0);
599
600	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
601					 MSR_VMX_TRUE_PROCBASED_CTLS,
602					 PROCBASED_PAUSE_EXITING, 0,
603					 &tmp) == 0);
604
605	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
606					MSR_VMX_PROCBASED_CTLS2,
607					PROCBASED2_UNRESTRICTED_GUEST, 0,
608				        &tmp) == 0);
609
610	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
611	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
612	    &tmp) == 0);
613
614	/*
615	 * Check support for virtual interrupt delivery.
616	 */
617	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
618	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
619	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
620	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
621
622	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
623	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
624	    &tmp) == 0);
625
626	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
627	    procbased2_vid_bits, 0, &tmp);
628	if (error == 0 && use_tpr_shadow) {
629		virtual_interrupt_delivery = 1;
630		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
631		    &virtual_interrupt_delivery);
632	}
633
634	if (virtual_interrupt_delivery) {
635		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
636		procbased_ctls2 |= procbased2_vid_bits;
637		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
638
639		/*
640		 * Check for Posted Interrupts only if Virtual Interrupt
641		 * Delivery is enabled.
642		 */
643		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
644		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
645		    &tmp);
646		if (error == 0) {
647			pirvec = vmm_ipi_alloc();
648			if (pirvec == 0) {
649				if (bootverbose) {
650					printf("vmx_init: unable to allocate "
651					    "posted interrupt vector\n");
652				}
653			} else {
654				posted_interrupts = 1;
655				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
656				    &posted_interrupts);
657			}
658		}
659	}
660
661	if (posted_interrupts)
662		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
663
664	/* Initialize EPT */
665	error = ept_init(ipinum);
666	if (error) {
667		printf("vmx_init: ept initialization failed (%d)\n", error);
668		return (error);
669	}
670
671	/*
672	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
673	 */
674	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
675	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
676	cr0_ones_mask = fixed0 & fixed1;
677	cr0_zeros_mask = ~fixed0 & ~fixed1;
678
679	/*
680	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
681	 * if unrestricted guest execution is allowed.
682	 */
683	if (cap_unrestricted_guest)
684		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
685
686	/*
687	 * Do not allow the guest to set CR0_NW or CR0_CD.
688	 */
689	cr0_zeros_mask |= (CR0_NW | CR0_CD);
690
691	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
692	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
693	cr4_ones_mask = fixed0 & fixed1;
694	cr4_zeros_mask = ~fixed0 & ~fixed1;
695
696	vpid_init();
697
698	/* enable VMX operation */
699	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
700
701	vmx_initialized = 1;
702
703	return (0);
704}
705
706static void
707vmx_trigger_hostintr(int vector)
708{
709	uintptr_t func;
710	struct gate_descriptor *gd;
711
712	gd = &idt[vector];
713
714	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
715	    "invalid vector %d", vector));
716	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
717	    vector));
718	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
719	    "has invalid type %d", vector, gd->gd_type));
720	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
721	    "has invalid dpl %d", vector, gd->gd_dpl));
722	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
723	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
724	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
725	    "IST %d", vector, gd->gd_ist));
726
727	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
728	vmx_call_isr(func);
729}
730
731static int
732vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
733{
734	int error, mask_ident, shadow_ident;
735	uint64_t mask_value;
736
737	if (which != 0 && which != 4)
738		panic("vmx_setup_cr_shadow: unknown cr%d", which);
739
740	if (which == 0) {
741		mask_ident = VMCS_CR0_MASK;
742		mask_value = cr0_ones_mask | cr0_zeros_mask;
743		shadow_ident = VMCS_CR0_SHADOW;
744	} else {
745		mask_ident = VMCS_CR4_MASK;
746		mask_value = cr4_ones_mask | cr4_zeros_mask;
747		shadow_ident = VMCS_CR4_SHADOW;
748	}
749
750	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
751	if (error)
752		return (error);
753
754	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
755	if (error)
756		return (error);
757
758	return (0);
759}
760#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
761#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
762
763static void *
764vmx_vminit(struct vm *vm, pmap_t pmap)
765{
766	uint16_t vpid[VM_MAXCPU];
767	int i, error, guest_msr_count;
768	struct vmx *vmx;
769	struct vmcs *vmcs;
770
771	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
772	if ((uintptr_t)vmx & PAGE_MASK) {
773		panic("malloc of struct vmx not aligned on %d byte boundary",
774		      PAGE_SIZE);
775	}
776	vmx->vm = vm;
777
778	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
779
780	/*
781	 * Clean up EPTP-tagged guest physical and combined mappings
782	 *
783	 * VMX transitions are not required to invalidate any guest physical
784	 * mappings. So, it may be possible for stale guest physical mappings
785	 * to be present in the processor TLBs.
786	 *
787	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
788	 */
789	ept_invalidate_mappings(vmx->eptp);
790
791	msr_bitmap_initialize(vmx->msr_bitmap);
792
793	/*
794	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
795	 * The guest FSBASE and GSBASE are saved and restored during
796	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
797	 * always restored from the vmcs host state area on vm-exit.
798	 *
799	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
800	 * how they are saved/restored so can be directly accessed by the
801	 * guest.
802	 *
803	 * Guest KGSBASE is saved and restored in the guest MSR save area.
804	 * Host KGSBASE is restored before returning to userland from the pcb.
805	 * There will be a window of time when we are executing in the host
806	 * kernel context with a value of KGSBASE from the guest. This is ok
807	 * because the value of KGSBASE is inconsequential in kernel context.
808	 *
809	 * MSR_EFER is saved and restored in the guest VMCS area on a
810	 * VM exit and entry respectively. It is also restored from the
811	 * host VMCS area on a VM exit.
812	 */
813	if (guest_msr_rw(vmx, MSR_GSBASE) ||
814	    guest_msr_rw(vmx, MSR_FSBASE) ||
815	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
816	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
817	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
818	    guest_msr_rw(vmx, MSR_KGSBASE) ||
819	    guest_msr_rw(vmx, MSR_EFER))
820		panic("vmx_vminit: error setting guest msr access");
821
822	/*
823	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
824	 * and entry respectively. It is also restored from the host VMCS
825	 * area on a VM exit. However, if running on a system with no
826	 * MSR_PAT save/restore support, leave access disabled so accesses
827	 * will be trapped.
828	 */
829	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
830		panic("vmx_vminit: error setting guest pat msr access");
831
832	vpid_alloc(vpid, VM_MAXCPU);
833
834	if (virtual_interrupt_delivery) {
835		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
836		    APIC_ACCESS_ADDRESS);
837		/* XXX this should really return an error to the caller */
838		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
839	}
840
841	for (i = 0; i < VM_MAXCPU; i++) {
842		vmcs = &vmx->vmcs[i];
843		vmcs->identifier = vmx_revision();
844		error = vmclear(vmcs);
845		if (error != 0) {
846			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
847			      error, i);
848		}
849
850		error = vmcs_init(vmcs);
851		KASSERT(error == 0, ("vmcs_init error %d", error));
852
853		VMPTRLD(vmcs);
854		error = 0;
855		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
856		error += vmwrite(VMCS_EPTP, vmx->eptp);
857		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
858		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
859		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
860		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
861		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
862		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
863		error += vmwrite(VMCS_VPID, vpid[i]);
864		if (virtual_interrupt_delivery) {
865			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
866			error += vmwrite(VMCS_VIRTUAL_APIC,
867			    vtophys(&vmx->apic_page[i]));
868			error += vmwrite(VMCS_EOI_EXIT0, 0);
869			error += vmwrite(VMCS_EOI_EXIT1, 0);
870			error += vmwrite(VMCS_EOI_EXIT2, 0);
871			error += vmwrite(VMCS_EOI_EXIT3, 0);
872		}
873		if (posted_interrupts) {
874			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
875			error += vmwrite(VMCS_PIR_DESC,
876			    vtophys(&vmx->pir_desc[i]));
877		}
878		VMCLEAR(vmcs);
879		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
880
881		vmx->cap[i].set = 0;
882		vmx->cap[i].proc_ctls = procbased_ctls;
883		vmx->cap[i].proc_ctls2 = procbased_ctls2;
884
885		vmx->state[i].lastcpu = -1;
886		vmx->state[i].vpid = vpid[i];
887
888		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
889
890		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
891		    guest_msr_count);
892		if (error != 0)
893			panic("vmcs_set_msr_save error %d", error);
894
895		/*
896		 * Set up the CR0/4 shadows, and init the read shadow
897		 * to the power-on register value from the Intel Sys Arch.
898		 *  CR0 - 0x60000010
899		 *  CR4 - 0
900		 */
901		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
902		if (error != 0)
903			panic("vmx_setup_cr0_shadow %d", error);
904
905		error = vmx_setup_cr4_shadow(vmcs, 0);
906		if (error != 0)
907			panic("vmx_setup_cr4_shadow %d", error);
908
909		vmx->ctx[i].pmap = pmap;
910		vmx->ctx[i].eptp = vmx->eptp;
911	}
912
913	return (vmx);
914}
915
916static int
917vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
918{
919	int handled, func;
920
921	func = vmxctx->guest_rax;
922
923	handled = x86_emulate_cpuid(vm, vcpu,
924				    (uint32_t*)(&vmxctx->guest_rax),
925				    (uint32_t*)(&vmxctx->guest_rbx),
926				    (uint32_t*)(&vmxctx->guest_rcx),
927				    (uint32_t*)(&vmxctx->guest_rdx));
928	return (handled);
929}
930
931static __inline void
932vmx_run_trace(struct vmx *vmx, int vcpu)
933{
934#ifdef KTR
935	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
936#endif
937}
938
939static __inline void
940vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
941	       int handled)
942{
943#ifdef KTR
944	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
945		 handled ? "handled" : "unhandled",
946		 exit_reason_to_str(exit_reason), rip);
947#endif
948}
949
950static __inline void
951vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
952{
953#ifdef KTR
954	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
955#endif
956}
957
958static void
959vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
960{
961	int lastcpu;
962	struct vmxstate *vmxstate;
963	struct invvpid_desc invvpid_desc = { 0 };
964
965	vmxstate = &vmx->state[vcpu];
966	lastcpu = vmxstate->lastcpu;
967	vmxstate->lastcpu = curcpu;
968
969	if (lastcpu == curcpu)
970		return;
971
972	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
973
974	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
975	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
976	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
977
978	/*
979	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
980	 *
981	 * We do this because this vcpu was executing on a different host
982	 * cpu when it last ran. We do not track whether it invalidated
983	 * mappings associated with its 'vpid' during that run. So we must
984	 * assume that the mappings associated with 'vpid' on 'curcpu' are
985	 * stale and invalidate them.
986	 *
987	 * Note that we incur this penalty only when the scheduler chooses to
988	 * move the thread associated with this vcpu between host cpus.
989	 *
990	 * Note also that this will invalidate mappings tagged with 'vpid'
991	 * for "all" EP4TAs.
992	 */
993	if (vmxstate->vpid != 0) {
994		invvpid_desc.vpid = vmxstate->vpid;
995		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
996	}
997}
998
999/*
1000 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1001 */
1002CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1003
1004static void __inline
1005vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1006{
1007
1008	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1009		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1010		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1011		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1012	}
1013}
1014
1015static void __inline
1016vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1017{
1018
1019	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1020	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1021	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1022	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1023	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1024}
1025
1026static void __inline
1027vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1028{
1029
1030	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1031		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1032		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1033		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1034	}
1035}
1036
1037static void __inline
1038vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1039{
1040
1041	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1042	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1043	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1044	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1045	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1046}
1047
1048#define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1049			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1050#define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1051			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1052
1053static void
1054vmx_inject_nmi(struct vmx *vmx, int vcpu)
1055{
1056	uint32_t gi, info;
1057
1058	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1059	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1060	    "interruptibility-state %#x", gi));
1061
1062	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1063	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1064	    "VM-entry interruption information %#x", info));
1065
1066	/*
1067	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1068	 * or the VMCS entry check will fail.
1069	 */
1070	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1071	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1072
1073	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1074
1075	/* Clear the request */
1076	vm_nmi_clear(vmx->vm, vcpu);
1077}
1078
1079static void
1080vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1081{
1082	int vector, need_nmi_exiting;
1083	uint64_t rflags;
1084	uint32_t gi, info;
1085
1086	if (vm_nmi_pending(vmx->vm, vcpu)) {
1087		/*
1088		 * If there are no conditions blocking NMI injection then
1089		 * inject it directly here otherwise enable "NMI window
1090		 * exiting" to inject it as soon as we can.
1091		 *
1092		 * We also check for STI_BLOCKING because some implementations
1093		 * don't allow NMI injection in this case. If we are running
1094		 * on a processor that doesn't have this restriction it will
1095		 * immediately exit and the NMI will be injected in the
1096		 * "NMI window exiting" handler.
1097		 */
1098		need_nmi_exiting = 1;
1099		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1100		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1101			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1102			if ((info & VMCS_INTR_VALID) == 0) {
1103				vmx_inject_nmi(vmx, vcpu);
1104				need_nmi_exiting = 0;
1105			} else {
1106				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1107				    "due to VM-entry intr info %#x", info);
1108			}
1109		} else {
1110			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1111			    "Guest Interruptibility-state %#x", gi);
1112		}
1113
1114		if (need_nmi_exiting)
1115			vmx_set_nmi_window_exiting(vmx, vcpu);
1116	}
1117
1118	if (virtual_interrupt_delivery) {
1119		vmx_inject_pir(vlapic);
1120		return;
1121	}
1122
1123	/*
1124	 * If there is already an interrupt pending then just return. This
1125	 * could happen for multiple reasons:
1126	 * - A vectoring VM-entry was aborted due to astpending or rendezvous.
1127	 * - A VM-exit happened during event injection.
1128	 * - A NMI was injected above or after "NMI window exiting" VM-exit.
1129	 */
1130	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1131	if (info & VMCS_INTR_VALID)
1132		return;
1133
1134	/* Ask the local apic for a vector to inject */
1135	if (!vlapic_pending_intr(vlapic, &vector))
1136		return;
1137
1138	KASSERT(vector >= 32 && vector <= 255, ("invalid vector %d", vector));
1139
1140	/* Check RFLAGS.IF and the interruptibility state of the guest */
1141	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1142	if ((rflags & PSL_I) == 0)
1143		goto cantinject;
1144
1145	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1146	if (gi & HWINTR_BLOCKING)
1147		goto cantinject;
1148
1149	/* Inject the interrupt */
1150	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1151	info |= vector;
1152	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1153
1154	/* Update the Local APIC ISR */
1155	vlapic_intr_accepted(vlapic, vector);
1156
1157	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1158
1159	return;
1160
1161cantinject:
1162	/*
1163	 * Set the Interrupt Window Exiting execution control so we can inject
1164	 * the interrupt as soon as blocking condition goes away.
1165	 */
1166	vmx_set_int_window_exiting(vmx, vcpu);
1167}
1168
1169/*
1170 * If the Virtual NMIs execution control is '1' then the logical processor
1171 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1172 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1173 * virtual-NMI blocking.
1174 *
1175 * This unblocking occurs even if the IRET causes a fault. In this case the
1176 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1177 */
1178static void
1179vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1180{
1181	uint32_t gi;
1182
1183	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1184	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1185	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1186	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1187}
1188
1189static void
1190vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1191{
1192	uint32_t gi;
1193
1194	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1195	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1196	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1197	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1198}
1199
1200static int
1201vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1202{
1203	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1204	uint64_t crval, regval, ones_mask, zeros_mask;
1205	const struct vmxctx *vmxctx;
1206
1207	/* We only handle mov to %cr0 or %cr4 at this time */
1208	if ((exitqual & 0xf0) != 0x00)
1209		return (UNHANDLED);
1210
1211	cr = exitqual & 0xf;
1212	if (cr != 0 && cr != 4)
1213		return (UNHANDLED);
1214
1215	regval = 0; /* silence gcc */
1216	vmxctx = &vmx->ctx[vcpu];
1217
1218	/*
1219	 * We must use vmcs_write() directly here because vmcs_setreg() will
1220	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1221	 */
1222	switch ((exitqual >> 8) & 0xf) {
1223	case 0:
1224		regval = vmxctx->guest_rax;
1225		break;
1226	case 1:
1227		regval = vmxctx->guest_rcx;
1228		break;
1229	case 2:
1230		regval = vmxctx->guest_rdx;
1231		break;
1232	case 3:
1233		regval = vmxctx->guest_rbx;
1234		break;
1235	case 4:
1236		regval = vmcs_read(VMCS_GUEST_RSP);
1237		break;
1238	case 5:
1239		regval = vmxctx->guest_rbp;
1240		break;
1241	case 6:
1242		regval = vmxctx->guest_rsi;
1243		break;
1244	case 7:
1245		regval = vmxctx->guest_rdi;
1246		break;
1247	case 8:
1248		regval = vmxctx->guest_r8;
1249		break;
1250	case 9:
1251		regval = vmxctx->guest_r9;
1252		break;
1253	case 10:
1254		regval = vmxctx->guest_r10;
1255		break;
1256	case 11:
1257		regval = vmxctx->guest_r11;
1258		break;
1259	case 12:
1260		regval = vmxctx->guest_r12;
1261		break;
1262	case 13:
1263		regval = vmxctx->guest_r13;
1264		break;
1265	case 14:
1266		regval = vmxctx->guest_r14;
1267		break;
1268	case 15:
1269		regval = vmxctx->guest_r15;
1270		break;
1271	}
1272
1273	if (cr == 0) {
1274		ones_mask = cr0_ones_mask;
1275		zeros_mask = cr0_zeros_mask;
1276		vmcs_guest_cr = VMCS_GUEST_CR0;
1277		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1278	} else {
1279		ones_mask = cr4_ones_mask;
1280		zeros_mask = cr4_zeros_mask;
1281		vmcs_guest_cr = VMCS_GUEST_CR4;
1282		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1283	}
1284	vmcs_write(vmcs_shadow_cr, regval);
1285
1286	crval = regval | ones_mask;
1287	crval &= ~zeros_mask;
1288	vmcs_write(vmcs_guest_cr, crval);
1289
1290	if (cr == 0 && regval & CR0_PG) {
1291		uint64_t efer, entry_ctls;
1292
1293		/*
1294		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1295		 * the "IA-32e mode guest" bit in VM-entry control must be
1296		 * equal.
1297		 */
1298		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1299		if (efer & EFER_LME) {
1300			efer |= EFER_LMA;
1301			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1302			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1303			entry_ctls |= VM_ENTRY_GUEST_LMA;
1304			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1305		}
1306	}
1307
1308	return (HANDLED);
1309}
1310
1311static int
1312ept_fault_type(uint64_t ept_qual)
1313{
1314	int fault_type;
1315
1316	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1317		fault_type = VM_PROT_WRITE;
1318	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1319		fault_type = VM_PROT_EXECUTE;
1320	else
1321		fault_type= VM_PROT_READ;
1322
1323	return (fault_type);
1324}
1325
1326static boolean_t
1327ept_emulation_fault(uint64_t ept_qual)
1328{
1329	int read, write;
1330
1331	/* EPT fault on an instruction fetch doesn't make sense here */
1332	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1333		return (FALSE);
1334
1335	/* EPT fault must be a read fault or a write fault */
1336	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1337	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1338	if ((read | write) == 0)
1339		return (FALSE);
1340
1341	/*
1342	 * The EPT violation must have been caused by accessing a
1343	 * guest-physical address that is a translation of a guest-linear
1344	 * address.
1345	 */
1346	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1347	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1348		return (FALSE);
1349	}
1350
1351	return (TRUE);
1352}
1353
1354static int
1355vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual)
1356{
1357	int error, handled, offset;
1358	bool retu;
1359
1360	if (!virtual_interrupt_delivery)
1361		return (UNHANDLED);
1362
1363	handled = 1;
1364	offset = APIC_WRITE_OFFSET(qual);
1365	switch (offset) {
1366	case APIC_OFFSET_ID:
1367		vlapic_id_write_handler(vlapic);
1368		break;
1369	case APIC_OFFSET_LDR:
1370		vlapic_ldr_write_handler(vlapic);
1371		break;
1372	case APIC_OFFSET_DFR:
1373		vlapic_dfr_write_handler(vlapic);
1374		break;
1375	case APIC_OFFSET_SVR:
1376		vlapic_svr_write_handler(vlapic);
1377		break;
1378	case APIC_OFFSET_ESR:
1379		vlapic_esr_write_handler(vlapic);
1380		break;
1381	case APIC_OFFSET_ICR_LOW:
1382		retu = false;
1383		error = vlapic_icrlo_write_handler(vlapic, &retu);
1384		if (error != 0 || retu)
1385			handled = 0;
1386		break;
1387	case APIC_OFFSET_CMCI_LVT:
1388	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1389		vlapic_lvt_write_handler(vlapic, offset);
1390		break;
1391	case APIC_OFFSET_TIMER_ICR:
1392		vlapic_icrtmr_write_handler(vlapic);
1393		break;
1394	case APIC_OFFSET_TIMER_DCR:
1395		vlapic_dcr_write_handler(vlapic);
1396		break;
1397	default:
1398		handled = 0;
1399		break;
1400	}
1401	return (handled);
1402}
1403
1404static bool
1405apic_access_fault(uint64_t gpa)
1406{
1407
1408	if (virtual_interrupt_delivery &&
1409	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1410		return (true);
1411	else
1412		return (false);
1413}
1414
1415static int
1416vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1417{
1418	uint64_t qual;
1419	int access_type, offset, allowed;
1420
1421	if (!virtual_interrupt_delivery)
1422		return (UNHANDLED);
1423
1424	qual = vmexit->u.vmx.exit_qualification;
1425	access_type = APIC_ACCESS_TYPE(qual);
1426	offset = APIC_ACCESS_OFFSET(qual);
1427
1428	allowed = 0;
1429	if (access_type == 0) {
1430		/*
1431		 * Read data access to the following registers is expected.
1432		 */
1433		switch (offset) {
1434		case APIC_OFFSET_APR:
1435		case APIC_OFFSET_PPR:
1436		case APIC_OFFSET_RRR:
1437		case APIC_OFFSET_CMCI_LVT:
1438		case APIC_OFFSET_TIMER_CCR:
1439			allowed = 1;
1440			break;
1441		default:
1442			break;
1443		}
1444	} else if (access_type == 1) {
1445		/*
1446		 * Write data access to the following registers is expected.
1447		 */
1448		switch (offset) {
1449		case APIC_OFFSET_VER:
1450		case APIC_OFFSET_APR:
1451		case APIC_OFFSET_PPR:
1452		case APIC_OFFSET_RRR:
1453		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1454		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1455		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1456		case APIC_OFFSET_CMCI_LVT:
1457		case APIC_OFFSET_TIMER_CCR:
1458			allowed = 1;
1459			break;
1460		default:
1461			break;
1462		}
1463	}
1464
1465	if (allowed) {
1466		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1467		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1468		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1469		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1470	}
1471
1472	/*
1473	 * Regardless of whether the APIC-access is allowed this handler
1474	 * always returns UNHANDLED:
1475	 * - if the access is allowed then it is handled by emulating the
1476	 *   instruction that caused the VM-exit (outside the critical section)
1477	 * - if the access is not allowed then it will be converted to an
1478	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1479	 */
1480	return (UNHANDLED);
1481}
1482
1483static int
1484vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1485{
1486	int error, handled;
1487	struct vmxctx *vmxctx;
1488	struct vlapic *vlapic;
1489	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason;
1490	uint64_t qual, gpa;
1491	bool retu;
1492
1493	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
1494	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
1495
1496	handled = 0;
1497	vmxctx = &vmx->ctx[vcpu];
1498
1499	qual = vmexit->u.vmx.exit_qualification;
1500	reason = vmexit->u.vmx.exit_reason;
1501	vmexit->exitcode = VM_EXITCODE_BOGUS;
1502
1503	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1504
1505	/*
1506	 * VM exits that could be triggered during event injection on the
1507	 * previous VM entry need to be handled specially by re-injecting
1508	 * the event.
1509	 *
1510	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1511	 * for details.
1512	 */
1513	switch (reason) {
1514	case EXIT_REASON_EPT_FAULT:
1515	case EXIT_REASON_EPT_MISCONFIG:
1516	case EXIT_REASON_APIC_ACCESS:
1517	case EXIT_REASON_TASK_SWITCH:
1518	case EXIT_REASON_EXCEPTION:
1519		idtvec_info = vmcs_idt_vectoring_info();
1520		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1521			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1522			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1523			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1524				idtvec_err = vmcs_idt_vectoring_err();
1525				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1526				    idtvec_err);
1527			}
1528			/*
1529			 * If 'virtual NMIs' are being used and the VM-exit
1530			 * happened while injecting an NMI during the previous
1531			 * VM-entry, then clear "blocking by NMI" in the Guest
1532			 * Interruptibility-state.
1533			 */
1534			if ((idtvec_info & VMCS_INTR_T_MASK) ==
1535			    VMCS_INTR_T_NMI) {
1536				 vmx_clear_nmi_blocking(vmx, vcpu);
1537			}
1538			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1539		}
1540	default:
1541		idtvec_info = 0;
1542		break;
1543	}
1544
1545	switch (reason) {
1546	case EXIT_REASON_CR_ACCESS:
1547		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1548		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1549		break;
1550	case EXIT_REASON_RDMSR:
1551		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1552		retu = false;
1553		ecx = vmxctx->guest_rcx;
1554		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1555		if (error) {
1556			vmexit->exitcode = VM_EXITCODE_RDMSR;
1557			vmexit->u.msr.code = ecx;
1558		} else if (!retu) {
1559			handled = 1;
1560		} else {
1561			/* Return to userspace with a valid exitcode */
1562			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1563			    ("emulate_wrmsr retu with bogus exitcode"));
1564		}
1565		break;
1566	case EXIT_REASON_WRMSR:
1567		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1568		retu = false;
1569		eax = vmxctx->guest_rax;
1570		ecx = vmxctx->guest_rcx;
1571		edx = vmxctx->guest_rdx;
1572		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1573		    (uint64_t)edx << 32 | eax, &retu);
1574		if (error) {
1575			vmexit->exitcode = VM_EXITCODE_WRMSR;
1576			vmexit->u.msr.code = ecx;
1577			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1578		} else if (!retu) {
1579			handled = 1;
1580		} else {
1581			/* Return to userspace with a valid exitcode */
1582			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1583			    ("emulate_wrmsr retu with bogus exitcode"));
1584		}
1585		break;
1586	case EXIT_REASON_HLT:
1587		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1588		vmexit->exitcode = VM_EXITCODE_HLT;
1589		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1590		break;
1591	case EXIT_REASON_MTF:
1592		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1593		vmexit->exitcode = VM_EXITCODE_MTRAP;
1594		break;
1595	case EXIT_REASON_PAUSE:
1596		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1597		vmexit->exitcode = VM_EXITCODE_PAUSE;
1598		break;
1599	case EXIT_REASON_INTR_WINDOW:
1600		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1601		vmx_clear_int_window_exiting(vmx, vcpu);
1602		return (1);
1603	case EXIT_REASON_EXT_INTR:
1604		/*
1605		 * External interrupts serve only to cause VM exits and allow
1606		 * the host interrupt handler to run.
1607		 *
1608		 * If this external interrupt triggers a virtual interrupt
1609		 * to a VM, then that state will be recorded by the
1610		 * host interrupt handler in the VM's softc. We will inject
1611		 * this virtual interrupt during the subsequent VM enter.
1612		 */
1613		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1614		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
1615		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
1616		    ("VM exit interruption info invalid: %#x", intr_info));
1617		vmx_trigger_hostintr(intr_info & 0xff);
1618
1619		/*
1620		 * This is special. We want to treat this as an 'handled'
1621		 * VM-exit but not increment the instruction pointer.
1622		 */
1623		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1624		return (1);
1625	case EXIT_REASON_NMI_WINDOW:
1626		/* Exit to allow the pending virtual NMI to be injected */
1627		if (vm_nmi_pending(vmx->vm, vcpu))
1628			vmx_inject_nmi(vmx, vcpu);
1629		vmx_clear_nmi_window_exiting(vmx, vcpu);
1630		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1631		return (1);
1632	case EXIT_REASON_INOUT:
1633		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1634		vmexit->exitcode = VM_EXITCODE_INOUT;
1635		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1636		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1637		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1638		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1639		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1640		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1641		break;
1642	case EXIT_REASON_CPUID:
1643		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1644		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1645		break;
1646	case EXIT_REASON_EXCEPTION:
1647		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
1648		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1649		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1650		    ("VM exit interruption info invalid: %#x", intr_info));
1651
1652		/*
1653		 * If Virtual NMIs control is 1 and the VM-exit is due to a
1654		 * fault encountered during the execution of IRET then we must
1655		 * restore the state of "virtual-NMI blocking" before resuming
1656		 * the guest.
1657		 *
1658		 * See "Resuming Guest Software after Handling an Exception".
1659		 */
1660		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1661		    (intr_info & 0xff) != IDT_DF &&
1662		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
1663			vmx_restore_nmi_blocking(vmx, vcpu);
1664
1665		/*
1666		 * If the NMI-exiting VM execution control is set to '1'
1667		 * then an NMI in non-root operation causes a VM-exit.
1668		 * NMI blocking is in effect for this logical processor so
1669		 * it is sufficient to simply vector to the NMI handler via
1670		 * a software interrupt.
1671		 */
1672		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
1673			KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
1674			    "to NMI has invalid vector: %#x", intr_info));
1675			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to NMI handler");
1676			__asm __volatile("int $2");
1677			return (1);
1678		}
1679		break;
1680	case EXIT_REASON_EPT_FAULT:
1681		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1682		/*
1683		 * If 'gpa' lies within the address space allocated to
1684		 * memory then this must be a nested page fault otherwise
1685		 * this must be an instruction that accesses MMIO space.
1686		 */
1687		gpa = vmcs_gpa();
1688		if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) {
1689			vmexit->exitcode = VM_EXITCODE_PAGING;
1690			vmexit->u.paging.gpa = gpa;
1691			vmexit->u.paging.fault_type = ept_fault_type(qual);
1692		} else if (ept_emulation_fault(qual)) {
1693			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1694			vmexit->u.inst_emul.gpa = gpa;
1695			vmexit->u.inst_emul.gla = vmcs_gla();
1696			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1697		}
1698		/*
1699		 * If Virtual NMIs control is 1 and the VM-exit is due to an
1700		 * EPT fault during the execution of IRET then we must restore
1701		 * the state of "virtual-NMI blocking" before resuming.
1702		 *
1703		 * See description of "NMI unblocking due to IRET" in
1704		 * "Exit Qualification for EPT Violations".
1705		 */
1706		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1707		    (qual & EXIT_QUAL_NMIUDTI) != 0)
1708			vmx_restore_nmi_blocking(vmx, vcpu);
1709		break;
1710	case EXIT_REASON_APIC_ACCESS:
1711		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1712		break;
1713	case EXIT_REASON_APIC_WRITE:
1714		/*
1715		 * APIC-write VM exit is trap-like so the %rip is already
1716		 * pointing to the next instruction.
1717		 */
1718		vmexit->inst_length = 0;
1719		vlapic = vm_lapic(vmx->vm, vcpu);
1720		handled = vmx_handle_apic_write(vlapic, qual);
1721		break;
1722	default:
1723		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1724		break;
1725	}
1726
1727	if (handled) {
1728		/*
1729		 * It is possible that control is returned to userland
1730		 * even though we were able to handle the VM exit in the
1731		 * kernel.
1732		 *
1733		 * In such a case we want to make sure that the userland
1734		 * restarts guest execution at the instruction *after*
1735		 * the one we just processed. Therefore we update the
1736		 * guest rip in the VMCS and in 'vmexit'.
1737		 */
1738		vmexit->rip += vmexit->inst_length;
1739		vmexit->inst_length = 0;
1740		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1741	} else {
1742		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1743			/*
1744			 * If this VM exit was not claimed by anybody then
1745			 * treat it as a generic VMX exit.
1746			 */
1747			vmexit->exitcode = VM_EXITCODE_VMX;
1748			vmexit->u.vmx.status = VM_SUCCESS;
1749			vmexit->u.vmx.inst_type = 0;
1750			vmexit->u.vmx.inst_error = 0;
1751		} else {
1752			/*
1753			 * The exitcode and collateral have been populated.
1754			 * The VM exit will be processed further in userland.
1755			 */
1756		}
1757	}
1758	return (handled);
1759}
1760
1761static __inline int
1762vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1763{
1764
1765	vmexit->rip = vmcs_guest_rip();
1766	vmexit->inst_length = 0;
1767	vmexit->exitcode = VM_EXITCODE_BOGUS;
1768	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1769	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1770
1771	return (HANDLED);
1772}
1773
1774static __inline int
1775vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1776{
1777
1778	vmexit->rip = vmcs_guest_rip();
1779	vmexit->inst_length = 0;
1780	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1781	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1);
1782
1783	return (UNHANDLED);
1784}
1785
1786static __inline int
1787vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
1788{
1789
1790	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
1791	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
1792	    vmxctx->inst_fail_status));
1793
1794	vmexit->inst_length = 0;
1795	vmexit->exitcode = VM_EXITCODE_VMX;
1796	vmexit->u.vmx.status = vmxctx->inst_fail_status;
1797	vmexit->u.vmx.inst_error = vmcs_instruction_error();
1798	vmexit->u.vmx.exit_reason = ~0;
1799	vmexit->u.vmx.exit_qualification = ~0;
1800
1801	switch (rc) {
1802	case VMX_VMRESUME_ERROR:
1803	case VMX_VMLAUNCH_ERROR:
1804	case VMX_INVEPT_ERROR:
1805		vmexit->u.vmx.inst_type = rc;
1806		break;
1807	default:
1808		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
1809	}
1810
1811	return (UNHANDLED);
1812}
1813
1814static int
1815vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
1816    void *rendezvous_cookie)
1817{
1818	int rc, handled, launched;
1819	struct vmx *vmx;
1820	struct vm *vm;
1821	struct vmxctx *vmxctx;
1822	struct vmcs *vmcs;
1823	struct vm_exit *vmexit;
1824	struct vlapic *vlapic;
1825	uint64_t rip;
1826	uint32_t exit_reason;
1827
1828	vmx = arg;
1829	vm = vmx->vm;
1830	vmcs = &vmx->vmcs[vcpu];
1831	vmxctx = &vmx->ctx[vcpu];
1832	vlapic = vm_lapic(vm, vcpu);
1833	vmexit = vm_exitinfo(vm, vcpu);
1834	launched = 0;
1835
1836	KASSERT(vmxctx->pmap == pmap,
1837	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1838	KASSERT(vmxctx->eptp == vmx->eptp,
1839	    ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp));
1840
1841	VMPTRLD(vmcs);
1842
1843	/*
1844	 * XXX
1845	 * We do this every time because we may setup the virtual machine
1846	 * from a different process than the one that actually runs it.
1847	 *
1848	 * If the life of a virtual machine was spent entirely in the context
1849	 * of a single process we could do this once in vmx_vminit().
1850	 */
1851	vmcs_write(VMCS_HOST_CR3, rcr3());
1852
1853	vmcs_write(VMCS_GUEST_RIP, startrip);
1854	vmx_set_pcpu_defaults(vmx, vcpu);
1855	do {
1856		/*
1857		 * Interrupts are disabled from this point on until the
1858		 * guest starts executing. This is done for the following
1859		 * reasons:
1860		 *
1861		 * If an AST is asserted on this thread after the check below,
1862		 * then the IPI_AST notification will not be lost, because it
1863		 * will cause a VM exit due to external interrupt as soon as
1864		 * the guest state is loaded.
1865		 *
1866		 * A posted interrupt after 'vmx_inject_interrupts()' will
1867		 * not be "lost" because it will be held pending in the host
1868		 * APIC because interrupts are disabled. The pending interrupt
1869		 * will be recognized as soon as the guest state is loaded.
1870		 *
1871		 * The same reasoning applies to the IPI generated by
1872		 * pmap_invalidate_ept().
1873		 */
1874		disable_intr();
1875		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1876			enable_intr();
1877			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
1878			break;
1879		}
1880
1881		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
1882			enable_intr();
1883			handled = vmx_exit_rendezvous(vmx, vcpu, vmexit);
1884			break;
1885		}
1886
1887		vmx_inject_interrupts(vmx, vcpu, vlapic);
1888		vmx_run_trace(vmx, vcpu);
1889		rc = vmx_enter_guest(vmxctx, launched);
1890
1891		enable_intr();
1892
1893		/* Collect some information for VM exit processing */
1894		vmexit->rip = rip = vmcs_guest_rip();
1895		vmexit->inst_length = vmexit_instruction_length();
1896		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1897		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1898
1899		if (rc == VMX_GUEST_VMEXIT) {
1900			launched = 1;
1901			handled = vmx_exit_process(vmx, vcpu, vmexit);
1902		} else {
1903			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
1904		}
1905
1906		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1907	} while (handled);
1908
1909	/*
1910	 * If a VM exit has been handled then the exitcode must be BOGUS
1911	 * If a VM exit is not handled then the exitcode must not be BOGUS
1912	 */
1913	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1914	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1915		panic("Mismatch between handled (%d) and exitcode (%d)",
1916		      handled, vmexit->exitcode);
1917	}
1918
1919	if (!handled)
1920		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
1921
1922	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
1923	    vmexit->exitcode);
1924
1925	VMCLEAR(vmcs);
1926	return (0);
1927}
1928
1929static void
1930vmx_vmcleanup(void *arg)
1931{
1932	int i, error;
1933	struct vmx *vmx = arg;
1934
1935	if (virtual_interrupt_delivery)
1936		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
1937
1938	for (i = 0; i < VM_MAXCPU; i++)
1939		vpid_free(vmx->state[i].vpid);
1940
1941	/*
1942	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1943	 */
1944	error = vmclear(&vmx->vmcs[0]);
1945	if (error != 0)
1946		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1947
1948	free(vmx, M_VMX);
1949
1950	return;
1951}
1952
1953static register_t *
1954vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1955{
1956
1957	switch (reg) {
1958	case VM_REG_GUEST_RAX:
1959		return (&vmxctx->guest_rax);
1960	case VM_REG_GUEST_RBX:
1961		return (&vmxctx->guest_rbx);
1962	case VM_REG_GUEST_RCX:
1963		return (&vmxctx->guest_rcx);
1964	case VM_REG_GUEST_RDX:
1965		return (&vmxctx->guest_rdx);
1966	case VM_REG_GUEST_RSI:
1967		return (&vmxctx->guest_rsi);
1968	case VM_REG_GUEST_RDI:
1969		return (&vmxctx->guest_rdi);
1970	case VM_REG_GUEST_RBP:
1971		return (&vmxctx->guest_rbp);
1972	case VM_REG_GUEST_R8:
1973		return (&vmxctx->guest_r8);
1974	case VM_REG_GUEST_R9:
1975		return (&vmxctx->guest_r9);
1976	case VM_REG_GUEST_R10:
1977		return (&vmxctx->guest_r10);
1978	case VM_REG_GUEST_R11:
1979		return (&vmxctx->guest_r11);
1980	case VM_REG_GUEST_R12:
1981		return (&vmxctx->guest_r12);
1982	case VM_REG_GUEST_R13:
1983		return (&vmxctx->guest_r13);
1984	case VM_REG_GUEST_R14:
1985		return (&vmxctx->guest_r14);
1986	case VM_REG_GUEST_R15:
1987		return (&vmxctx->guest_r15);
1988	default:
1989		break;
1990	}
1991	return (NULL);
1992}
1993
1994static int
1995vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1996{
1997	register_t *regp;
1998
1999	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2000		*retval = *regp;
2001		return (0);
2002	} else
2003		return (EINVAL);
2004}
2005
2006static int
2007vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2008{
2009	register_t *regp;
2010
2011	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2012		*regp = val;
2013		return (0);
2014	} else
2015		return (EINVAL);
2016}
2017
2018static int
2019vmx_shadow_reg(int reg)
2020{
2021	int shreg;
2022
2023	shreg = -1;
2024
2025	switch (reg) {
2026	case VM_REG_GUEST_CR0:
2027		shreg = VMCS_CR0_SHADOW;
2028                break;
2029        case VM_REG_GUEST_CR4:
2030		shreg = VMCS_CR4_SHADOW;
2031		break;
2032	default:
2033		break;
2034	}
2035
2036	return (shreg);
2037}
2038
2039static int
2040vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2041{
2042	int running, hostcpu;
2043	struct vmx *vmx = arg;
2044
2045	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2046	if (running && hostcpu != curcpu)
2047		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2048
2049	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2050		return (0);
2051
2052	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2053}
2054
2055static int
2056vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2057{
2058	int error, hostcpu, running, shadow;
2059	uint64_t ctls;
2060	struct vmx *vmx = arg;
2061
2062	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2063	if (running && hostcpu != curcpu)
2064		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2065
2066	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2067		return (0);
2068
2069	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2070
2071	if (error == 0) {
2072		/*
2073		 * If the "load EFER" VM-entry control is 1 then the
2074		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2075		 * bit in the VM-entry control.
2076		 */
2077		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2078		    (reg == VM_REG_GUEST_EFER)) {
2079			vmcs_getreg(&vmx->vmcs[vcpu], running,
2080				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2081			if (val & EFER_LMA)
2082				ctls |= VM_ENTRY_GUEST_LMA;
2083			else
2084				ctls &= ~VM_ENTRY_GUEST_LMA;
2085			vmcs_setreg(&vmx->vmcs[vcpu], running,
2086				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2087		}
2088
2089		shadow = vmx_shadow_reg(reg);
2090		if (shadow > 0) {
2091			/*
2092			 * Store the unmodified value in the shadow
2093			 */
2094			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2095				    VMCS_IDENT(shadow), val);
2096		}
2097	}
2098
2099	return (error);
2100}
2101
2102static int
2103vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2104{
2105	struct vmx *vmx = arg;
2106
2107	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
2108}
2109
2110static int
2111vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2112{
2113	struct vmx *vmx = arg;
2114
2115	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
2116}
2117
2118static int
2119vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
2120	   int code_valid)
2121{
2122	int error;
2123	uint64_t info;
2124	struct vmx *vmx = arg;
2125	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2126
2127	static uint32_t type_map[VM_EVENT_MAX] = {
2128		0x1,		/* VM_EVENT_NONE */
2129		0x0,		/* VM_HW_INTR */
2130		0x2,		/* VM_NMI */
2131		0x3,		/* VM_HW_EXCEPTION */
2132		0x4,		/* VM_SW_INTR */
2133		0x5,		/* VM_PRIV_SW_EXCEPTION */
2134		0x6,		/* VM_SW_EXCEPTION */
2135	};
2136
2137	/*
2138	 * If there is already an exception pending to be delivered to the
2139	 * vcpu then just return.
2140	 */
2141	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
2142	if (error)
2143		return (error);
2144
2145	if (info & VMCS_INTR_VALID)
2146		return (EAGAIN);
2147
2148	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
2149	info |= VMCS_INTR_VALID;
2150	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
2151	if (error != 0)
2152		return (error);
2153
2154	if (code_valid) {
2155		error = vmcs_setreg(vmcs, 0,
2156				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
2157				    code);
2158	}
2159	return (error);
2160}
2161
2162static int
2163vmx_getcap(void *arg, int vcpu, int type, int *retval)
2164{
2165	struct vmx *vmx = arg;
2166	int vcap;
2167	int ret;
2168
2169	ret = ENOENT;
2170
2171	vcap = vmx->cap[vcpu].set;
2172
2173	switch (type) {
2174	case VM_CAP_HALT_EXIT:
2175		if (cap_halt_exit)
2176			ret = 0;
2177		break;
2178	case VM_CAP_PAUSE_EXIT:
2179		if (cap_pause_exit)
2180			ret = 0;
2181		break;
2182	case VM_CAP_MTRAP_EXIT:
2183		if (cap_monitor_trap)
2184			ret = 0;
2185		break;
2186	case VM_CAP_UNRESTRICTED_GUEST:
2187		if (cap_unrestricted_guest)
2188			ret = 0;
2189		break;
2190	case VM_CAP_ENABLE_INVPCID:
2191		if (cap_invpcid)
2192			ret = 0;
2193		break;
2194	default:
2195		break;
2196	}
2197
2198	if (ret == 0)
2199		*retval = (vcap & (1 << type)) ? 1 : 0;
2200
2201	return (ret);
2202}
2203
2204static int
2205vmx_setcap(void *arg, int vcpu, int type, int val)
2206{
2207	struct vmx *vmx = arg;
2208	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2209	uint32_t baseval;
2210	uint32_t *pptr;
2211	int error;
2212	int flag;
2213	int reg;
2214	int retval;
2215
2216	retval = ENOENT;
2217	pptr = NULL;
2218
2219	switch (type) {
2220	case VM_CAP_HALT_EXIT:
2221		if (cap_halt_exit) {
2222			retval = 0;
2223			pptr = &vmx->cap[vcpu].proc_ctls;
2224			baseval = *pptr;
2225			flag = PROCBASED_HLT_EXITING;
2226			reg = VMCS_PRI_PROC_BASED_CTLS;
2227		}
2228		break;
2229	case VM_CAP_MTRAP_EXIT:
2230		if (cap_monitor_trap) {
2231			retval = 0;
2232			pptr = &vmx->cap[vcpu].proc_ctls;
2233			baseval = *pptr;
2234			flag = PROCBASED_MTF;
2235			reg = VMCS_PRI_PROC_BASED_CTLS;
2236		}
2237		break;
2238	case VM_CAP_PAUSE_EXIT:
2239		if (cap_pause_exit) {
2240			retval = 0;
2241			pptr = &vmx->cap[vcpu].proc_ctls;
2242			baseval = *pptr;
2243			flag = PROCBASED_PAUSE_EXITING;
2244			reg = VMCS_PRI_PROC_BASED_CTLS;
2245		}
2246		break;
2247	case VM_CAP_UNRESTRICTED_GUEST:
2248		if (cap_unrestricted_guest) {
2249			retval = 0;
2250			pptr = &vmx->cap[vcpu].proc_ctls2;
2251			baseval = *pptr;
2252			flag = PROCBASED2_UNRESTRICTED_GUEST;
2253			reg = VMCS_SEC_PROC_BASED_CTLS;
2254		}
2255		break;
2256	case VM_CAP_ENABLE_INVPCID:
2257		if (cap_invpcid) {
2258			retval = 0;
2259			pptr = &vmx->cap[vcpu].proc_ctls2;
2260			baseval = *pptr;
2261			flag = PROCBASED2_ENABLE_INVPCID;
2262			reg = VMCS_SEC_PROC_BASED_CTLS;
2263		}
2264		break;
2265	default:
2266		break;
2267	}
2268
2269	if (retval == 0) {
2270		if (val) {
2271			baseval |= flag;
2272		} else {
2273			baseval &= ~flag;
2274		}
2275		VMPTRLD(vmcs);
2276		error = vmwrite(reg, baseval);
2277		VMCLEAR(vmcs);
2278
2279		if (error) {
2280			retval = error;
2281		} else {
2282			/*
2283			 * Update optional stored flags, and record
2284			 * setting
2285			 */
2286			if (pptr != NULL) {
2287				*pptr = baseval;
2288			}
2289
2290			if (val) {
2291				vmx->cap[vcpu].set |= (1 << type);
2292			} else {
2293				vmx->cap[vcpu].set &= ~(1 << type);
2294			}
2295		}
2296	}
2297
2298        return (retval);
2299}
2300
2301struct vlapic_vtx {
2302	struct vlapic	vlapic;
2303	struct pir_desc	*pir_desc;
2304};
2305
2306#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2307do {									\
2308	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2309	    level ? "level" : "edge", vector);				\
2310	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2311	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2312	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2313	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2314	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2315} while (0)
2316
2317/*
2318 * vlapic->ops handlers that utilize the APICv hardware assist described in
2319 * Chapter 29 of the Intel SDM.
2320 */
2321static int
2322vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2323{
2324	struct vlapic_vtx *vlapic_vtx;
2325	struct pir_desc *pir_desc;
2326	uint64_t mask;
2327	int idx, notify;
2328
2329	/*
2330	 * XXX need to deal with level triggered interrupts
2331	 */
2332	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2333	pir_desc = vlapic_vtx->pir_desc;
2334
2335	/*
2336	 * Keep track of interrupt requests in the PIR descriptor. This is
2337	 * because the virtual APIC page pointed to by the VMCS cannot be
2338	 * modified if the vcpu is running.
2339	 */
2340	idx = vector / 64;
2341	mask = 1UL << (vector % 64);
2342	atomic_set_long(&pir_desc->pir[idx], mask);
2343	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2344
2345	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2346	    level, "vmx_set_intr_ready");
2347	return (notify);
2348}
2349
2350static int
2351vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2352{
2353	struct vlapic_vtx *vlapic_vtx;
2354	struct pir_desc *pir_desc;
2355	struct LAPIC *lapic;
2356	uint64_t pending, pirval;
2357	uint32_t ppr, vpr;
2358	int i;
2359
2360	/*
2361	 * This function is only expected to be called from the 'HLT' exit
2362	 * handler which does not care about the vector that is pending.
2363	 */
2364	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2365
2366	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2367	pir_desc = vlapic_vtx->pir_desc;
2368
2369	pending = atomic_load_acq_long(&pir_desc->pending);
2370	if (!pending)
2371		return (0);	/* common case */
2372
2373	/*
2374	 * If there is an interrupt pending then it will be recognized only
2375	 * if its priority is greater than the processor priority.
2376	 *
2377	 * Special case: if the processor priority is zero then any pending
2378	 * interrupt will be recognized.
2379	 */
2380	lapic = vlapic->apic_page;
2381	ppr = lapic->ppr & 0xf0;
2382	if (ppr == 0)
2383		return (1);
2384
2385	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2386	    lapic->ppr);
2387
2388	for (i = 3; i >= 0; i--) {
2389		pirval = pir_desc->pir[i];
2390		if (pirval != 0) {
2391			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2392			return (vpr > ppr);
2393		}
2394	}
2395	return (0);
2396}
2397
2398static void
2399vmx_intr_accepted(struct vlapic *vlapic, int vector)
2400{
2401
2402	panic("vmx_intr_accepted: not expected to be called");
2403}
2404
2405static void
2406vmx_post_intr(struct vlapic *vlapic, int hostcpu)
2407{
2408
2409	ipi_cpu(hostcpu, pirvec);
2410}
2411
2412/*
2413 * Transfer the pending interrupts in the PIR descriptor to the IRR
2414 * in the virtual APIC page.
2415 */
2416static void
2417vmx_inject_pir(struct vlapic *vlapic)
2418{
2419	struct vlapic_vtx *vlapic_vtx;
2420	struct pir_desc *pir_desc;
2421	struct LAPIC *lapic;
2422	uint64_t val, pirval;
2423	int rvi, pirbase;
2424	uint16_t intr_status_old, intr_status_new;
2425
2426	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2427	pir_desc = vlapic_vtx->pir_desc;
2428	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2429		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2430		    "no posted interrupt pending");
2431		return;
2432	}
2433
2434	pirval = 0;
2435	lapic = vlapic->apic_page;
2436
2437	val = atomic_readandclear_long(&pir_desc->pir[0]);
2438	if (val != 0) {
2439		lapic->irr0 |= val;
2440		lapic->irr1 |= val >> 32;
2441		pirbase = 0;
2442		pirval = val;
2443	}
2444
2445	val = atomic_readandclear_long(&pir_desc->pir[1]);
2446	if (val != 0) {
2447		lapic->irr2 |= val;
2448		lapic->irr3 |= val >> 32;
2449		pirbase = 64;
2450		pirval = val;
2451	}
2452
2453	val = atomic_readandclear_long(&pir_desc->pir[2]);
2454	if (val != 0) {
2455		lapic->irr4 |= val;
2456		lapic->irr5 |= val >> 32;
2457		pirbase = 128;
2458		pirval = val;
2459	}
2460
2461	val = atomic_readandclear_long(&pir_desc->pir[3]);
2462	if (val != 0) {
2463		lapic->irr6 |= val;
2464		lapic->irr7 |= val >> 32;
2465		pirbase = 192;
2466		pirval = val;
2467	}
2468	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2469
2470	/*
2471	 * Update RVI so the processor can evaluate pending virtual
2472	 * interrupts on VM-entry.
2473	 */
2474	if (pirval != 0) {
2475		rvi = pirbase + flsl(pirval) - 1;
2476		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2477		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2478		if (intr_status_new > intr_status_old) {
2479			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2480			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2481			    "guest_intr_status changed from 0x%04x to 0x%04x",
2482			    intr_status_old, intr_status_new);
2483		}
2484	}
2485}
2486
2487static struct vlapic *
2488vmx_vlapic_init(void *arg, int vcpuid)
2489{
2490	struct vmx *vmx;
2491	struct vlapic *vlapic;
2492	struct vlapic_vtx *vlapic_vtx;
2493
2494	vmx = arg;
2495
2496	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2497	vlapic->vm = vmx->vm;
2498	vlapic->vcpuid = vcpuid;
2499	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2500
2501	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2502	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
2503
2504	if (virtual_interrupt_delivery) {
2505		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2506		vlapic->ops.pending_intr = vmx_pending_intr;
2507		vlapic->ops.intr_accepted = vmx_intr_accepted;
2508	}
2509
2510	if (posted_interrupts)
2511		vlapic->ops.post_intr = vmx_post_intr;
2512
2513	vlapic_init(vlapic);
2514
2515	return (vlapic);
2516}
2517
2518static void
2519vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2520{
2521
2522	vlapic_cleanup(vlapic);
2523	free(vlapic, M_VLAPIC);
2524}
2525
2526struct vmm_ops vmm_ops_intel = {
2527	vmx_init,
2528	vmx_cleanup,
2529	vmx_restore,
2530	vmx_vminit,
2531	vmx_run,
2532	vmx_vmcleanup,
2533	vmx_getreg,
2534	vmx_setreg,
2535	vmx_getdesc,
2536	vmx_setdesc,
2537	vmx_inject,
2538	vmx_getcap,
2539	vmx_setcap,
2540	ept_vmspace_alloc,
2541	ept_vmspace_free,
2542	vmx_vlapic_init,
2543	vmx_vlapic_cleanup,
2544};
2545