vmx.c revision 260836
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/amd64/vmm/intel/vmx.c 260836 2014-01-18 02:20:10Z neel $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/amd64/vmm/intel/vmx.c 260836 2014-01-18 02:20:10Z neel $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/smp.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/pcpu.h>
38#include <sys/proc.h>
39#include <sys/sysctl.h>
40
41#include <vm/vm.h>
42#include <vm/pmap.h>
43
44#include <machine/psl.h>
45#include <machine/cpufunc.h>
46#include <machine/md_var.h>
47#include <machine/segments.h>
48#include <machine/smp.h>
49#include <machine/specialreg.h>
50#include <machine/vmparam.h>
51
52#include <machine/vmm.h>
53#include "vmm_host.h"
54#include "vmm_ipi.h"
55#include "vmm_msr.h"
56#include "vmm_ktr.h"
57#include "vmm_stat.h"
58#include "vlapic.h"
59#include "vlapic_priv.h"
60
61#include "vmx_msr.h"
62#include "ept.h"
63#include "vmx_cpufunc.h"
64#include "vmx.h"
65#include "x86.h"
66#include "vmx_controls.h"
67
68#define	PINBASED_CTLS_ONE_SETTING					\
69	(PINBASED_EXTINT_EXITING	|				\
70	 PINBASED_NMI_EXITING		|				\
71	 PINBASED_VIRTUAL_NMI)
72#define	PINBASED_CTLS_ZERO_SETTING	0
73
74#define PROCBASED_CTLS_WINDOW_SETTING					\
75	(PROCBASED_INT_WINDOW_EXITING	|				\
76	 PROCBASED_NMI_WINDOW_EXITING)
77
78#define	PROCBASED_CTLS_ONE_SETTING 					\
79	(PROCBASED_SECONDARY_CONTROLS	|				\
80	 PROCBASED_IO_EXITING		|				\
81	 PROCBASED_MSR_BITMAPS		|				\
82	 PROCBASED_CTLS_WINDOW_SETTING)
83#define	PROCBASED_CTLS_ZERO_SETTING	\
84	(PROCBASED_CR3_LOAD_EXITING |	\
85	PROCBASED_CR3_STORE_EXITING |	\
86	PROCBASED_IO_BITMAPS)
87
88#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
89#define	PROCBASED_CTLS2_ZERO_SETTING	0
90
91#define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
92	(VM_EXIT_HOST_LMA			|			\
93	VM_EXIT_SAVE_EFER			|			\
94	VM_EXIT_LOAD_EFER)
95
96#define	VM_EXIT_CTLS_ONE_SETTING					\
97	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
98	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
99	VM_EXIT_SAVE_PAT			|			\
100	VM_EXIT_LOAD_PAT)
101#define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
102
103#define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
104
105#define	VM_ENTRY_CTLS_ONE_SETTING					\
106	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
107	VM_ENTRY_LOAD_PAT)
108#define	VM_ENTRY_CTLS_ZERO_SETTING					\
109	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
110	VM_ENTRY_INTO_SMM			|			\
111	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112
113#define	guest_msr_rw(vmx, msr) \
114	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
115
116#define	HANDLED		1
117#define	UNHANDLED	0
118
119static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121
122SYSCTL_DECL(_hw_vmm);
123SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124
125int vmxon_enabled[MAXCPU];
126static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127
128static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129static uint32_t exit_ctls, entry_ctls;
130
131static uint64_t cr0_ones_mask, cr0_zeros_mask;
132SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133	     &cr0_ones_mask, 0, NULL);
134SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135	     &cr0_zeros_mask, 0, NULL);
136
137static uint64_t cr4_ones_mask, cr4_zeros_mask;
138SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139	     &cr4_ones_mask, 0, NULL);
140SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141	     &cr4_zeros_mask, 0, NULL);
142
143static int vmx_no_patmsr;
144
145static int vmx_initialized;
146SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147	   &vmx_initialized, 0, "Intel VMX initialized");
148
149/*
150 * Virtual NMI blocking conditions.
151 *
152 * Some processor implementations also require NMI to be blocked if
153 * the STI_BLOCKING bit is set. It is possible to detect this at runtime
154 * based on the (exit_reason,exit_qual) tuple being set to
155 * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
156 *
157 * We take the easy way out and also include STI_BLOCKING as one of the
158 * gating items for vNMI injection.
159 */
160static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
161				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
162				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
163
164/*
165 * Optional capabilities
166 */
167static int cap_halt_exit;
168static int cap_pause_exit;
169static int cap_unrestricted_guest;
170static int cap_monitor_trap;
171static int cap_invpcid;
172
173static int virtual_interrupt_delivery;
174SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
175    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
176
177static int posted_interrupts;
178SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD,
179    &posted_interrupts, 0, "APICv posted interrupt support");
180
181static int pirvec;
182SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
183    &pirvec, 0, "APICv posted interrupt vector");
184
185static struct unrhdr *vpid_unr;
186static u_int vpid_alloc_failed;
187SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
188	    &vpid_alloc_failed, 0, NULL);
189
190/*
191 * Use the last page below 4GB as the APIC access address. This address is
192 * occupied by the boot firmware so it is guaranteed that it will not conflict
193 * with a page in system memory.
194 */
195#define	APIC_ACCESS_ADDRESS	0xFFFFF000
196
197static void vmx_inject_pir(struct vlapic *vlapic);
198
199#ifdef KTR
200static const char *
201exit_reason_to_str(int reason)
202{
203	static char reasonbuf[32];
204
205	switch (reason) {
206	case EXIT_REASON_EXCEPTION:
207		return "exception";
208	case EXIT_REASON_EXT_INTR:
209		return "extint";
210	case EXIT_REASON_TRIPLE_FAULT:
211		return "triplefault";
212	case EXIT_REASON_INIT:
213		return "init";
214	case EXIT_REASON_SIPI:
215		return "sipi";
216	case EXIT_REASON_IO_SMI:
217		return "iosmi";
218	case EXIT_REASON_SMI:
219		return "smi";
220	case EXIT_REASON_INTR_WINDOW:
221		return "intrwindow";
222	case EXIT_REASON_NMI_WINDOW:
223		return "nmiwindow";
224	case EXIT_REASON_TASK_SWITCH:
225		return "taskswitch";
226	case EXIT_REASON_CPUID:
227		return "cpuid";
228	case EXIT_REASON_GETSEC:
229		return "getsec";
230	case EXIT_REASON_HLT:
231		return "hlt";
232	case EXIT_REASON_INVD:
233		return "invd";
234	case EXIT_REASON_INVLPG:
235		return "invlpg";
236	case EXIT_REASON_RDPMC:
237		return "rdpmc";
238	case EXIT_REASON_RDTSC:
239		return "rdtsc";
240	case EXIT_REASON_RSM:
241		return "rsm";
242	case EXIT_REASON_VMCALL:
243		return "vmcall";
244	case EXIT_REASON_VMCLEAR:
245		return "vmclear";
246	case EXIT_REASON_VMLAUNCH:
247		return "vmlaunch";
248	case EXIT_REASON_VMPTRLD:
249		return "vmptrld";
250	case EXIT_REASON_VMPTRST:
251		return "vmptrst";
252	case EXIT_REASON_VMREAD:
253		return "vmread";
254	case EXIT_REASON_VMRESUME:
255		return "vmresume";
256	case EXIT_REASON_VMWRITE:
257		return "vmwrite";
258	case EXIT_REASON_VMXOFF:
259		return "vmxoff";
260	case EXIT_REASON_VMXON:
261		return "vmxon";
262	case EXIT_REASON_CR_ACCESS:
263		return "craccess";
264	case EXIT_REASON_DR_ACCESS:
265		return "draccess";
266	case EXIT_REASON_INOUT:
267		return "inout";
268	case EXIT_REASON_RDMSR:
269		return "rdmsr";
270	case EXIT_REASON_WRMSR:
271		return "wrmsr";
272	case EXIT_REASON_INVAL_VMCS:
273		return "invalvmcs";
274	case EXIT_REASON_INVAL_MSR:
275		return "invalmsr";
276	case EXIT_REASON_MWAIT:
277		return "mwait";
278	case EXIT_REASON_MTF:
279		return "mtf";
280	case EXIT_REASON_MONITOR:
281		return "monitor";
282	case EXIT_REASON_PAUSE:
283		return "pause";
284	case EXIT_REASON_MCE:
285		return "mce";
286	case EXIT_REASON_TPR:
287		return "tpr";
288	case EXIT_REASON_APIC_ACCESS:
289		return "apic-access";
290	case EXIT_REASON_GDTR_IDTR:
291		return "gdtridtr";
292	case EXIT_REASON_LDTR_TR:
293		return "ldtrtr";
294	case EXIT_REASON_EPT_FAULT:
295		return "eptfault";
296	case EXIT_REASON_EPT_MISCONFIG:
297		return "eptmisconfig";
298	case EXIT_REASON_INVEPT:
299		return "invept";
300	case EXIT_REASON_RDTSCP:
301		return "rdtscp";
302	case EXIT_REASON_VMX_PREEMPT:
303		return "vmxpreempt";
304	case EXIT_REASON_INVVPID:
305		return "invvpid";
306	case EXIT_REASON_WBINVD:
307		return "wbinvd";
308	case EXIT_REASON_XSETBV:
309		return "xsetbv";
310	case EXIT_REASON_APIC_WRITE:
311		return "apic-write";
312	default:
313		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
314		return (reasonbuf);
315	}
316}
317#endif	/* KTR */
318
319u_long
320vmx_fix_cr0(u_long cr0)
321{
322
323	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
324}
325
326u_long
327vmx_fix_cr4(u_long cr4)
328{
329
330	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
331}
332
333static void
334vpid_free(int vpid)
335{
336	if (vpid < 0 || vpid > 0xffff)
337		panic("vpid_free: invalid vpid %d", vpid);
338
339	/*
340	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
341	 * the unit number allocator.
342	 */
343
344	if (vpid > VM_MAXCPU)
345		free_unr(vpid_unr, vpid);
346}
347
348static void
349vpid_alloc(uint16_t *vpid, int num)
350{
351	int i, x;
352
353	if (num <= 0 || num > VM_MAXCPU)
354		panic("invalid number of vpids requested: %d", num);
355
356	/*
357	 * If the "enable vpid" execution control is not enabled then the
358	 * VPID is required to be 0 for all vcpus.
359	 */
360	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
361		for (i = 0; i < num; i++)
362			vpid[i] = 0;
363		return;
364	}
365
366	/*
367	 * Allocate a unique VPID for each vcpu from the unit number allocator.
368	 */
369	for (i = 0; i < num; i++) {
370		x = alloc_unr(vpid_unr);
371		if (x == -1)
372			break;
373		else
374			vpid[i] = x;
375	}
376
377	if (i < num) {
378		atomic_add_int(&vpid_alloc_failed, 1);
379
380		/*
381		 * If the unit number allocator does not have enough unique
382		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
383		 *
384		 * These VPIDs are not be unique across VMs but this does not
385		 * affect correctness because the combined mappings are also
386		 * tagged with the EP4TA which is unique for each VM.
387		 *
388		 * It is still sub-optimal because the invvpid will invalidate
389		 * combined mappings for a particular VPID across all EP4TAs.
390		 */
391		while (i-- > 0)
392			vpid_free(vpid[i]);
393
394		for (i = 0; i < num; i++)
395			vpid[i] = i + 1;
396	}
397}
398
399static void
400vpid_init(void)
401{
402	/*
403	 * VPID 0 is required when the "enable VPID" execution control is
404	 * disabled.
405	 *
406	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
407	 * unit number allocator does not have sufficient unique VPIDs to
408	 * satisfy the allocation.
409	 *
410	 * The remaining VPIDs are managed by the unit number allocator.
411	 */
412	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
413}
414
415static void
416msr_save_area_init(struct msr_entry *g_area, int *g_count)
417{
418	int cnt;
419
420	static struct msr_entry guest_msrs[] = {
421		{ MSR_KGSBASE, 0, 0 },
422	};
423
424	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
425	if (cnt > GUEST_MSR_MAX_ENTRIES)
426		panic("guest msr save area overrun");
427	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
428	*g_count = cnt;
429}
430
431static void
432vmx_disable(void *arg __unused)
433{
434	struct invvpid_desc invvpid_desc = { 0 };
435	struct invept_desc invept_desc = { 0 };
436
437	if (vmxon_enabled[curcpu]) {
438		/*
439		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
440		 *
441		 * VMXON or VMXOFF are not required to invalidate any TLB
442		 * caching structures. This prevents potential retention of
443		 * cached information in the TLB between distinct VMX episodes.
444		 */
445		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
446		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
447		vmxoff();
448	}
449	load_cr4(rcr4() & ~CR4_VMXE);
450}
451
452static int
453vmx_cleanup(void)
454{
455
456	if (pirvec != 0)
457		vmm_ipi_free(pirvec);
458
459	if (vpid_unr != NULL) {
460		delete_unrhdr(vpid_unr);
461		vpid_unr = NULL;
462	}
463
464	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
465
466	return (0);
467}
468
469static void
470vmx_enable(void *arg __unused)
471{
472	int error;
473
474	load_cr4(rcr4() | CR4_VMXE);
475
476	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
477	error = vmxon(vmxon_region[curcpu]);
478	if (error == 0)
479		vmxon_enabled[curcpu] = 1;
480}
481
482static void
483vmx_restore(void)
484{
485
486	if (vmxon_enabled[curcpu])
487		vmxon(vmxon_region[curcpu]);
488}
489
490static int
491vmx_init(int ipinum)
492{
493	int error, use_tpr_shadow;
494	uint64_t fixed0, fixed1, feature_control;
495	uint32_t tmp, procbased2_vid_bits;
496
497	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
498	if (!(cpu_feature2 & CPUID2_VMX)) {
499		printf("vmx_init: processor does not support VMX operation\n");
500		return (ENXIO);
501	}
502
503	/*
504	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
505	 * are set (bits 0 and 2 respectively).
506	 */
507	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
508	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
509	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
510		printf("vmx_init: VMX operation disabled by BIOS\n");
511		return (ENXIO);
512	}
513
514	/* Check support for primary processor-based VM-execution controls */
515	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
516			       MSR_VMX_TRUE_PROCBASED_CTLS,
517			       PROCBASED_CTLS_ONE_SETTING,
518			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
519	if (error) {
520		printf("vmx_init: processor does not support desired primary "
521		       "processor-based controls\n");
522		return (error);
523	}
524
525	/* Clear the processor-based ctl bits that are set on demand */
526	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
527
528	/* Check support for secondary processor-based VM-execution controls */
529	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
530			       MSR_VMX_PROCBASED_CTLS2,
531			       PROCBASED_CTLS2_ONE_SETTING,
532			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
533	if (error) {
534		printf("vmx_init: processor does not support desired secondary "
535		       "processor-based controls\n");
536		return (error);
537	}
538
539	/* Check support for VPID */
540	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
541			       PROCBASED2_ENABLE_VPID, 0, &tmp);
542	if (error == 0)
543		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
544
545	/* Check support for pin-based VM-execution controls */
546	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
547			       MSR_VMX_TRUE_PINBASED_CTLS,
548			       PINBASED_CTLS_ONE_SETTING,
549			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
550	if (error) {
551		printf("vmx_init: processor does not support desired "
552		       "pin-based controls\n");
553		return (error);
554	}
555
556	/* Check support for VM-exit controls */
557	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
558			       VM_EXIT_CTLS_ONE_SETTING,
559			       VM_EXIT_CTLS_ZERO_SETTING,
560			       &exit_ctls);
561	if (error) {
562		/* Try again without the PAT MSR bits */
563		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
564				       MSR_VMX_TRUE_EXIT_CTLS,
565				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
566				       VM_EXIT_CTLS_ZERO_SETTING,
567				       &exit_ctls);
568		if (error) {
569			printf("vmx_init: processor does not support desired "
570			       "exit controls\n");
571			return (error);
572		} else {
573			if (bootverbose)
574				printf("vmm: PAT MSR access not supported\n");
575			guest_msr_valid(MSR_PAT);
576			vmx_no_patmsr = 1;
577		}
578	}
579
580	/* Check support for VM-entry controls */
581	if (!vmx_no_patmsr) {
582		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
583				       MSR_VMX_TRUE_ENTRY_CTLS,
584				       VM_ENTRY_CTLS_ONE_SETTING,
585				       VM_ENTRY_CTLS_ZERO_SETTING,
586				       &entry_ctls);
587	} else {
588		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
589				       MSR_VMX_TRUE_ENTRY_CTLS,
590				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
591				       VM_ENTRY_CTLS_ZERO_SETTING,
592				       &entry_ctls);
593	}
594
595	if (error) {
596		printf("vmx_init: processor does not support desired "
597		       "entry controls\n");
598		       return (error);
599	}
600
601	/*
602	 * Check support for optional features by testing them
603	 * as individual bits
604	 */
605	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
606					MSR_VMX_TRUE_PROCBASED_CTLS,
607					PROCBASED_HLT_EXITING, 0,
608					&tmp) == 0);
609
610	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
611					MSR_VMX_PROCBASED_CTLS,
612					PROCBASED_MTF, 0,
613					&tmp) == 0);
614
615	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
616					 MSR_VMX_TRUE_PROCBASED_CTLS,
617					 PROCBASED_PAUSE_EXITING, 0,
618					 &tmp) == 0);
619
620	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
621					MSR_VMX_PROCBASED_CTLS2,
622					PROCBASED2_UNRESTRICTED_GUEST, 0,
623				        &tmp) == 0);
624
625	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
626	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
627	    &tmp) == 0);
628
629	/*
630	 * Check support for virtual interrupt delivery.
631	 */
632	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
633	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
634	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
635	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
636
637	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
638	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
639	    &tmp) == 0);
640
641	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
642	    procbased2_vid_bits, 0, &tmp);
643	if (error == 0 && use_tpr_shadow) {
644		virtual_interrupt_delivery = 1;
645		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
646		    &virtual_interrupt_delivery);
647	}
648
649	if (virtual_interrupt_delivery) {
650		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
651		procbased_ctls2 |= procbased2_vid_bits;
652		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
653
654		/*
655		 * Check for Posted Interrupts only if Virtual Interrupt
656		 * Delivery is enabled.
657		 */
658		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
659		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
660		    &tmp);
661		if (error == 0) {
662			pirvec = vmm_ipi_alloc();
663			if (pirvec == 0) {
664				if (bootverbose) {
665					printf("vmx_init: unable to allocate "
666					    "posted interrupt vector\n");
667				}
668			} else {
669				posted_interrupts = 1;
670				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
671				    &posted_interrupts);
672			}
673		}
674	}
675
676	if (posted_interrupts)
677		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
678
679	/* Initialize EPT */
680	error = ept_init(ipinum);
681	if (error) {
682		printf("vmx_init: ept initialization failed (%d)\n", error);
683		return (error);
684	}
685
686	/*
687	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
688	 */
689	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
690	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
691	cr0_ones_mask = fixed0 & fixed1;
692	cr0_zeros_mask = ~fixed0 & ~fixed1;
693
694	/*
695	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
696	 * if unrestricted guest execution is allowed.
697	 */
698	if (cap_unrestricted_guest)
699		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
700
701	/*
702	 * Do not allow the guest to set CR0_NW or CR0_CD.
703	 */
704	cr0_zeros_mask |= (CR0_NW | CR0_CD);
705
706	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
707	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
708	cr4_ones_mask = fixed0 & fixed1;
709	cr4_zeros_mask = ~fixed0 & ~fixed1;
710
711	vpid_init();
712
713	/* enable VMX operation */
714	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
715
716	vmx_initialized = 1;
717
718	return (0);
719}
720
721static void
722vmx_trigger_hostintr(int vector)
723{
724	uintptr_t func;
725	struct gate_descriptor *gd;
726
727	gd = &idt[vector];
728
729	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
730	    "invalid vector %d", vector));
731	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
732	    vector));
733	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
734	    "has invalid type %d", vector, gd->gd_type));
735	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
736	    "has invalid dpl %d", vector, gd->gd_dpl));
737	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
738	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
739	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
740	    "IST %d", vector, gd->gd_ist));
741
742	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
743	vmx_call_isr(func);
744}
745
746static int
747vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
748{
749	int error, mask_ident, shadow_ident;
750	uint64_t mask_value;
751
752	if (which != 0 && which != 4)
753		panic("vmx_setup_cr_shadow: unknown cr%d", which);
754
755	if (which == 0) {
756		mask_ident = VMCS_CR0_MASK;
757		mask_value = cr0_ones_mask | cr0_zeros_mask;
758		shadow_ident = VMCS_CR0_SHADOW;
759	} else {
760		mask_ident = VMCS_CR4_MASK;
761		mask_value = cr4_ones_mask | cr4_zeros_mask;
762		shadow_ident = VMCS_CR4_SHADOW;
763	}
764
765	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
766	if (error)
767		return (error);
768
769	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
770	if (error)
771		return (error);
772
773	return (0);
774}
775#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
776#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
777
778static void *
779vmx_vminit(struct vm *vm, pmap_t pmap)
780{
781	uint16_t vpid[VM_MAXCPU];
782	int i, error, guest_msr_count;
783	struct vmx *vmx;
784	struct vmcs *vmcs;
785
786	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
787	if ((uintptr_t)vmx & PAGE_MASK) {
788		panic("malloc of struct vmx not aligned on %d byte boundary",
789		      PAGE_SIZE);
790	}
791	vmx->vm = vm;
792
793	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
794
795	/*
796	 * Clean up EPTP-tagged guest physical and combined mappings
797	 *
798	 * VMX transitions are not required to invalidate any guest physical
799	 * mappings. So, it may be possible for stale guest physical mappings
800	 * to be present in the processor TLBs.
801	 *
802	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
803	 */
804	ept_invalidate_mappings(vmx->eptp);
805
806	msr_bitmap_initialize(vmx->msr_bitmap);
807
808	/*
809	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
810	 * The guest FSBASE and GSBASE are saved and restored during
811	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
812	 * always restored from the vmcs host state area on vm-exit.
813	 *
814	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
815	 * how they are saved/restored so can be directly accessed by the
816	 * guest.
817	 *
818	 * Guest KGSBASE is saved and restored in the guest MSR save area.
819	 * Host KGSBASE is restored before returning to userland from the pcb.
820	 * There will be a window of time when we are executing in the host
821	 * kernel context with a value of KGSBASE from the guest. This is ok
822	 * because the value of KGSBASE is inconsequential in kernel context.
823	 *
824	 * MSR_EFER is saved and restored in the guest VMCS area on a
825	 * VM exit and entry respectively. It is also restored from the
826	 * host VMCS area on a VM exit.
827	 */
828	if (guest_msr_rw(vmx, MSR_GSBASE) ||
829	    guest_msr_rw(vmx, MSR_FSBASE) ||
830	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
831	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
832	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
833	    guest_msr_rw(vmx, MSR_KGSBASE) ||
834	    guest_msr_rw(vmx, MSR_EFER))
835		panic("vmx_vminit: error setting guest msr access");
836
837	/*
838	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
839	 * and entry respectively. It is also restored from the host VMCS
840	 * area on a VM exit. However, if running on a system with no
841	 * MSR_PAT save/restore support, leave access disabled so accesses
842	 * will be trapped.
843	 */
844	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
845		panic("vmx_vminit: error setting guest pat msr access");
846
847	vpid_alloc(vpid, VM_MAXCPU);
848
849	if (virtual_interrupt_delivery) {
850		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
851		    APIC_ACCESS_ADDRESS);
852		/* XXX this should really return an error to the caller */
853		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
854	}
855
856	for (i = 0; i < VM_MAXCPU; i++) {
857		vmcs = &vmx->vmcs[i];
858		vmcs->identifier = vmx_revision();
859		error = vmclear(vmcs);
860		if (error != 0) {
861			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
862			      error, i);
863		}
864
865		error = vmcs_init(vmcs);
866		KASSERT(error == 0, ("vmcs_init error %d", error));
867
868		VMPTRLD(vmcs);
869		error = 0;
870		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
871		error += vmwrite(VMCS_EPTP, vmx->eptp);
872		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
873		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
874		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
875		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
876		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
877		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
878		error += vmwrite(VMCS_VPID, vpid[i]);
879		if (virtual_interrupt_delivery) {
880			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
881			error += vmwrite(VMCS_VIRTUAL_APIC,
882			    vtophys(&vmx->apic_page[i]));
883			error += vmwrite(VMCS_EOI_EXIT0, 0);
884			error += vmwrite(VMCS_EOI_EXIT1, 0);
885			error += vmwrite(VMCS_EOI_EXIT2, 0);
886			error += vmwrite(VMCS_EOI_EXIT3, 0);
887		}
888		if (posted_interrupts) {
889			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
890			error += vmwrite(VMCS_PIR_DESC,
891			    vtophys(&vmx->pir_desc[i]));
892		}
893		VMCLEAR(vmcs);
894		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
895
896		vmx->cap[i].set = 0;
897		vmx->cap[i].proc_ctls = procbased_ctls;
898		vmx->cap[i].proc_ctls2 = procbased_ctls2;
899
900		vmx->state[i].lastcpu = -1;
901		vmx->state[i].vpid = vpid[i];
902
903		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
904
905		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
906		    guest_msr_count);
907		if (error != 0)
908			panic("vmcs_set_msr_save error %d", error);
909
910		/*
911		 * Set up the CR0/4 shadows, and init the read shadow
912		 * to the power-on register value from the Intel Sys Arch.
913		 *  CR0 - 0x60000010
914		 *  CR4 - 0
915		 */
916		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
917		if (error != 0)
918			panic("vmx_setup_cr0_shadow %d", error);
919
920		error = vmx_setup_cr4_shadow(vmcs, 0);
921		if (error != 0)
922			panic("vmx_setup_cr4_shadow %d", error);
923
924		vmx->ctx[i].pmap = pmap;
925		vmx->ctx[i].eptp = vmx->eptp;
926	}
927
928	return (vmx);
929}
930
931static int
932vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
933{
934	int handled, func;
935
936	func = vmxctx->guest_rax;
937
938	handled = x86_emulate_cpuid(vm, vcpu,
939				    (uint32_t*)(&vmxctx->guest_rax),
940				    (uint32_t*)(&vmxctx->guest_rbx),
941				    (uint32_t*)(&vmxctx->guest_rcx),
942				    (uint32_t*)(&vmxctx->guest_rdx));
943	return (handled);
944}
945
946static __inline void
947vmx_run_trace(struct vmx *vmx, int vcpu)
948{
949#ifdef KTR
950	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
951#endif
952}
953
954static __inline void
955vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
956	       int handled)
957{
958#ifdef KTR
959	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
960		 handled ? "handled" : "unhandled",
961		 exit_reason_to_str(exit_reason), rip);
962#endif
963}
964
965static __inline void
966vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
967{
968#ifdef KTR
969	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
970#endif
971}
972
973static void
974vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
975{
976	int lastcpu;
977	struct vmxstate *vmxstate;
978	struct invvpid_desc invvpid_desc = { 0 };
979
980	vmxstate = &vmx->state[vcpu];
981	lastcpu = vmxstate->lastcpu;
982	vmxstate->lastcpu = curcpu;
983
984	if (lastcpu == curcpu)
985		return;
986
987	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
988
989	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
990	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
991	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
992
993	/*
994	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
995	 *
996	 * We do this because this vcpu was executing on a different host
997	 * cpu when it last ran. We do not track whether it invalidated
998	 * mappings associated with its 'vpid' during that run. So we must
999	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1000	 * stale and invalidate them.
1001	 *
1002	 * Note that we incur this penalty only when the scheduler chooses to
1003	 * move the thread associated with this vcpu between host cpus.
1004	 *
1005	 * Note also that this will invalidate mappings tagged with 'vpid'
1006	 * for "all" EP4TAs.
1007	 */
1008	if (vmxstate->vpid != 0) {
1009		invvpid_desc.vpid = vmxstate->vpid;
1010		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1011	}
1012}
1013
1014/*
1015 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1016 */
1017CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1018
1019static void __inline
1020vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1021{
1022
1023	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1024	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1025}
1026
1027static void __inline
1028vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1029{
1030
1031	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1032	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1033}
1034
1035static void __inline
1036vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1037{
1038
1039	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1040	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1041}
1042
1043static void __inline
1044vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1045{
1046
1047	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1048	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1049}
1050
1051static int
1052vmx_inject_nmi(struct vmx *vmx, int vcpu)
1053{
1054	uint64_t info, interruptibility;
1055
1056	/* Bail out if no NMI requested */
1057	if (!vm_nmi_pending(vmx->vm, vcpu))
1058		return (0);
1059
1060	interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1061	if (interruptibility & nmi_blocking_bits)
1062		goto nmiblocked;
1063
1064	/*
1065	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1066	 * or the VMCS entry check will fail.
1067	 */
1068	info = VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1069	info |= IDT_NMI;
1070	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1071
1072	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1073
1074	/* Clear the request */
1075	vm_nmi_clear(vmx->vm, vcpu);
1076	return (1);
1077
1078nmiblocked:
1079	/*
1080	 * Set the NMI Window Exiting execution control so we can inject
1081	 * the virtual NMI as soon as blocking condition goes away.
1082	 */
1083	vmx_set_nmi_window_exiting(vmx, vcpu);
1084
1085	VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1086	return (1);
1087}
1088
1089static void
1090vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1091{
1092	int vector;
1093	uint64_t info, rflags, interruptibility;
1094
1095	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
1096				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
1097
1098	/*
1099	 * If there is already an interrupt pending then just return.
1100	 *
1101	 * This could happen if an interrupt was injected on a prior
1102	 * VM entry but the actual entry into guest mode was aborted
1103	 * because of a pending AST.
1104	 */
1105	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1106	if (info & VMCS_INTR_VALID)
1107		return;
1108
1109	/*
1110	 * NMI injection has priority so deal with those first
1111	 */
1112	if (vmx_inject_nmi(vmx, vcpu))
1113		return;
1114
1115	if (virtual_interrupt_delivery) {
1116		vmx_inject_pir(vlapic);
1117		return;
1118	}
1119
1120	/* Ask the local apic for a vector to inject */
1121	if (!vlapic_pending_intr(vlapic, &vector))
1122		return;
1123
1124	if (vector < 32 || vector > 255)
1125		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1126
1127	/* Check RFLAGS.IF and the interruptibility state of the guest */
1128	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1129	if ((rflags & PSL_I) == 0)
1130		goto cantinject;
1131
1132	interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1133	if (interruptibility & HWINTR_BLOCKED)
1134		goto cantinject;
1135
1136	/* Inject the interrupt */
1137	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1138	info |= vector;
1139	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1140
1141	/* Update the Local APIC ISR */
1142	vlapic_intr_accepted(vlapic, vector);
1143
1144	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1145
1146	return;
1147
1148cantinject:
1149	/*
1150	 * Set the Interrupt Window Exiting execution control so we can inject
1151	 * the interrupt as soon as blocking condition goes away.
1152	 */
1153	vmx_set_int_window_exiting(vmx, vcpu);
1154
1155	VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1156}
1157
1158/*
1159 * If the Virtual NMIs execution control is '1' then the logical processor
1160 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1161 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1162 * virtual-NMI blocking.
1163 *
1164 * This unblocking occurs even if the IRET causes a fault. In this case the
1165 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1166 */
1167static void
1168vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1169{
1170	uint32_t gi;
1171
1172	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1173	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1174	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1175	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1176}
1177
1178static void
1179vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1180{
1181	uint32_t gi;
1182
1183	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1184	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1185	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1186	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1187}
1188
1189static int
1190vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1191{
1192	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1193	uint64_t crval, regval, ones_mask, zeros_mask;
1194	const struct vmxctx *vmxctx;
1195
1196	/* We only handle mov to %cr0 or %cr4 at this time */
1197	if ((exitqual & 0xf0) != 0x00)
1198		return (UNHANDLED);
1199
1200	cr = exitqual & 0xf;
1201	if (cr != 0 && cr != 4)
1202		return (UNHANDLED);
1203
1204	regval = 0; /* silence gcc */
1205	vmxctx = &vmx->ctx[vcpu];
1206
1207	/*
1208	 * We must use vmcs_write() directly here because vmcs_setreg() will
1209	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1210	 */
1211	switch ((exitqual >> 8) & 0xf) {
1212	case 0:
1213		regval = vmxctx->guest_rax;
1214		break;
1215	case 1:
1216		regval = vmxctx->guest_rcx;
1217		break;
1218	case 2:
1219		regval = vmxctx->guest_rdx;
1220		break;
1221	case 3:
1222		regval = vmxctx->guest_rbx;
1223		break;
1224	case 4:
1225		regval = vmcs_read(VMCS_GUEST_RSP);
1226		break;
1227	case 5:
1228		regval = vmxctx->guest_rbp;
1229		break;
1230	case 6:
1231		regval = vmxctx->guest_rsi;
1232		break;
1233	case 7:
1234		regval = vmxctx->guest_rdi;
1235		break;
1236	case 8:
1237		regval = vmxctx->guest_r8;
1238		break;
1239	case 9:
1240		regval = vmxctx->guest_r9;
1241		break;
1242	case 10:
1243		regval = vmxctx->guest_r10;
1244		break;
1245	case 11:
1246		regval = vmxctx->guest_r11;
1247		break;
1248	case 12:
1249		regval = vmxctx->guest_r12;
1250		break;
1251	case 13:
1252		regval = vmxctx->guest_r13;
1253		break;
1254	case 14:
1255		regval = vmxctx->guest_r14;
1256		break;
1257	case 15:
1258		regval = vmxctx->guest_r15;
1259		break;
1260	}
1261
1262	if (cr == 0) {
1263		ones_mask = cr0_ones_mask;
1264		zeros_mask = cr0_zeros_mask;
1265		vmcs_guest_cr = VMCS_GUEST_CR0;
1266		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1267	} else {
1268		ones_mask = cr4_ones_mask;
1269		zeros_mask = cr4_zeros_mask;
1270		vmcs_guest_cr = VMCS_GUEST_CR4;
1271		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1272	}
1273	vmcs_write(vmcs_shadow_cr, regval);
1274
1275	crval = regval | ones_mask;
1276	crval &= ~zeros_mask;
1277	vmcs_write(vmcs_guest_cr, crval);
1278
1279	if (cr == 0 && regval & CR0_PG) {
1280		uint64_t efer, entry_ctls;
1281
1282		/*
1283		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1284		 * the "IA-32e mode guest" bit in VM-entry control must be
1285		 * equal.
1286		 */
1287		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1288		if (efer & EFER_LME) {
1289			efer |= EFER_LMA;
1290			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1291			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1292			entry_ctls |= VM_ENTRY_GUEST_LMA;
1293			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1294		}
1295	}
1296
1297	return (HANDLED);
1298}
1299
1300static int
1301ept_fault_type(uint64_t ept_qual)
1302{
1303	int fault_type;
1304
1305	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1306		fault_type = VM_PROT_WRITE;
1307	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1308		fault_type = VM_PROT_EXECUTE;
1309	else
1310		fault_type= VM_PROT_READ;
1311
1312	return (fault_type);
1313}
1314
1315static boolean_t
1316ept_emulation_fault(uint64_t ept_qual)
1317{
1318	int read, write;
1319
1320	/* EPT fault on an instruction fetch doesn't make sense here */
1321	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1322		return (FALSE);
1323
1324	/* EPT fault must be a read fault or a write fault */
1325	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1326	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1327	if ((read | write) == 0)
1328		return (FALSE);
1329
1330	/*
1331	 * The EPT violation must have been caused by accessing a
1332	 * guest-physical address that is a translation of a guest-linear
1333	 * address.
1334	 */
1335	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1336	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1337		return (FALSE);
1338	}
1339
1340	return (TRUE);
1341}
1342
1343static int
1344vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual)
1345{
1346	int error, handled, offset;
1347	bool retu;
1348
1349	if (!virtual_interrupt_delivery)
1350		return (UNHANDLED);
1351
1352	handled = 1;
1353	offset = APIC_WRITE_OFFSET(qual);
1354	switch (offset) {
1355	case APIC_OFFSET_ID:
1356		vlapic_id_write_handler(vlapic);
1357		break;
1358	case APIC_OFFSET_LDR:
1359		vlapic_ldr_write_handler(vlapic);
1360		break;
1361	case APIC_OFFSET_DFR:
1362		vlapic_dfr_write_handler(vlapic);
1363		break;
1364	case APIC_OFFSET_SVR:
1365		vlapic_svr_write_handler(vlapic);
1366		break;
1367	case APIC_OFFSET_ESR:
1368		vlapic_esr_write_handler(vlapic);
1369		break;
1370	case APIC_OFFSET_ICR_LOW:
1371		retu = false;
1372		error = vlapic_icrlo_write_handler(vlapic, &retu);
1373		if (error != 0 || retu)
1374			handled = 0;
1375		break;
1376	case APIC_OFFSET_CMCI_LVT:
1377	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1378		vlapic_lvt_write_handler(vlapic, offset);
1379		break;
1380	case APIC_OFFSET_TIMER_ICR:
1381		vlapic_icrtmr_write_handler(vlapic);
1382		break;
1383	case APIC_OFFSET_TIMER_DCR:
1384		vlapic_dcr_write_handler(vlapic);
1385		break;
1386	default:
1387		handled = 0;
1388		break;
1389	}
1390	return (handled);
1391}
1392
1393static bool
1394apic_access_fault(uint64_t gpa)
1395{
1396
1397	if (virtual_interrupt_delivery &&
1398	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1399		return (true);
1400	else
1401		return (false);
1402}
1403
1404static int
1405vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1406{
1407	uint64_t qual;
1408	int access_type, offset, allowed;
1409
1410	if (!virtual_interrupt_delivery)
1411		return (UNHANDLED);
1412
1413	qual = vmexit->u.vmx.exit_qualification;
1414	access_type = APIC_ACCESS_TYPE(qual);
1415	offset = APIC_ACCESS_OFFSET(qual);
1416
1417	allowed = 0;
1418	if (access_type == 0) {
1419		/*
1420		 * Read data access to the following registers is expected.
1421		 */
1422		switch (offset) {
1423		case APIC_OFFSET_APR:
1424		case APIC_OFFSET_PPR:
1425		case APIC_OFFSET_RRR:
1426		case APIC_OFFSET_CMCI_LVT:
1427		case APIC_OFFSET_TIMER_CCR:
1428			allowed = 1;
1429			break;
1430		default:
1431			break;
1432		}
1433	} else if (access_type == 1) {
1434		/*
1435		 * Write data access to the following registers is expected.
1436		 */
1437		switch (offset) {
1438		case APIC_OFFSET_VER:
1439		case APIC_OFFSET_APR:
1440		case APIC_OFFSET_PPR:
1441		case APIC_OFFSET_RRR:
1442		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1443		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1444		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1445		case APIC_OFFSET_CMCI_LVT:
1446		case APIC_OFFSET_TIMER_CCR:
1447			allowed = 1;
1448			break;
1449		default:
1450			break;
1451		}
1452	}
1453
1454	if (allowed) {
1455		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1456		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1457		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1458		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1459	}
1460
1461	/*
1462	 * Regardless of whether the APIC-access is allowed this handler
1463	 * always returns UNHANDLED:
1464	 * - if the access is allowed then it is handled by emulating the
1465	 *   instruction that caused the VM-exit (outside the critical section)
1466	 * - if the access is not allowed then it will be converted to an
1467	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1468	 */
1469	return (UNHANDLED);
1470}
1471
1472static int
1473vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1474{
1475	int error, handled;
1476	struct vmxctx *vmxctx;
1477	struct vlapic *vlapic;
1478	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason;
1479	uint64_t qual, gpa;
1480	bool retu;
1481
1482	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
1483
1484	handled = 0;
1485	vmxctx = &vmx->ctx[vcpu];
1486
1487	qual = vmexit->u.vmx.exit_qualification;
1488	reason = vmexit->u.vmx.exit_reason;
1489	vmexit->exitcode = VM_EXITCODE_BOGUS;
1490
1491	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1492
1493	/*
1494	 * VM exits that could be triggered during event injection on the
1495	 * previous VM entry need to be handled specially by re-injecting
1496	 * the event.
1497	 *
1498	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1499	 * for details.
1500	 */
1501	switch (reason) {
1502	case EXIT_REASON_EPT_FAULT:
1503	case EXIT_REASON_EPT_MISCONFIG:
1504	case EXIT_REASON_APIC_ACCESS:
1505	case EXIT_REASON_TASK_SWITCH:
1506	case EXIT_REASON_EXCEPTION:
1507		idtvec_info = vmcs_idt_vectoring_info();
1508		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1509			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1510			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1511			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1512				idtvec_err = vmcs_idt_vectoring_err();
1513				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1514				    idtvec_err);
1515			}
1516			/*
1517			 * If 'virtual NMIs' are being used and the VM-exit
1518			 * happened while injecting an NMI during the previous
1519			 * VM-entry, then clear "blocking by NMI" in the Guest
1520			 * Interruptibility-state.
1521			 */
1522			if ((idtvec_info & VMCS_INTR_T_MASK) ==
1523			    VMCS_INTR_T_NMI) {
1524				 vmx_clear_nmi_blocking(vmx, vcpu);
1525			}
1526			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1527		}
1528	default:
1529		idtvec_info = 0;
1530		break;
1531	}
1532
1533	switch (reason) {
1534	case EXIT_REASON_CR_ACCESS:
1535		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1536		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1537		break;
1538	case EXIT_REASON_RDMSR:
1539		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1540		retu = false;
1541		ecx = vmxctx->guest_rcx;
1542		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1543		if (error) {
1544			vmexit->exitcode = VM_EXITCODE_RDMSR;
1545			vmexit->u.msr.code = ecx;
1546		} else if (!retu) {
1547			handled = 1;
1548		} else {
1549			/* Return to userspace with a valid exitcode */
1550			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1551			    ("emulate_wrmsr retu with bogus exitcode"));
1552		}
1553		break;
1554	case EXIT_REASON_WRMSR:
1555		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1556		retu = false;
1557		eax = vmxctx->guest_rax;
1558		ecx = vmxctx->guest_rcx;
1559		edx = vmxctx->guest_rdx;
1560		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1561		    (uint64_t)edx << 32 | eax, &retu);
1562		if (error) {
1563			vmexit->exitcode = VM_EXITCODE_WRMSR;
1564			vmexit->u.msr.code = ecx;
1565			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1566		} else if (!retu) {
1567			handled = 1;
1568		} else {
1569			/* Return to userspace with a valid exitcode */
1570			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1571			    ("emulate_wrmsr retu with bogus exitcode"));
1572		}
1573		break;
1574	case EXIT_REASON_HLT:
1575		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1576		vmexit->exitcode = VM_EXITCODE_HLT;
1577		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1578		break;
1579	case EXIT_REASON_MTF:
1580		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1581		vmexit->exitcode = VM_EXITCODE_MTRAP;
1582		break;
1583	case EXIT_REASON_PAUSE:
1584		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1585		vmexit->exitcode = VM_EXITCODE_PAUSE;
1586		break;
1587	case EXIT_REASON_INTR_WINDOW:
1588		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1589		vmx_clear_int_window_exiting(vmx, vcpu);
1590		VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1591		return (1);
1592	case EXIT_REASON_EXT_INTR:
1593		/*
1594		 * External interrupts serve only to cause VM exits and allow
1595		 * the host interrupt handler to run.
1596		 *
1597		 * If this external interrupt triggers a virtual interrupt
1598		 * to a VM, then that state will be recorded by the
1599		 * host interrupt handler in the VM's softc. We will inject
1600		 * this virtual interrupt during the subsequent VM enter.
1601		 */
1602		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1603		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
1604		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
1605		    ("VM exit interruption info invalid: %#x", intr_info));
1606		vmx_trigger_hostintr(intr_info & 0xff);
1607
1608		/*
1609		 * This is special. We want to treat this as an 'handled'
1610		 * VM-exit but not increment the instruction pointer.
1611		 */
1612		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1613		return (1);
1614	case EXIT_REASON_NMI_WINDOW:
1615		/* Exit to allow the pending virtual NMI to be injected */
1616		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1617		vmx_clear_nmi_window_exiting(vmx, vcpu);
1618		VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1619		return (1);
1620	case EXIT_REASON_INOUT:
1621		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1622		vmexit->exitcode = VM_EXITCODE_INOUT;
1623		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1624		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1625		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1626		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1627		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1628		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1629		break;
1630	case EXIT_REASON_CPUID:
1631		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1632		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1633		break;
1634	case EXIT_REASON_EXCEPTION:
1635		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1636		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1637		    ("VM exit interruption info invalid: %#x", intr_info));
1638		/*
1639		 * If Virtual NMIs control is 1 and the VM-exit is due to a
1640		 * fault encountered during the execution of IRET then we must
1641		 * restore the state of "virtual-NMI blocking" before resuming
1642		 * the guest.
1643		 *
1644		 * See "Resuming Guest Software after Handling an Exception".
1645		 */
1646		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1647		    (intr_info & 0xff) != IDT_DF &&
1648		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
1649			vmx_restore_nmi_blocking(vmx, vcpu);
1650		break;
1651	case EXIT_REASON_EPT_FAULT:
1652		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1653		/*
1654		 * If 'gpa' lies within the address space allocated to
1655		 * memory then this must be a nested page fault otherwise
1656		 * this must be an instruction that accesses MMIO space.
1657		 */
1658		gpa = vmcs_gpa();
1659		if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) {
1660			vmexit->exitcode = VM_EXITCODE_PAGING;
1661			vmexit->u.paging.gpa = gpa;
1662			vmexit->u.paging.fault_type = ept_fault_type(qual);
1663		} else if (ept_emulation_fault(qual)) {
1664			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1665			vmexit->u.inst_emul.gpa = gpa;
1666			vmexit->u.inst_emul.gla = vmcs_gla();
1667			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1668		}
1669		/*
1670		 * If Virtual NMIs control is 1 and the VM-exit is due to an
1671		 * EPT fault during the execution of IRET then we must restore
1672		 * the state of "virtual-NMI blocking" before resuming.
1673		 *
1674		 * See description of "NMI unblocking due to IRET" in
1675		 * "Exit Qualification for EPT Violations".
1676		 */
1677		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1678		    (qual & EXIT_QUAL_NMIUDTI) != 0)
1679			vmx_restore_nmi_blocking(vmx, vcpu);
1680		break;
1681	case EXIT_REASON_APIC_ACCESS:
1682		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1683		break;
1684	case EXIT_REASON_APIC_WRITE:
1685		/*
1686		 * APIC-write VM exit is trap-like so the %rip is already
1687		 * pointing to the next instruction.
1688		 */
1689		vmexit->inst_length = 0;
1690		vlapic = vm_lapic(vmx->vm, vcpu);
1691		handled = vmx_handle_apic_write(vlapic, qual);
1692		break;
1693	default:
1694		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1695		break;
1696	}
1697
1698	if (handled) {
1699		/*
1700		 * It is possible that control is returned to userland
1701		 * even though we were able to handle the VM exit in the
1702		 * kernel.
1703		 *
1704		 * In such a case we want to make sure that the userland
1705		 * restarts guest execution at the instruction *after*
1706		 * the one we just processed. Therefore we update the
1707		 * guest rip in the VMCS and in 'vmexit'.
1708		 */
1709		vmexit->rip += vmexit->inst_length;
1710		vmexit->inst_length = 0;
1711		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1712	} else {
1713		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1714			/*
1715			 * If this VM exit was not claimed by anybody then
1716			 * treat it as a generic VMX exit.
1717			 */
1718			vmexit->exitcode = VM_EXITCODE_VMX;
1719			vmexit->u.vmx.status = VM_SUCCESS;
1720		} else {
1721			/*
1722			 * The exitcode and collateral have been populated.
1723			 * The VM exit will be processed further in userland.
1724			 */
1725		}
1726	}
1727	return (handled);
1728}
1729
1730static __inline int
1731vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1732{
1733
1734	vmexit->rip = vmcs_guest_rip();
1735	vmexit->inst_length = 0;
1736	vmexit->exitcode = VM_EXITCODE_BOGUS;
1737	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1738	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1739
1740	return (HANDLED);
1741}
1742
1743static __inline int
1744vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1745{
1746
1747	vmexit->rip = vmcs_guest_rip();
1748	vmexit->inst_length = 0;
1749	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1750	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1);
1751
1752	return (UNHANDLED);
1753}
1754
1755static __inline int
1756vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
1757{
1758
1759	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
1760	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
1761	    vmxctx->inst_fail_status));
1762
1763	vmexit->inst_length = 0;
1764	vmexit->exitcode = VM_EXITCODE_VMX;
1765	vmexit->u.vmx.status = vmxctx->inst_fail_status;
1766	vmexit->u.vmx.inst_error = vmcs_instruction_error();
1767	vmexit->u.vmx.exit_reason = ~0;
1768	vmexit->u.vmx.exit_qualification = ~0;
1769
1770	switch (rc) {
1771	case VMX_VMRESUME_ERROR:
1772	case VMX_VMLAUNCH_ERROR:
1773	case VMX_INVEPT_ERROR:
1774		vmexit->u.vmx.inst_type = rc;
1775		break;
1776	default:
1777		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
1778	}
1779
1780	return (UNHANDLED);
1781}
1782
1783static int
1784vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
1785    void *rendezvous_cookie)
1786{
1787	int rc, handled, launched;
1788	struct vmx *vmx;
1789	struct vm *vm;
1790	struct vmxctx *vmxctx;
1791	struct vmcs *vmcs;
1792	struct vm_exit *vmexit;
1793	struct vlapic *vlapic;
1794	uint64_t rip;
1795	uint32_t exit_reason;
1796
1797	vmx = arg;
1798	vm = vmx->vm;
1799	vmcs = &vmx->vmcs[vcpu];
1800	vmxctx = &vmx->ctx[vcpu];
1801	vlapic = vm_lapic(vm, vcpu);
1802	vmexit = vm_exitinfo(vm, vcpu);
1803	launched = 0;
1804
1805	KASSERT(vmxctx->pmap == pmap,
1806	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1807	KASSERT(vmxctx->eptp == vmx->eptp,
1808	    ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp));
1809
1810	VMPTRLD(vmcs);
1811
1812	/*
1813	 * XXX
1814	 * We do this every time because we may setup the virtual machine
1815	 * from a different process than the one that actually runs it.
1816	 *
1817	 * If the life of a virtual machine was spent entirely in the context
1818	 * of a single process we could do this once in vmx_vminit().
1819	 */
1820	vmcs_write(VMCS_HOST_CR3, rcr3());
1821
1822	vmcs_write(VMCS_GUEST_RIP, startrip);
1823	vmx_set_pcpu_defaults(vmx, vcpu);
1824	do {
1825		/*
1826		 * Interrupts are disabled from this point on until the
1827		 * guest starts executing. This is done for the following
1828		 * reasons:
1829		 *
1830		 * If an AST is asserted on this thread after the check below,
1831		 * then the IPI_AST notification will not be lost, because it
1832		 * will cause a VM exit due to external interrupt as soon as
1833		 * the guest state is loaded.
1834		 *
1835		 * A posted interrupt after 'vmx_inject_interrupts()' will
1836		 * not be "lost" because it will be held pending in the host
1837		 * APIC because interrupts are disabled. The pending interrupt
1838		 * will be recognized as soon as the guest state is loaded.
1839		 *
1840		 * The same reasoning applies to the IPI generated by
1841		 * pmap_invalidate_ept().
1842		 */
1843		disable_intr();
1844		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1845			enable_intr();
1846			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
1847			break;
1848		}
1849
1850		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
1851			enable_intr();
1852			handled = vmx_exit_rendezvous(vmx, vcpu, vmexit);
1853			break;
1854		}
1855
1856		vmx_inject_interrupts(vmx, vcpu, vlapic);
1857		vmx_run_trace(vmx, vcpu);
1858		rc = vmx_enter_guest(vmxctx, launched);
1859
1860		enable_intr();
1861
1862		/* Collect some information for VM exit processing */
1863		vmexit->rip = rip = vmcs_guest_rip();
1864		vmexit->inst_length = vmexit_instruction_length();
1865		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1866		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1867
1868		if (rc == VMX_GUEST_VMEXIT) {
1869			launched = 1;
1870			handled = vmx_exit_process(vmx, vcpu, vmexit);
1871		} else {
1872			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
1873		}
1874
1875		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1876	} while (handled);
1877
1878	/*
1879	 * If a VM exit has been handled then the exitcode must be BOGUS
1880	 * If a VM exit is not handled then the exitcode must not be BOGUS
1881	 */
1882	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1883	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1884		panic("Mismatch between handled (%d) and exitcode (%d)",
1885		      handled, vmexit->exitcode);
1886	}
1887
1888	if (!handled)
1889		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
1890
1891	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
1892	    vmexit->exitcode);
1893
1894	VMCLEAR(vmcs);
1895	return (0);
1896}
1897
1898static void
1899vmx_vmcleanup(void *arg)
1900{
1901	int i, error;
1902	struct vmx *vmx = arg;
1903
1904	if (virtual_interrupt_delivery)
1905		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
1906
1907	for (i = 0; i < VM_MAXCPU; i++)
1908		vpid_free(vmx->state[i].vpid);
1909
1910	/*
1911	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1912	 */
1913	error = vmclear(&vmx->vmcs[0]);
1914	if (error != 0)
1915		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1916
1917	free(vmx, M_VMX);
1918
1919	return;
1920}
1921
1922static register_t *
1923vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1924{
1925
1926	switch (reg) {
1927	case VM_REG_GUEST_RAX:
1928		return (&vmxctx->guest_rax);
1929	case VM_REG_GUEST_RBX:
1930		return (&vmxctx->guest_rbx);
1931	case VM_REG_GUEST_RCX:
1932		return (&vmxctx->guest_rcx);
1933	case VM_REG_GUEST_RDX:
1934		return (&vmxctx->guest_rdx);
1935	case VM_REG_GUEST_RSI:
1936		return (&vmxctx->guest_rsi);
1937	case VM_REG_GUEST_RDI:
1938		return (&vmxctx->guest_rdi);
1939	case VM_REG_GUEST_RBP:
1940		return (&vmxctx->guest_rbp);
1941	case VM_REG_GUEST_R8:
1942		return (&vmxctx->guest_r8);
1943	case VM_REG_GUEST_R9:
1944		return (&vmxctx->guest_r9);
1945	case VM_REG_GUEST_R10:
1946		return (&vmxctx->guest_r10);
1947	case VM_REG_GUEST_R11:
1948		return (&vmxctx->guest_r11);
1949	case VM_REG_GUEST_R12:
1950		return (&vmxctx->guest_r12);
1951	case VM_REG_GUEST_R13:
1952		return (&vmxctx->guest_r13);
1953	case VM_REG_GUEST_R14:
1954		return (&vmxctx->guest_r14);
1955	case VM_REG_GUEST_R15:
1956		return (&vmxctx->guest_r15);
1957	default:
1958		break;
1959	}
1960	return (NULL);
1961}
1962
1963static int
1964vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1965{
1966	register_t *regp;
1967
1968	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1969		*retval = *regp;
1970		return (0);
1971	} else
1972		return (EINVAL);
1973}
1974
1975static int
1976vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1977{
1978	register_t *regp;
1979
1980	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1981		*regp = val;
1982		return (0);
1983	} else
1984		return (EINVAL);
1985}
1986
1987static int
1988vmx_shadow_reg(int reg)
1989{
1990	int shreg;
1991
1992	shreg = -1;
1993
1994	switch (reg) {
1995	case VM_REG_GUEST_CR0:
1996		shreg = VMCS_CR0_SHADOW;
1997                break;
1998        case VM_REG_GUEST_CR4:
1999		shreg = VMCS_CR4_SHADOW;
2000		break;
2001	default:
2002		break;
2003	}
2004
2005	return (shreg);
2006}
2007
2008static int
2009vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2010{
2011	int running, hostcpu;
2012	struct vmx *vmx = arg;
2013
2014	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2015	if (running && hostcpu != curcpu)
2016		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2017
2018	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2019		return (0);
2020
2021	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2022}
2023
2024static int
2025vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2026{
2027	int error, hostcpu, running, shadow;
2028	uint64_t ctls;
2029	struct vmx *vmx = arg;
2030
2031	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2032	if (running && hostcpu != curcpu)
2033		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2034
2035	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2036		return (0);
2037
2038	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2039
2040	if (error == 0) {
2041		/*
2042		 * If the "load EFER" VM-entry control is 1 then the
2043		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2044		 * bit in the VM-entry control.
2045		 */
2046		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2047		    (reg == VM_REG_GUEST_EFER)) {
2048			vmcs_getreg(&vmx->vmcs[vcpu], running,
2049				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2050			if (val & EFER_LMA)
2051				ctls |= VM_ENTRY_GUEST_LMA;
2052			else
2053				ctls &= ~VM_ENTRY_GUEST_LMA;
2054			vmcs_setreg(&vmx->vmcs[vcpu], running,
2055				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2056		}
2057
2058		shadow = vmx_shadow_reg(reg);
2059		if (shadow > 0) {
2060			/*
2061			 * Store the unmodified value in the shadow
2062			 */
2063			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2064				    VMCS_IDENT(shadow), val);
2065		}
2066	}
2067
2068	return (error);
2069}
2070
2071static int
2072vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2073{
2074	struct vmx *vmx = arg;
2075
2076	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
2077}
2078
2079static int
2080vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2081{
2082	struct vmx *vmx = arg;
2083
2084	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
2085}
2086
2087static int
2088vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
2089	   int code_valid)
2090{
2091	int error;
2092	uint64_t info;
2093	struct vmx *vmx = arg;
2094	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2095
2096	static uint32_t type_map[VM_EVENT_MAX] = {
2097		0x1,		/* VM_EVENT_NONE */
2098		0x0,		/* VM_HW_INTR */
2099		0x2,		/* VM_NMI */
2100		0x3,		/* VM_HW_EXCEPTION */
2101		0x4,		/* VM_SW_INTR */
2102		0x5,		/* VM_PRIV_SW_EXCEPTION */
2103		0x6,		/* VM_SW_EXCEPTION */
2104	};
2105
2106	/*
2107	 * If there is already an exception pending to be delivered to the
2108	 * vcpu then just return.
2109	 */
2110	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
2111	if (error)
2112		return (error);
2113
2114	if (info & VMCS_INTR_VALID)
2115		return (EAGAIN);
2116
2117	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
2118	info |= VMCS_INTR_VALID;
2119	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
2120	if (error != 0)
2121		return (error);
2122
2123	if (code_valid) {
2124		error = vmcs_setreg(vmcs, 0,
2125				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
2126				    code);
2127	}
2128	return (error);
2129}
2130
2131static int
2132vmx_getcap(void *arg, int vcpu, int type, int *retval)
2133{
2134	struct vmx *vmx = arg;
2135	int vcap;
2136	int ret;
2137
2138	ret = ENOENT;
2139
2140	vcap = vmx->cap[vcpu].set;
2141
2142	switch (type) {
2143	case VM_CAP_HALT_EXIT:
2144		if (cap_halt_exit)
2145			ret = 0;
2146		break;
2147	case VM_CAP_PAUSE_EXIT:
2148		if (cap_pause_exit)
2149			ret = 0;
2150		break;
2151	case VM_CAP_MTRAP_EXIT:
2152		if (cap_monitor_trap)
2153			ret = 0;
2154		break;
2155	case VM_CAP_UNRESTRICTED_GUEST:
2156		if (cap_unrestricted_guest)
2157			ret = 0;
2158		break;
2159	case VM_CAP_ENABLE_INVPCID:
2160		if (cap_invpcid)
2161			ret = 0;
2162		break;
2163	default:
2164		break;
2165	}
2166
2167	if (ret == 0)
2168		*retval = (vcap & (1 << type)) ? 1 : 0;
2169
2170	return (ret);
2171}
2172
2173static int
2174vmx_setcap(void *arg, int vcpu, int type, int val)
2175{
2176	struct vmx *vmx = arg;
2177	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2178	uint32_t baseval;
2179	uint32_t *pptr;
2180	int error;
2181	int flag;
2182	int reg;
2183	int retval;
2184
2185	retval = ENOENT;
2186	pptr = NULL;
2187
2188	switch (type) {
2189	case VM_CAP_HALT_EXIT:
2190		if (cap_halt_exit) {
2191			retval = 0;
2192			pptr = &vmx->cap[vcpu].proc_ctls;
2193			baseval = *pptr;
2194			flag = PROCBASED_HLT_EXITING;
2195			reg = VMCS_PRI_PROC_BASED_CTLS;
2196		}
2197		break;
2198	case VM_CAP_MTRAP_EXIT:
2199		if (cap_monitor_trap) {
2200			retval = 0;
2201			pptr = &vmx->cap[vcpu].proc_ctls;
2202			baseval = *pptr;
2203			flag = PROCBASED_MTF;
2204			reg = VMCS_PRI_PROC_BASED_CTLS;
2205		}
2206		break;
2207	case VM_CAP_PAUSE_EXIT:
2208		if (cap_pause_exit) {
2209			retval = 0;
2210			pptr = &vmx->cap[vcpu].proc_ctls;
2211			baseval = *pptr;
2212			flag = PROCBASED_PAUSE_EXITING;
2213			reg = VMCS_PRI_PROC_BASED_CTLS;
2214		}
2215		break;
2216	case VM_CAP_UNRESTRICTED_GUEST:
2217		if (cap_unrestricted_guest) {
2218			retval = 0;
2219			pptr = &vmx->cap[vcpu].proc_ctls2;
2220			baseval = *pptr;
2221			flag = PROCBASED2_UNRESTRICTED_GUEST;
2222			reg = VMCS_SEC_PROC_BASED_CTLS;
2223		}
2224		break;
2225	case VM_CAP_ENABLE_INVPCID:
2226		if (cap_invpcid) {
2227			retval = 0;
2228			pptr = &vmx->cap[vcpu].proc_ctls2;
2229			baseval = *pptr;
2230			flag = PROCBASED2_ENABLE_INVPCID;
2231			reg = VMCS_SEC_PROC_BASED_CTLS;
2232		}
2233		break;
2234	default:
2235		break;
2236	}
2237
2238	if (retval == 0) {
2239		if (val) {
2240			baseval |= flag;
2241		} else {
2242			baseval &= ~flag;
2243		}
2244		VMPTRLD(vmcs);
2245		error = vmwrite(reg, baseval);
2246		VMCLEAR(vmcs);
2247
2248		if (error) {
2249			retval = error;
2250		} else {
2251			/*
2252			 * Update optional stored flags, and record
2253			 * setting
2254			 */
2255			if (pptr != NULL) {
2256				*pptr = baseval;
2257			}
2258
2259			if (val) {
2260				vmx->cap[vcpu].set |= (1 << type);
2261			} else {
2262				vmx->cap[vcpu].set &= ~(1 << type);
2263			}
2264		}
2265	}
2266
2267        return (retval);
2268}
2269
2270struct vlapic_vtx {
2271	struct vlapic	vlapic;
2272	struct pir_desc	*pir_desc;
2273};
2274
2275#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2276do {									\
2277	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2278	    level ? "level" : "edge", vector);				\
2279	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2280	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2281	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2282	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2283	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2284} while (0)
2285
2286/*
2287 * vlapic->ops handlers that utilize the APICv hardware assist described in
2288 * Chapter 29 of the Intel SDM.
2289 */
2290static int
2291vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2292{
2293	struct vlapic_vtx *vlapic_vtx;
2294	struct pir_desc *pir_desc;
2295	uint64_t mask;
2296	int idx, notify;
2297
2298	/*
2299	 * XXX need to deal with level triggered interrupts
2300	 */
2301	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2302	pir_desc = vlapic_vtx->pir_desc;
2303
2304	/*
2305	 * Keep track of interrupt requests in the PIR descriptor. This is
2306	 * because the virtual APIC page pointed to by the VMCS cannot be
2307	 * modified if the vcpu is running.
2308	 */
2309	idx = vector / 64;
2310	mask = 1UL << (vector % 64);
2311	atomic_set_long(&pir_desc->pir[idx], mask);
2312	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2313
2314	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2315	    level, "vmx_set_intr_ready");
2316	return (notify);
2317}
2318
2319static int
2320vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2321{
2322	struct vlapic_vtx *vlapic_vtx;
2323	struct pir_desc *pir_desc;
2324	struct LAPIC *lapic;
2325	uint64_t pending, pirval;
2326	uint32_t ppr, vpr;
2327	int i;
2328
2329	/*
2330	 * This function is only expected to be called from the 'HLT' exit
2331	 * handler which does not care about the vector that is pending.
2332	 */
2333	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2334
2335	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2336	pir_desc = vlapic_vtx->pir_desc;
2337
2338	pending = atomic_load_acq_long(&pir_desc->pending);
2339	if (!pending)
2340		return (0);	/* common case */
2341
2342	/*
2343	 * If there is an interrupt pending then it will be recognized only
2344	 * if its priority is greater than the processor priority.
2345	 *
2346	 * Special case: if the processor priority is zero then any pending
2347	 * interrupt will be recognized.
2348	 */
2349	lapic = vlapic->apic_page;
2350	ppr = lapic->ppr & 0xf0;
2351	if (ppr == 0)
2352		return (1);
2353
2354	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2355	    lapic->ppr);
2356
2357	for (i = 3; i >= 0; i--) {
2358		pirval = pir_desc->pir[i];
2359		if (pirval != 0) {
2360			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2361			return (vpr > ppr);
2362		}
2363	}
2364	return (0);
2365}
2366
2367static void
2368vmx_intr_accepted(struct vlapic *vlapic, int vector)
2369{
2370
2371	panic("vmx_intr_accepted: not expected to be called");
2372}
2373
2374static void
2375vmx_post_intr(struct vlapic *vlapic, int hostcpu)
2376{
2377
2378	ipi_cpu(hostcpu, pirvec);
2379}
2380
2381/*
2382 * Transfer the pending interrupts in the PIR descriptor to the IRR
2383 * in the virtual APIC page.
2384 */
2385static void
2386vmx_inject_pir(struct vlapic *vlapic)
2387{
2388	struct vlapic_vtx *vlapic_vtx;
2389	struct pir_desc *pir_desc;
2390	struct LAPIC *lapic;
2391	uint64_t val, pirval;
2392	int rvi, pirbase;
2393	uint16_t intr_status_old, intr_status_new;
2394
2395	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2396	pir_desc = vlapic_vtx->pir_desc;
2397	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2398		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2399		    "no posted interrupt pending");
2400		return;
2401	}
2402
2403	pirval = 0;
2404	lapic = vlapic->apic_page;
2405
2406	val = atomic_readandclear_long(&pir_desc->pir[0]);
2407	if (val != 0) {
2408		lapic->irr0 |= val;
2409		lapic->irr1 |= val >> 32;
2410		pirbase = 0;
2411		pirval = val;
2412	}
2413
2414	val = atomic_readandclear_long(&pir_desc->pir[1]);
2415	if (val != 0) {
2416		lapic->irr2 |= val;
2417		lapic->irr3 |= val >> 32;
2418		pirbase = 64;
2419		pirval = val;
2420	}
2421
2422	val = atomic_readandclear_long(&pir_desc->pir[2]);
2423	if (val != 0) {
2424		lapic->irr4 |= val;
2425		lapic->irr5 |= val >> 32;
2426		pirbase = 128;
2427		pirval = val;
2428	}
2429
2430	val = atomic_readandclear_long(&pir_desc->pir[3]);
2431	if (val != 0) {
2432		lapic->irr6 |= val;
2433		lapic->irr7 |= val >> 32;
2434		pirbase = 192;
2435		pirval = val;
2436	}
2437	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2438
2439	/*
2440	 * Update RVI so the processor can evaluate pending virtual
2441	 * interrupts on VM-entry.
2442	 */
2443	if (pirval != 0) {
2444		rvi = pirbase + flsl(pirval) - 1;
2445		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2446		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2447		if (intr_status_new > intr_status_old) {
2448			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2449			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2450			    "guest_intr_status changed from 0x%04x to 0x%04x",
2451			    intr_status_old, intr_status_new);
2452		}
2453	}
2454}
2455
2456static struct vlapic *
2457vmx_vlapic_init(void *arg, int vcpuid)
2458{
2459	struct vmx *vmx;
2460	struct vlapic *vlapic;
2461	struct vlapic_vtx *vlapic_vtx;
2462
2463	vmx = arg;
2464
2465	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2466	vlapic->vm = vmx->vm;
2467	vlapic->vcpuid = vcpuid;
2468	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2469
2470	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2471	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
2472
2473	if (virtual_interrupt_delivery) {
2474		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2475		vlapic->ops.pending_intr = vmx_pending_intr;
2476		vlapic->ops.intr_accepted = vmx_intr_accepted;
2477	}
2478
2479	if (posted_interrupts)
2480		vlapic->ops.post_intr = vmx_post_intr;
2481
2482	vlapic_init(vlapic);
2483
2484	return (vlapic);
2485}
2486
2487static void
2488vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2489{
2490
2491	vlapic_cleanup(vlapic);
2492	free(vlapic, M_VLAPIC);
2493}
2494
2495struct vmm_ops vmm_ops_intel = {
2496	vmx_init,
2497	vmx_cleanup,
2498	vmx_restore,
2499	vmx_vminit,
2500	vmx_run,
2501	vmx_vmcleanup,
2502	vmx_getreg,
2503	vmx_setreg,
2504	vmx_getdesc,
2505	vmx_setdesc,
2506	vmx_inject,
2507	vmx_getcap,
2508	vmx_setcap,
2509	ept_vmspace_alloc,
2510	ept_vmspace_free,
2511	vmx_vlapic_init,
2512	vmx_vlapic_cleanup,
2513};
2514