svm.c revision 302408
1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/amd64/vmm/amd/svm.c 295880 2016-02-22 09:02:20Z skra $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/md_var.h>
45#include <machine/specialreg.h>
46#include <machine/smp.h>
47#include <machine/vmm.h>
48#include <machine/vmm_dev.h>
49#include <machine/vmm_instruction_emul.h>
50
51#include "vmm_lapic.h"
52#include "vmm_stat.h"
53#include "vmm_ktr.h"
54#include "vmm_ioport.h"
55#include "vatpic.h"
56#include "vlapic.h"
57#include "vlapic_priv.h"
58
59#include "x86.h"
60#include "vmcb.h"
61#include "svm.h"
62#include "svm_softc.h"
63#include "svm_msr.h"
64#include "npt.h"
65
66SYSCTL_DECL(_hw_vmm);
67SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
68
69/*
70 * SVM CPUID function 0x8000_000A, edx bit decoding.
71 */
72#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
73#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
74#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
75#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
76#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
77#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
78#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
79#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
80#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
81#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
82#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
83
84#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
85				VMCB_CACHE_IOPM		|	\
86				VMCB_CACHE_I		|	\
87				VMCB_CACHE_TPR		|	\
88				VMCB_CACHE_CR2		|	\
89				VMCB_CACHE_CR		|	\
90				VMCB_CACHE_DT		|	\
91				VMCB_CACHE_SEG		|	\
92				VMCB_CACHE_NP)
93
94static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
95SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
96    0, NULL);
97
98static MALLOC_DEFINE(M_SVM, "svm", "svm");
99static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
100
101/* Per-CPU context area. */
102extern struct pcpu __pcpu[];
103
104static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
105SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
106    "SVM features advertised by CPUID.8000000AH:EDX");
107
108static int disable_npf_assist;
109SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
110    &disable_npf_assist, 0, NULL);
111
112/* Maximum ASIDs supported by the processor */
113static uint32_t nasid;
114SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
115    "Number of ASIDs supported by this processor");
116
117/* Current ASID generation for each host cpu */
118static struct asid asid[MAXCPU];
119
120/*
121 * SVM host state saved area of size 4KB for each core.
122 */
123static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124
125static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
126static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
127static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
128
129static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
130
131static __inline int
132flush_by_asid(void)
133{
134
135	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
136}
137
138static __inline int
139decode_assist(void)
140{
141
142	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
143}
144
145static void
146svm_disable(void *arg __unused)
147{
148	uint64_t efer;
149
150	efer = rdmsr(MSR_EFER);
151	efer &= ~EFER_SVM;
152	wrmsr(MSR_EFER, efer);
153}
154
155/*
156 * Disable SVM on all CPUs.
157 */
158static int
159svm_cleanup(void)
160{
161
162	smp_rendezvous(NULL, svm_disable, NULL, NULL);
163	return (0);
164}
165
166/*
167 * Verify that all the features required by bhyve are available.
168 */
169static int
170check_svm_features(void)
171{
172	u_int regs[4];
173
174	/* CPUID Fn8000_000A is for SVM */
175	do_cpuid(0x8000000A, regs);
176	svm_feature &= regs[3];
177
178	/*
179	 * The number of ASIDs can be configured to be less than what is
180	 * supported by the hardware but not more.
181	 */
182	if (nasid == 0 || nasid > regs[1])
183		nasid = regs[1];
184	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
185
186	/* bhyve requires the Nested Paging feature */
187	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
188		printf("SVM: Nested Paging feature not available.\n");
189		return (ENXIO);
190	}
191
192	/* bhyve requires the NRIP Save feature */
193	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
194		printf("SVM: NRIP Save feature not available.\n");
195		return (ENXIO);
196	}
197
198	return (0);
199}
200
201static void
202svm_enable(void *arg __unused)
203{
204	uint64_t efer;
205
206	efer = rdmsr(MSR_EFER);
207	efer |= EFER_SVM;
208	wrmsr(MSR_EFER, efer);
209
210	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
211}
212
213/*
214 * Return 1 if SVM is enabled on this processor and 0 otherwise.
215 */
216static int
217svm_available(void)
218{
219	uint64_t msr;
220
221	/* Section 15.4 Enabling SVM from APM2. */
222	if ((amd_feature2 & AMDID2_SVM) == 0) {
223		printf("SVM: not available.\n");
224		return (0);
225	}
226
227	msr = rdmsr(MSR_VM_CR);
228	if ((msr & VM_CR_SVMDIS) != 0) {
229		printf("SVM: disabled by BIOS.\n");
230		return (0);
231	}
232
233	return (1);
234}
235
236static int
237svm_init(int ipinum)
238{
239	int error, cpu;
240
241	if (!svm_available())
242		return (ENXIO);
243
244	error = check_svm_features();
245	if (error)
246		return (error);
247
248	vmcb_clean &= VMCB_CACHE_DEFAULT;
249
250	for (cpu = 0; cpu < MAXCPU; cpu++) {
251		/*
252		 * Initialize the host ASIDs to their "highest" valid values.
253		 *
254		 * The next ASID allocation will rollover both 'gen' and 'num'
255		 * and start off the sequence at {1,1}.
256		 */
257		asid[cpu].gen = ~0UL;
258		asid[cpu].num = nasid - 1;
259	}
260
261	svm_msr_init();
262	svm_npt_init(ipinum);
263
264	/* Enable SVM on all CPUs */
265	smp_rendezvous(NULL, svm_enable, NULL, NULL);
266
267	return (0);
268}
269
270static void
271svm_restore(void)
272{
273
274	svm_enable(NULL);
275}
276
277/* Pentium compatible MSRs */
278#define MSR_PENTIUM_START 	0
279#define MSR_PENTIUM_END 	0x1FFF
280/* AMD 6th generation and Intel compatible MSRs */
281#define MSR_AMD6TH_START 	0xC0000000UL
282#define MSR_AMD6TH_END 		0xC0001FFFUL
283/* AMD 7th and 8th generation compatible MSRs */
284#define MSR_AMD7TH_START 	0xC0010000UL
285#define MSR_AMD7TH_END 		0xC0011FFFUL
286
287/*
288 * Get the index and bit position for a MSR in permission bitmap.
289 * Two bits are used for each MSR: lower bit for read and higher bit for write.
290 */
291static int
292svm_msr_index(uint64_t msr, int *index, int *bit)
293{
294	uint32_t base, off;
295
296	*index = -1;
297	*bit = (msr % 4) * 2;
298	base = 0;
299
300	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
301		*index = msr / 4;
302		return (0);
303	}
304
305	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
306	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
307		off = (msr - MSR_AMD6TH_START);
308		*index = (off + base) / 4;
309		return (0);
310	}
311
312	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
313	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
314		off = (msr - MSR_AMD7TH_START);
315		*index = (off + base) / 4;
316		return (0);
317	}
318
319	return (EINVAL);
320}
321
322/*
323 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
324 */
325static void
326svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
327{
328	int index, bit, error;
329
330	error = svm_msr_index(msr, &index, &bit);
331	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
332	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
333	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
334	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
335	    "msr %#lx", __func__, bit, msr));
336
337	if (read)
338		perm_bitmap[index] &= ~(1UL << bit);
339
340	if (write)
341		perm_bitmap[index] &= ~(2UL << bit);
342}
343
344static void
345svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
346{
347
348	svm_msr_perm(perm_bitmap, msr, true, true);
349}
350
351static void
352svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
353{
354
355	svm_msr_perm(perm_bitmap, msr, true, false);
356}
357
358static __inline int
359svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
360{
361	struct vmcb_ctrl *ctrl;
362
363	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
364
365	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
366	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
367}
368
369static __inline void
370svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
371    int enabled)
372{
373	struct vmcb_ctrl *ctrl;
374	uint32_t oldval;
375
376	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
377
378	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
379	oldval = ctrl->intercept[idx];
380
381	if (enabled)
382		ctrl->intercept[idx] |= bitmask;
383	else
384		ctrl->intercept[idx] &= ~bitmask;
385
386	if (ctrl->intercept[idx] != oldval) {
387		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
388		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
389		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
390	}
391}
392
393static __inline void
394svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
395{
396
397	svm_set_intercept(sc, vcpu, off, bitmask, 0);
398}
399
400static __inline void
401svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
402{
403
404	svm_set_intercept(sc, vcpu, off, bitmask, 1);
405}
406
407static void
408vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
409    uint64_t msrpm_base_pa, uint64_t np_pml4)
410{
411	struct vmcb_ctrl *ctrl;
412	struct vmcb_state *state;
413	uint32_t mask;
414	int n;
415
416	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
417	state = svm_get_vmcb_state(sc, vcpu);
418
419	ctrl->iopm_base_pa = iopm_base_pa;
420	ctrl->msrpm_base_pa = msrpm_base_pa;
421
422	/* Enable nested paging */
423	ctrl->np_enable = 1;
424	ctrl->n_cr3 = np_pml4;
425
426	/*
427	 * Intercept accesses to the control registers that are not shadowed
428	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
429	 */
430	for (n = 0; n < 16; n++) {
431		mask = (BIT(n) << 16) | BIT(n);
432		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
433			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
434		else
435			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
436	}
437
438
439	/*
440	 * Intercept everything when tracing guest exceptions otherwise
441	 * just intercept machine check exception.
442	 */
443	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
444		for (n = 0; n < 32; n++) {
445			/*
446			 * Skip unimplemented vectors in the exception bitmap.
447			 */
448			if (n == 2 || n == 9) {
449				continue;
450			}
451			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
452		}
453	} else {
454		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
455	}
456
457	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
458	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
462	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
463	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
464	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
466	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
467	    VMCB_INTCPT_FERR_FREEZE);
468
469	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
470	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
471
472	/*
473	 * From section "Canonicalization and Consistency Checks" in APMv2
474	 * the VMRUN intercept bit must be set to pass the consistency check.
475	 */
476	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
477
478	/*
479	 * The ASID will be set to a non-zero value just before VMRUN.
480	 */
481	ctrl->asid = 0;
482
483	/*
484	 * Section 15.21.1, Interrupt Masking in EFLAGS
485	 * Section 15.21.2, Virtualizing APIC.TPR
486	 *
487	 * This must be set for %rflag and %cr8 isolation of guest and host.
488	 */
489	ctrl->v_intr_masking = 1;
490
491	/* Enable Last Branch Record aka LBR for debugging */
492	ctrl->lbr_virt_en = 1;
493	state->dbgctl = BIT(0);
494
495	/* EFER_SVM must always be set when the guest is executing */
496	state->efer = EFER_SVM;
497
498	/* Set up the PAT to power-on state */
499	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
500	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
501	    PAT_VALUE(2, PAT_UNCACHED)		|
502	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
503	    PAT_VALUE(4, PAT_WRITE_BACK)	|
504	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
505	    PAT_VALUE(6, PAT_UNCACHED)		|
506	    PAT_VALUE(7, PAT_UNCACHEABLE);
507}
508
509/*
510 * Initialize a virtual machine.
511 */
512static void *
513svm_vminit(struct vm *vm, pmap_t pmap)
514{
515	struct svm_softc *svm_sc;
516	struct svm_vcpu *vcpu;
517	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
518	int i;
519
520	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
521	svm_sc->vm = vm;
522	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
523
524	/*
525	 * Intercept read and write accesses to all MSRs.
526	 */
527	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
528
529	/*
530	 * Access to the following MSRs is redirected to the VMCB when the
531	 * guest is executing. Therefore it is safe to allow the guest to
532	 * read/write these MSRs directly without hypervisor involvement.
533	 */
534	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
535	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
536	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
537
538	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
539	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
540	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
541	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
542	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
543	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
544	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
545	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
546
547	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
548
549	/*
550	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
551	 */
552	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
553
554	/* Intercept access to all I/O ports. */
555	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
556
557	iopm_pa = vtophys(svm_sc->iopm_bitmap);
558	msrpm_pa = vtophys(svm_sc->msr_bitmap);
559	pml4_pa = svm_sc->nptp;
560	for (i = 0; i < VM_MAXCPU; i++) {
561		vcpu = svm_get_vcpu(svm_sc, i);
562		vcpu->nextrip = ~0;
563		vcpu->lastcpu = NOCPU;
564		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
565		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
566		svm_msr_guest_init(svm_sc, i);
567	}
568	return (svm_sc);
569}
570
571/*
572 * Collateral for a generic SVM VM-exit.
573 */
574static void
575vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
576{
577
578	vme->exitcode = VM_EXITCODE_SVM;
579	vme->u.svm.exitcode = code;
580	vme->u.svm.exitinfo1 = info1;
581	vme->u.svm.exitinfo2 = info2;
582}
583
584static int
585svm_cpl(struct vmcb_state *state)
586{
587
588	/*
589	 * From APMv2:
590	 *   "Retrieve the CPL from the CPL field in the VMCB, not
591	 *    from any segment DPL"
592	 */
593	return (state->cpl);
594}
595
596static enum vm_cpu_mode
597svm_vcpu_mode(struct vmcb *vmcb)
598{
599	struct vmcb_segment seg;
600	struct vmcb_state *state;
601	int error;
602
603	state = &vmcb->state;
604
605	if (state->efer & EFER_LMA) {
606		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
607		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
608		    error));
609
610		/*
611		 * Section 4.8.1 for APM2, check if Code Segment has
612		 * Long attribute set in descriptor.
613		 */
614		if (seg.attrib & VMCB_CS_ATTRIB_L)
615			return (CPU_MODE_64BIT);
616		else
617			return (CPU_MODE_COMPATIBILITY);
618	} else  if (state->cr0 & CR0_PE) {
619		return (CPU_MODE_PROTECTED);
620	} else {
621		return (CPU_MODE_REAL);
622	}
623}
624
625static enum vm_paging_mode
626svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
627{
628
629	if ((cr0 & CR0_PG) == 0)
630		return (PAGING_MODE_FLAT);
631	if ((cr4 & CR4_PAE) == 0)
632		return (PAGING_MODE_32);
633	if (efer & EFER_LME)
634		return (PAGING_MODE_64);
635	else
636		return (PAGING_MODE_PAE);
637}
638
639/*
640 * ins/outs utility routines
641 */
642static uint64_t
643svm_inout_str_index(struct svm_regctx *regs, int in)
644{
645	uint64_t val;
646
647	val = in ? regs->sctx_rdi : regs->sctx_rsi;
648
649	return (val);
650}
651
652static uint64_t
653svm_inout_str_count(struct svm_regctx *regs, int rep)
654{
655	uint64_t val;
656
657	val = rep ? regs->sctx_rcx : 1;
658
659	return (val);
660}
661
662static void
663svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
664    int in, struct vm_inout_str *vis)
665{
666	int error, s;
667
668	if (in) {
669		vis->seg_name = VM_REG_GUEST_ES;
670	} else {
671		/* The segment field has standard encoding */
672		s = (info1 >> 10) & 0x7;
673		vis->seg_name = vm_segment_name(s);
674	}
675
676	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
677	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
678}
679
680static int
681svm_inout_str_addrsize(uint64_t info1)
682{
683        uint32_t size;
684
685        size = (info1 >> 7) & 0x7;
686        switch (size) {
687        case 1:
688                return (2);     /* 16 bit */
689        case 2:
690                return (4);     /* 32 bit */
691        case 4:
692                return (8);     /* 64 bit */
693        default:
694                panic("%s: invalid size encoding %d", __func__, size);
695        }
696}
697
698static void
699svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
700{
701	struct vmcb_state *state;
702
703	state = &vmcb->state;
704	paging->cr3 = state->cr3;
705	paging->cpl = svm_cpl(state);
706	paging->cpu_mode = svm_vcpu_mode(vmcb);
707	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
708	    state->efer);
709}
710
711#define	UNHANDLED 0
712
713/*
714 * Handle guest I/O intercept.
715 */
716static int
717svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
718{
719	struct vmcb_ctrl *ctrl;
720	struct vmcb_state *state;
721	struct svm_regctx *regs;
722	struct vm_inout_str *vis;
723	uint64_t info1;
724	int inout_string;
725
726	state = svm_get_vmcb_state(svm_sc, vcpu);
727	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
728	regs  = svm_get_guest_regctx(svm_sc, vcpu);
729
730	info1 = ctrl->exitinfo1;
731	inout_string = info1 & BIT(2) ? 1 : 0;
732
733	/*
734	 * The effective segment number in EXITINFO1[12:10] is populated
735	 * only if the processor has the DecodeAssist capability.
736	 *
737	 * XXX this is not specified explicitly in APMv2 but can be verified
738	 * empirically.
739	 */
740	if (inout_string && !decode_assist())
741		return (UNHANDLED);
742
743	vmexit->exitcode 	= VM_EXITCODE_INOUT;
744	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
745	vmexit->u.inout.string 	= inout_string;
746	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
747	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
748	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
749	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
750
751	if (inout_string) {
752		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
753		vis = &vmexit->u.inout_str;
754		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
755		vis->rflags = state->rflags;
756		vis->cr0 = state->cr0;
757		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
758		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
759		vis->addrsize = svm_inout_str_addrsize(info1);
760		svm_inout_str_seginfo(svm_sc, vcpu, info1,
761		    vmexit->u.inout.in, vis);
762	}
763
764	return (UNHANDLED);
765}
766
767static int
768npf_fault_type(uint64_t exitinfo1)
769{
770
771	if (exitinfo1 & VMCB_NPF_INFO1_W)
772		return (VM_PROT_WRITE);
773	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
774		return (VM_PROT_EXECUTE);
775	else
776		return (VM_PROT_READ);
777}
778
779static bool
780svm_npf_emul_fault(uint64_t exitinfo1)
781{
782
783	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
784		return (false);
785	}
786
787	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
788		return (false);
789	}
790
791	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
792		return (false);
793	}
794
795	return (true);
796}
797
798static void
799svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
800{
801	struct vm_guest_paging *paging;
802	struct vmcb_segment seg;
803	struct vmcb_ctrl *ctrl;
804	char *inst_bytes;
805	int error, inst_len;
806
807	ctrl = &vmcb->ctrl;
808	paging = &vmexit->u.inst_emul.paging;
809
810	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
811	vmexit->u.inst_emul.gpa = gpa;
812	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
813	svm_paging_info(vmcb, paging);
814
815	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
816	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
817
818	switch(paging->cpu_mode) {
819	case CPU_MODE_REAL:
820		vmexit->u.inst_emul.cs_base = seg.base;
821		vmexit->u.inst_emul.cs_d = 0;
822		break;
823	case CPU_MODE_PROTECTED:
824	case CPU_MODE_COMPATIBILITY:
825		vmexit->u.inst_emul.cs_base = seg.base;
826
827		/*
828		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
829		 */
830		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
831		    1 : 0;
832		break;
833	default:
834		vmexit->u.inst_emul.cs_base = 0;
835		vmexit->u.inst_emul.cs_d = 0;
836		break;
837	}
838
839	/*
840	 * Copy the instruction bytes into 'vie' if available.
841	 */
842	if (decode_assist() && !disable_npf_assist) {
843		inst_len = ctrl->inst_len;
844		inst_bytes = ctrl->inst_bytes;
845	} else {
846		inst_len = 0;
847		inst_bytes = NULL;
848	}
849	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
850}
851
852#ifdef KTR
853static const char *
854intrtype_to_str(int intr_type)
855{
856	switch (intr_type) {
857	case VMCB_EVENTINJ_TYPE_INTR:
858		return ("hwintr");
859	case VMCB_EVENTINJ_TYPE_NMI:
860		return ("nmi");
861	case VMCB_EVENTINJ_TYPE_INTn:
862		return ("swintr");
863	case VMCB_EVENTINJ_TYPE_EXCEPTION:
864		return ("exception");
865	default:
866		panic("%s: unknown intr_type %d", __func__, intr_type);
867	}
868}
869#endif
870
871/*
872 * Inject an event to vcpu as described in section 15.20, "Event injection".
873 */
874static void
875svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
876		 uint32_t error, bool ec_valid)
877{
878	struct vmcb_ctrl *ctrl;
879
880	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
881
882	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
883	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
884
885	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
886	    __func__, vector));
887
888	switch (intr_type) {
889	case VMCB_EVENTINJ_TYPE_INTR:
890	case VMCB_EVENTINJ_TYPE_NMI:
891	case VMCB_EVENTINJ_TYPE_INTn:
892		break;
893	case VMCB_EVENTINJ_TYPE_EXCEPTION:
894		if (vector >= 0 && vector <= 31 && vector != 2)
895			break;
896		/* FALLTHROUGH */
897	default:
898		panic("%s: invalid intr_type/vector: %d/%d", __func__,
899		    intr_type, vector);
900	}
901	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
902	if (ec_valid) {
903		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
904		ctrl->eventinj |= (uint64_t)error << 32;
905		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
906		    intrtype_to_str(intr_type), vector, error);
907	} else {
908		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
909		    intrtype_to_str(intr_type), vector);
910	}
911}
912
913static void
914svm_update_virqinfo(struct svm_softc *sc, int vcpu)
915{
916	struct vm *vm;
917	struct vlapic *vlapic;
918	struct vmcb_ctrl *ctrl;
919	int pending;
920
921	vm = sc->vm;
922	vlapic = vm_lapic(vm, vcpu);
923	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
924
925	/* Update %cr8 in the emulated vlapic */
926	vlapic_set_cr8(vlapic, ctrl->v_tpr);
927
928	/*
929	 * If V_IRQ indicates that the interrupt injection attempted on then
930	 * last VMRUN was successful then update the vlapic accordingly.
931	 */
932	if (ctrl->v_intr_vector != 0) {
933		pending = ctrl->v_irq;
934		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
935		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
936		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
937		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
938		    pending ? "pending" : "accepted");
939		if (!pending)
940			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
941	}
942}
943
944static void
945svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
946{
947	struct vmcb_ctrl *ctrl;
948	uint64_t intinfo;
949
950	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
951	intinfo = ctrl->exitintinfo;
952	if (!VMCB_EXITINTINFO_VALID(intinfo))
953		return;
954
955	/*
956	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
957	 *
958	 * If a #VMEXIT happened during event delivery then record the event
959	 * that was being delivered.
960	 */
961	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
962		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
963	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
964	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
965}
966
967static __inline int
968vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
969{
970
971	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
972	    VMCB_INTCPT_VINTR));
973}
974
975static __inline void
976enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
977{
978	struct vmcb_ctrl *ctrl;
979
980	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
981
982	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
983		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
984		KASSERT(vintr_intercept_enabled(sc, vcpu),
985		    ("%s: vintr intercept should be enabled", __func__));
986		return;
987	}
988
989	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
990	ctrl->v_irq = 1;
991	ctrl->v_ign_tpr = 1;
992	ctrl->v_intr_vector = 0;
993	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
994	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
995}
996
997static __inline void
998disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
999{
1000	struct vmcb_ctrl *ctrl;
1001
1002	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1003
1004	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1005		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1006		    ("%s: vintr intercept should be disabled", __func__));
1007		return;
1008	}
1009
1010#ifdef KTR
1011	if (ctrl->v_intr_vector == 0)
1012		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1013	else
1014		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
1015#endif
1016	ctrl->v_irq = 0;
1017	ctrl->v_intr_vector = 0;
1018	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1019	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1020}
1021
1022static int
1023svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1024{
1025	struct vmcb_ctrl *ctrl;
1026	int oldval, newval;
1027
1028	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1029	oldval = ctrl->intr_shadow;
1030	newval = val ? 1 : 0;
1031	if (newval != oldval) {
1032		ctrl->intr_shadow = newval;
1033		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1034	}
1035	return (0);
1036}
1037
1038static int
1039svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1040{
1041	struct vmcb_ctrl *ctrl;
1042
1043	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1044	*val = ctrl->intr_shadow;
1045	return (0);
1046}
1047
1048/*
1049 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1050 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1051 * to track when the vcpu is done handling the NMI.
1052 */
1053static int
1054nmi_blocked(struct svm_softc *sc, int vcpu)
1055{
1056	int blocked;
1057
1058	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1059	    VMCB_INTCPT_IRET);
1060	return (blocked);
1061}
1062
1063static void
1064enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1065{
1066
1067	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1068	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1069	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1070}
1071
1072static void
1073clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1074{
1075	int error;
1076
1077	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1078	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1079	/*
1080	 * When the IRET intercept is cleared the vcpu will attempt to execute
1081	 * the "iret" when it runs next. However, it is possible to inject
1082	 * another NMI into the vcpu before the "iret" has actually executed.
1083	 *
1084	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1085	 * it will trap back into the hypervisor. If an NMI is pending for
1086	 * the vcpu it will be injected into the guest.
1087	 *
1088	 * XXX this needs to be fixed
1089	 */
1090	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1091
1092	/*
1093	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1094	 * immediate VMRUN.
1095	 */
1096	error = svm_modify_intr_shadow(sc, vcpu, 1);
1097	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1098}
1099
1100#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1101
1102static int
1103svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1104{
1105	struct vm_exit *vme;
1106	struct vmcb_state *state;
1107	uint64_t changed, lma, oldval;
1108	int error;
1109
1110	state = svm_get_vmcb_state(sc, vcpu);
1111
1112	oldval = state->efer;
1113	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1114
1115	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1116	changed = oldval ^ newval;
1117
1118	if (newval & EFER_MBZ_BITS)
1119		goto gpf;
1120
1121	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1122	if (changed & EFER_LME) {
1123		if (state->cr0 & CR0_PG)
1124			goto gpf;
1125	}
1126
1127	/* EFER.LMA = EFER.LME & CR0.PG */
1128	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1129		lma = EFER_LMA;
1130	else
1131		lma = 0;
1132
1133	if ((newval & EFER_LMA) != lma)
1134		goto gpf;
1135
1136	if (newval & EFER_NXE) {
1137		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1138			goto gpf;
1139	}
1140
1141	/*
1142	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1143	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1144	 */
1145	if (newval & EFER_LMSLE) {
1146		vme = vm_exitinfo(sc->vm, vcpu);
1147		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1148		*retu = true;
1149		return (0);
1150	}
1151
1152	if (newval & EFER_FFXSR) {
1153		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1154			goto gpf;
1155	}
1156
1157	if (newval & EFER_TCE) {
1158		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1159			goto gpf;
1160	}
1161
1162	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1163	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1164	return (0);
1165gpf:
1166	vm_inject_gp(sc->vm, vcpu);
1167	return (0);
1168}
1169
1170static int
1171emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1172    bool *retu)
1173{
1174	int error;
1175
1176	if (lapic_msr(num))
1177		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1178	else if (num == MSR_EFER)
1179		error = svm_write_efer(sc, vcpu, val, retu);
1180	else
1181		error = svm_wrmsr(sc, vcpu, num, val, retu);
1182
1183	return (error);
1184}
1185
1186static int
1187emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1188{
1189	struct vmcb_state *state;
1190	struct svm_regctx *ctx;
1191	uint64_t result;
1192	int error;
1193
1194	if (lapic_msr(num))
1195		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1196	else
1197		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1198
1199	if (error == 0) {
1200		state = svm_get_vmcb_state(sc, vcpu);
1201		ctx = svm_get_guest_regctx(sc, vcpu);
1202		state->rax = result & 0xffffffff;
1203		ctx->sctx_rdx = result >> 32;
1204	}
1205
1206	return (error);
1207}
1208
1209#ifdef KTR
1210static const char *
1211exit_reason_to_str(uint64_t reason)
1212{
1213	static char reasonbuf[32];
1214
1215	switch (reason) {
1216	case VMCB_EXIT_INVALID:
1217		return ("invalvmcb");
1218	case VMCB_EXIT_SHUTDOWN:
1219		return ("shutdown");
1220	case VMCB_EXIT_NPF:
1221		return ("nptfault");
1222	case VMCB_EXIT_PAUSE:
1223		return ("pause");
1224	case VMCB_EXIT_HLT:
1225		return ("hlt");
1226	case VMCB_EXIT_CPUID:
1227		return ("cpuid");
1228	case VMCB_EXIT_IO:
1229		return ("inout");
1230	case VMCB_EXIT_MC:
1231		return ("mchk");
1232	case VMCB_EXIT_INTR:
1233		return ("extintr");
1234	case VMCB_EXIT_NMI:
1235		return ("nmi");
1236	case VMCB_EXIT_VINTR:
1237		return ("vintr");
1238	case VMCB_EXIT_MSR:
1239		return ("msr");
1240	case VMCB_EXIT_IRET:
1241		return ("iret");
1242	case VMCB_EXIT_MONITOR:
1243		return ("monitor");
1244	case VMCB_EXIT_MWAIT:
1245		return ("mwait");
1246	default:
1247		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1248		return (reasonbuf);
1249	}
1250}
1251#endif	/* KTR */
1252
1253/*
1254 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1255 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1256 * and exceptions caused by INT3, INTO and BOUND instructions.
1257 *
1258 * Return 1 if the nRIP is valid and 0 otherwise.
1259 */
1260static int
1261nrip_valid(uint64_t exitcode)
1262{
1263	switch (exitcode) {
1264	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1265	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1266	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1267	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1268	case 0x43:		/* INT3 */
1269	case 0x44:		/* INTO */
1270	case 0x45:		/* BOUND */
1271	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1272	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1273		return (1);
1274	default:
1275		return (0);
1276	}
1277}
1278
1279static int
1280svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1281{
1282	struct vmcb *vmcb;
1283	struct vmcb_state *state;
1284	struct vmcb_ctrl *ctrl;
1285	struct svm_regctx *ctx;
1286	uint64_t code, info1, info2, val;
1287	uint32_t eax, ecx, edx;
1288	int error, errcode_valid, handled, idtvec, reflect;
1289	bool retu;
1290
1291	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1292	vmcb = svm_get_vmcb(svm_sc, vcpu);
1293	state = &vmcb->state;
1294	ctrl = &vmcb->ctrl;
1295
1296	handled = 0;
1297	code = ctrl->exitcode;
1298	info1 = ctrl->exitinfo1;
1299	info2 = ctrl->exitinfo2;
1300
1301	vmexit->exitcode = VM_EXITCODE_BOGUS;
1302	vmexit->rip = state->rip;
1303	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1304
1305	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1306
1307	/*
1308	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1309	 * in an inconsistent state and can trigger assertions that would
1310	 * never happen otherwise.
1311	 */
1312	if (code == VMCB_EXIT_INVALID) {
1313		vm_exit_svm(vmexit, code, info1, info2);
1314		return (0);
1315	}
1316
1317	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1318	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1319
1320	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1321	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1322	    vmexit->inst_length, code, info1, info2));
1323
1324	svm_update_virqinfo(svm_sc, vcpu);
1325	svm_save_intinfo(svm_sc, vcpu);
1326
1327	switch (code) {
1328	case VMCB_EXIT_IRET:
1329		/*
1330		 * Restart execution at "iret" but with the intercept cleared.
1331		 */
1332		vmexit->inst_length = 0;
1333		clear_nmi_blocking(svm_sc, vcpu);
1334		handled = 1;
1335		break;
1336	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1337		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1338		handled = 1;
1339		break;
1340	case VMCB_EXIT_INTR:	/* external interrupt */
1341		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1342		handled = 1;
1343		break;
1344	case VMCB_EXIT_NMI:	/* external NMI */
1345		handled = 1;
1346		break;
1347	case 0x40 ... 0x5F:
1348		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1349		reflect = 1;
1350		idtvec = code - 0x40;
1351		switch (idtvec) {
1352		case IDT_MC:
1353			/*
1354			 * Call the machine check handler by hand. Also don't
1355			 * reflect the machine check back into the guest.
1356			 */
1357			reflect = 0;
1358			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1359			__asm __volatile("int $18");
1360			break;
1361		case IDT_PF:
1362			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1363			    info2);
1364			KASSERT(error == 0, ("%s: error %d updating cr2",
1365			    __func__, error));
1366			/* fallthru */
1367		case IDT_NP:
1368		case IDT_SS:
1369		case IDT_GP:
1370		case IDT_AC:
1371		case IDT_TS:
1372			errcode_valid = 1;
1373			break;
1374
1375		case IDT_DF:
1376			errcode_valid = 1;
1377			info1 = 0;
1378			break;
1379
1380		case IDT_BP:
1381		case IDT_OF:
1382		case IDT_BR:
1383			/*
1384			 * The 'nrip' field is populated for INT3, INTO and
1385			 * BOUND exceptions and this also implies that
1386			 * 'inst_length' is non-zero.
1387			 *
1388			 * Reset 'inst_length' to zero so the guest %rip at
1389			 * event injection is identical to what it was when
1390			 * the exception originally happened.
1391			 */
1392			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1393			    "to zero before injecting exception %d",
1394			    vmexit->inst_length, idtvec);
1395			vmexit->inst_length = 0;
1396			/* fallthru */
1397		default:
1398			errcode_valid = 0;
1399			info1 = 0;
1400			break;
1401		}
1402		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1403		    "when reflecting exception %d into guest",
1404		    vmexit->inst_length, idtvec));
1405
1406		if (reflect) {
1407			/* Reflect the exception back into the guest */
1408			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1409			    "%d/%#x into the guest", idtvec, (int)info1);
1410			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1411			    errcode_valid, info1, 0);
1412			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1413			    __func__, error));
1414		}
1415		handled = 1;
1416		break;
1417	case VMCB_EXIT_MSR:	/* MSR access. */
1418		eax = state->rax;
1419		ecx = ctx->sctx_rcx;
1420		edx = ctx->sctx_rdx;
1421		retu = false;
1422
1423		if (info1) {
1424			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1425			val = (uint64_t)edx << 32 | eax;
1426			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1427			    ecx, val);
1428			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1429				vmexit->exitcode = VM_EXITCODE_WRMSR;
1430				vmexit->u.msr.code = ecx;
1431				vmexit->u.msr.wval = val;
1432			} else if (!retu) {
1433				handled = 1;
1434			} else {
1435				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1436				    ("emulate_wrmsr retu with bogus exitcode"));
1437			}
1438		} else {
1439			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1440			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1441			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1442				vmexit->exitcode = VM_EXITCODE_RDMSR;
1443				vmexit->u.msr.code = ecx;
1444			} else if (!retu) {
1445				handled = 1;
1446			} else {
1447				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1448				    ("emulate_rdmsr retu with bogus exitcode"));
1449			}
1450		}
1451		break;
1452	case VMCB_EXIT_IO:
1453		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1454		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1455		break;
1456	case VMCB_EXIT_CPUID:
1457		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1458		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1459		    (uint32_t *)&state->rax,
1460		    (uint32_t *)&ctx->sctx_rbx,
1461		    (uint32_t *)&ctx->sctx_rcx,
1462		    (uint32_t *)&ctx->sctx_rdx);
1463		break;
1464	case VMCB_EXIT_HLT:
1465		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1466		vmexit->exitcode = VM_EXITCODE_HLT;
1467		vmexit->u.hlt.rflags = state->rflags;
1468		break;
1469	case VMCB_EXIT_PAUSE:
1470		vmexit->exitcode = VM_EXITCODE_PAUSE;
1471		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1472		break;
1473	case VMCB_EXIT_NPF:
1474		/* EXITINFO2 contains the faulting guest physical address */
1475		if (info1 & VMCB_NPF_INFO1_RSV) {
1476			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1477			    "reserved bits set: info1(%#lx) info2(%#lx)",
1478			    info1, info2);
1479		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1480			vmexit->exitcode = VM_EXITCODE_PAGING;
1481			vmexit->u.paging.gpa = info2;
1482			vmexit->u.paging.fault_type = npf_fault_type(info1);
1483			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1484			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1485			    "on gpa %#lx/%#lx at rip %#lx",
1486			    info2, info1, state->rip);
1487		} else if (svm_npf_emul_fault(info1)) {
1488			svm_handle_inst_emul(vmcb, info2, vmexit);
1489			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1490			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1491			    "for gpa %#lx/%#lx at rip %#lx",
1492			    info2, info1, state->rip);
1493		}
1494		break;
1495	case VMCB_EXIT_MONITOR:
1496		vmexit->exitcode = VM_EXITCODE_MONITOR;
1497		break;
1498	case VMCB_EXIT_MWAIT:
1499		vmexit->exitcode = VM_EXITCODE_MWAIT;
1500		break;
1501	default:
1502		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1503		break;
1504	}
1505
1506	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1507	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1508	    vmexit->rip, vmexit->inst_length);
1509
1510	if (handled) {
1511		vmexit->rip += vmexit->inst_length;
1512		vmexit->inst_length = 0;
1513		state->rip = vmexit->rip;
1514	} else {
1515		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1516			/*
1517			 * If this VM exit was not claimed by anybody then
1518			 * treat it as a generic SVM exit.
1519			 */
1520			vm_exit_svm(vmexit, code, info1, info2);
1521		} else {
1522			/*
1523			 * The exitcode and collateral have been populated.
1524			 * The VM exit will be processed further in userland.
1525			 */
1526		}
1527	}
1528	return (handled);
1529}
1530
1531static void
1532svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1533{
1534	uint64_t intinfo;
1535
1536	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1537		return;
1538
1539	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1540	    "valid: %#lx", __func__, intinfo));
1541
1542	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1543		VMCB_EXITINTINFO_VECTOR(intinfo),
1544		VMCB_EXITINTINFO_EC(intinfo),
1545		VMCB_EXITINTINFO_EC_VALID(intinfo));
1546	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1547	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1548}
1549
1550/*
1551 * Inject event to virtual cpu.
1552 */
1553static void
1554svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1555{
1556	struct vmcb_ctrl *ctrl;
1557	struct vmcb_state *state;
1558	struct svm_vcpu *vcpustate;
1559	uint8_t v_tpr;
1560	int vector, need_intr_window, pending_apic_vector;
1561
1562	state = svm_get_vmcb_state(sc, vcpu);
1563	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1564	vcpustate = svm_get_vcpu(sc, vcpu);
1565
1566	need_intr_window = 0;
1567	pending_apic_vector = 0;
1568
1569	if (vcpustate->nextrip != state->rip) {
1570		ctrl->intr_shadow = 0;
1571		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1572		    "cleared due to rip change: %#lx/%#lx",
1573		    vcpustate->nextrip, state->rip);
1574	}
1575
1576	/*
1577	 * Inject pending events or exceptions for this vcpu.
1578	 *
1579	 * An event might be pending because the previous #VMEXIT happened
1580	 * during event delivery (i.e. ctrl->exitintinfo).
1581	 *
1582	 * An event might also be pending because an exception was injected
1583	 * by the hypervisor (e.g. #PF during instruction emulation).
1584	 */
1585	svm_inj_intinfo(sc, vcpu);
1586
1587	/* NMI event has priority over interrupts. */
1588	if (vm_nmi_pending(sc->vm, vcpu)) {
1589		if (nmi_blocked(sc, vcpu)) {
1590			/*
1591			 * Can't inject another NMI if the guest has not
1592			 * yet executed an "iret" after the last NMI.
1593			 */
1594			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1595			    "to NMI-blocking");
1596		} else if (ctrl->intr_shadow) {
1597			/*
1598			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1599			 */
1600			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1601			    "interrupt shadow");
1602			need_intr_window = 1;
1603			goto done;
1604		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1605			/*
1606			 * If there is already an exception/interrupt pending
1607			 * then defer the NMI until after that.
1608			 */
1609			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1610			    "eventinj %#lx", ctrl->eventinj);
1611
1612			/*
1613			 * Use self-IPI to trigger a VM-exit as soon as
1614			 * possible after the event injection is completed.
1615			 *
1616			 * This works only if the external interrupt exiting
1617			 * is at a lower priority than the event injection.
1618			 *
1619			 * Although not explicitly specified in APMv2 the
1620			 * relative priorities were verified empirically.
1621			 */
1622			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1623		} else {
1624			vm_nmi_clear(sc->vm, vcpu);
1625
1626			/* Inject NMI, vector number is not used */
1627			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1628			    IDT_NMI, 0, false);
1629
1630			/* virtual NMI blocking is now in effect */
1631			enable_nmi_blocking(sc, vcpu);
1632
1633			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1634		}
1635	}
1636
1637	if (!vm_extint_pending(sc->vm, vcpu)) {
1638		/*
1639		 * APIC interrupts are delivered using the V_IRQ offload.
1640		 *
1641		 * The primary benefit is that the hypervisor doesn't need to
1642		 * deal with the various conditions that inhibit interrupts.
1643		 * It also means that TPR changes via CR8 will be handled
1644		 * without any hypervisor involvement.
1645		 *
1646		 * Note that the APIC vector must remain pending in the vIRR
1647		 * until it is confirmed that it was delivered to the guest.
1648		 * This can be confirmed based on the value of V_IRQ at the
1649		 * next #VMEXIT (1 = pending, 0 = delivered).
1650		 *
1651		 * Also note that it is possible that another higher priority
1652		 * vector can become pending before this vector is delivered
1653		 * to the guest. This is alright because vcpu_notify_event()
1654		 * will send an IPI and force the vcpu to trap back into the
1655		 * hypervisor. The higher priority vector will be injected on
1656		 * the next VMRUN.
1657		 */
1658		if (vlapic_pending_intr(vlapic, &vector)) {
1659			KASSERT(vector >= 16 && vector <= 255,
1660			    ("invalid vector %d from local APIC", vector));
1661			pending_apic_vector = vector;
1662		}
1663		goto done;
1664	}
1665
1666	/* Ask the legacy pic for a vector to inject */
1667	vatpic_pending_intr(sc->vm, &vector);
1668	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1669	    vector));
1670
1671	/*
1672	 * If the guest has disabled interrupts or is in an interrupt shadow
1673	 * then we cannot inject the pending interrupt.
1674	 */
1675	if ((state->rflags & PSL_I) == 0) {
1676		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1677		    "rflags %#lx", vector, state->rflags);
1678		need_intr_window = 1;
1679		goto done;
1680	}
1681
1682	if (ctrl->intr_shadow) {
1683		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1684		    "interrupt shadow", vector);
1685		need_intr_window = 1;
1686		goto done;
1687	}
1688
1689	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1690		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1691		    "eventinj %#lx", vector, ctrl->eventinj);
1692		need_intr_window = 1;
1693		goto done;
1694	}
1695
1696	/*
1697	 * Legacy PIC interrupts are delivered via the event injection
1698	 * mechanism.
1699	 */
1700	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1701
1702	vm_extint_clear(sc->vm, vcpu);
1703	vatpic_intr_accepted(sc->vm, vector);
1704
1705	/*
1706	 * Force a VM-exit as soon as the vcpu is ready to accept another
1707	 * interrupt. This is done because the PIC might have another vector
1708	 * that it wants to inject. Also, if the APIC has a pending interrupt
1709	 * that was preempted by the ExtInt then it allows us to inject the
1710	 * APIC vector as soon as possible.
1711	 */
1712	need_intr_window = 1;
1713done:
1714	/*
1715	 * The guest can modify the TPR by writing to %CR8. In guest mode
1716	 * the processor reflects this write to V_TPR without hypervisor
1717	 * intervention.
1718	 *
1719	 * The guest can also modify the TPR by writing to it via the memory
1720	 * mapped APIC page. In this case, the write will be emulated by the
1721	 * hypervisor. For this reason V_TPR must be updated before every
1722	 * VMRUN.
1723	 */
1724	v_tpr = vlapic_get_cr8(vlapic);
1725	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1726	if (ctrl->v_tpr != v_tpr) {
1727		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1728		    ctrl->v_tpr, v_tpr);
1729		ctrl->v_tpr = v_tpr;
1730		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1731	}
1732
1733	if (pending_apic_vector) {
1734		/*
1735		 * If an APIC vector is being injected then interrupt window
1736		 * exiting is not possible on this VMRUN.
1737		 */
1738		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1739		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1740		    pending_apic_vector);
1741
1742		ctrl->v_irq = 1;
1743		ctrl->v_ign_tpr = 0;
1744		ctrl->v_intr_vector = pending_apic_vector;
1745		ctrl->v_intr_prio = pending_apic_vector >> 4;
1746		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1747	} else if (need_intr_window) {
1748		/*
1749		 * We use V_IRQ in conjunction with the VINTR intercept to
1750		 * trap into the hypervisor as soon as a virtual interrupt
1751		 * can be delivered.
1752		 *
1753		 * Since injected events are not subject to intercept checks
1754		 * we need to ensure that the V_IRQ is not actually going to
1755		 * be delivered on VM entry. The KASSERT below enforces this.
1756		 */
1757		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1758		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1759		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1760		    "intr_shadow (%u), rflags (%#lx)",
1761		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1762		enable_intr_window_exiting(sc, vcpu);
1763	} else {
1764		disable_intr_window_exiting(sc, vcpu);
1765	}
1766}
1767
1768static __inline void
1769restore_host_tss(void)
1770{
1771	struct system_segment_descriptor *tss_sd;
1772
1773	/*
1774	 * The TSS descriptor was in use prior to launching the guest so it
1775	 * has been marked busy.
1776	 *
1777	 * 'ltr' requires the descriptor to be marked available so change the
1778	 * type to "64-bit available TSS".
1779	 */
1780	tss_sd = PCPU_GET(tss);
1781	tss_sd->sd_type = SDT_SYSTSS;
1782	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1783}
1784
1785static void
1786check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1787{
1788	struct svm_vcpu *vcpustate;
1789	struct vmcb_ctrl *ctrl;
1790	long eptgen;
1791	bool alloc_asid;
1792
1793	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1794	    "active on cpu %u", __func__, thiscpu));
1795
1796	vcpustate = svm_get_vcpu(sc, vcpuid);
1797	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1798
1799	/*
1800	 * The TLB entries associated with the vcpu's ASID are not valid
1801	 * if either of the following conditions is true:
1802	 *
1803	 * 1. The vcpu's ASID generation is different than the host cpu's
1804	 *    ASID generation. This happens when the vcpu migrates to a new
1805	 *    host cpu. It can also happen when the number of vcpus executing
1806	 *    on a host cpu is greater than the number of ASIDs available.
1807	 *
1808	 * 2. The pmap generation number is different than the value cached in
1809	 *    the 'vcpustate'. This happens when the host invalidates pages
1810	 *    belonging to the guest.
1811	 *
1812	 *	asidgen		eptgen	      Action
1813	 *	mismatch	mismatch
1814	 *	   0		   0		(a)
1815	 *	   0		   1		(b1) or (b2)
1816	 *	   1		   0		(c)
1817	 *	   1		   1		(d)
1818	 *
1819	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1820	 *     no further action is needed.
1821	 *
1822	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1823	 *      retained and the TLB entries associated with this ASID
1824	 *      are flushed by VMRUN.
1825	 *
1826	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1827	 *      allocated.
1828	 *
1829	 * (c) A new ASID is allocated.
1830	 *
1831	 * (d) A new ASID is allocated.
1832	 */
1833
1834	alloc_asid = false;
1835	eptgen = pmap->pm_eptgen;
1836	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1837
1838	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1839		alloc_asid = true;	/* (c) and (d) */
1840	} else if (vcpustate->eptgen != eptgen) {
1841		if (flush_by_asid())
1842			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1843		else
1844			alloc_asid = true;			/* (b2) */
1845	} else {
1846		/*
1847		 * This is the common case (a).
1848		 */
1849		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1850		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1851		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1852	}
1853
1854	if (alloc_asid) {
1855		if (++asid[thiscpu].num >= nasid) {
1856			asid[thiscpu].num = 1;
1857			if (++asid[thiscpu].gen == 0)
1858				asid[thiscpu].gen = 1;
1859			/*
1860			 * If this cpu does not support "flush-by-asid"
1861			 * then flush the entire TLB on a generation
1862			 * bump. Subsequent ASID allocation in this
1863			 * generation can be done without a TLB flush.
1864			 */
1865			if (!flush_by_asid())
1866				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1867		}
1868		vcpustate->asid.gen = asid[thiscpu].gen;
1869		vcpustate->asid.num = asid[thiscpu].num;
1870
1871		ctrl->asid = vcpustate->asid.num;
1872		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1873		/*
1874		 * If this cpu supports "flush-by-asid" then the TLB
1875		 * was not flushed after the generation bump. The TLB
1876		 * is flushed selectively after every new ASID allocation.
1877		 */
1878		if (flush_by_asid())
1879			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1880	}
1881	vcpustate->eptgen = eptgen;
1882
1883	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1884	KASSERT(ctrl->asid == vcpustate->asid.num,
1885	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1886}
1887
1888static __inline void
1889disable_gintr(void)
1890{
1891
1892	__asm __volatile("clgi");
1893}
1894
1895static __inline void
1896enable_gintr(void)
1897{
1898
1899        __asm __volatile("stgi");
1900}
1901
1902/*
1903 * Start vcpu with specified RIP.
1904 */
1905static int
1906svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1907	struct vm_eventinfo *evinfo)
1908{
1909	struct svm_regctx *gctx;
1910	struct svm_softc *svm_sc;
1911	struct svm_vcpu *vcpustate;
1912	struct vmcb_state *state;
1913	struct vmcb_ctrl *ctrl;
1914	struct vm_exit *vmexit;
1915	struct vlapic *vlapic;
1916	struct vm *vm;
1917	uint64_t vmcb_pa;
1918	int handled;
1919
1920	svm_sc = arg;
1921	vm = svm_sc->vm;
1922
1923	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1924	state = svm_get_vmcb_state(svm_sc, vcpu);
1925	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1926	vmexit = vm_exitinfo(vm, vcpu);
1927	vlapic = vm_lapic(vm, vcpu);
1928
1929	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1930	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1931
1932	if (vcpustate->lastcpu != curcpu) {
1933		/*
1934		 * Force new ASID allocation by invalidating the generation.
1935		 */
1936		vcpustate->asid.gen = 0;
1937
1938		/*
1939		 * Invalidate the VMCB state cache by marking all fields dirty.
1940		 */
1941		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1942
1943		/*
1944		 * XXX
1945		 * Setting 'vcpustate->lastcpu' here is bit premature because
1946		 * we may return from this function without actually executing
1947		 * the VMRUN  instruction. This could happen if a rendezvous
1948		 * or an AST is pending on the first time through the loop.
1949		 *
1950		 * This works for now but any new side-effects of vcpu
1951		 * migration should take this case into account.
1952		 */
1953		vcpustate->lastcpu = curcpu;
1954		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1955	}
1956
1957	svm_msr_guest_enter(svm_sc, vcpu);
1958
1959	/* Update Guest RIP */
1960	state->rip = rip;
1961
1962	do {
1963		/*
1964		 * Disable global interrupts to guarantee atomicity during
1965		 * loading of guest state. This includes not only the state
1966		 * loaded by the "vmrun" instruction but also software state
1967		 * maintained by the hypervisor: suspended and rendezvous
1968		 * state, NPT generation number, vlapic interrupts etc.
1969		 */
1970		disable_gintr();
1971
1972		if (vcpu_suspended(evinfo)) {
1973			enable_gintr();
1974			vm_exit_suspended(vm, vcpu, state->rip);
1975			break;
1976		}
1977
1978		if (vcpu_rendezvous_pending(evinfo)) {
1979			enable_gintr();
1980			vm_exit_rendezvous(vm, vcpu, state->rip);
1981			break;
1982		}
1983
1984		if (vcpu_reqidle(evinfo)) {
1985			enable_gintr();
1986			vm_exit_reqidle(vm, vcpu, state->rip);
1987			break;
1988		}
1989
1990		/* We are asked to give the cpu by scheduler. */
1991		if (vcpu_should_yield(vm, vcpu)) {
1992			enable_gintr();
1993			vm_exit_astpending(vm, vcpu, state->rip);
1994			break;
1995		}
1996
1997		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1998
1999		/* Activate the nested pmap on 'curcpu' */
2000		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
2001
2002		/*
2003		 * Check the pmap generation and the ASID generation to
2004		 * ensure that the vcpu does not use stale TLB mappings.
2005		 */
2006		check_asid(svm_sc, vcpu, pmap, curcpu);
2007
2008		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2009		vcpustate->dirty = 0;
2010		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2011
2012		/* Launch Virtual Machine. */
2013		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2014		svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]);
2015
2016		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2017
2018		/*
2019		 * The host GDTR and IDTR is saved by VMRUN and restored
2020		 * automatically on #VMEXIT. However, the host TSS needs
2021		 * to be restored explicitly.
2022		 */
2023		restore_host_tss();
2024
2025		/* #VMEXIT disables interrupts so re-enable them here. */
2026		enable_gintr();
2027
2028		/* Update 'nextrip' */
2029		vcpustate->nextrip = state->rip;
2030
2031		/* Handle #VMEXIT and if required return to user space. */
2032		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2033	} while (handled);
2034
2035	svm_msr_guest_exit(svm_sc, vcpu);
2036
2037	return (0);
2038}
2039
2040static void
2041svm_vmcleanup(void *arg)
2042{
2043	struct svm_softc *sc = arg;
2044
2045	free(sc, M_SVM);
2046}
2047
2048static register_t *
2049swctx_regptr(struct svm_regctx *regctx, int reg)
2050{
2051
2052	switch (reg) {
2053	case VM_REG_GUEST_RBX:
2054		return (&regctx->sctx_rbx);
2055	case VM_REG_GUEST_RCX:
2056		return (&regctx->sctx_rcx);
2057	case VM_REG_GUEST_RDX:
2058		return (&regctx->sctx_rdx);
2059	case VM_REG_GUEST_RDI:
2060		return (&regctx->sctx_rdi);
2061	case VM_REG_GUEST_RSI:
2062		return (&regctx->sctx_rsi);
2063	case VM_REG_GUEST_RBP:
2064		return (&regctx->sctx_rbp);
2065	case VM_REG_GUEST_R8:
2066		return (&regctx->sctx_r8);
2067	case VM_REG_GUEST_R9:
2068		return (&regctx->sctx_r9);
2069	case VM_REG_GUEST_R10:
2070		return (&regctx->sctx_r10);
2071	case VM_REG_GUEST_R11:
2072		return (&regctx->sctx_r11);
2073	case VM_REG_GUEST_R12:
2074		return (&regctx->sctx_r12);
2075	case VM_REG_GUEST_R13:
2076		return (&regctx->sctx_r13);
2077	case VM_REG_GUEST_R14:
2078		return (&regctx->sctx_r14);
2079	case VM_REG_GUEST_R15:
2080		return (&regctx->sctx_r15);
2081	default:
2082		return (NULL);
2083	}
2084}
2085
2086static int
2087svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2088{
2089	struct svm_softc *svm_sc;
2090	register_t *reg;
2091
2092	svm_sc = arg;
2093
2094	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2095		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2096	}
2097
2098	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2099		return (0);
2100	}
2101
2102	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2103
2104	if (reg != NULL) {
2105		*val = *reg;
2106		return (0);
2107	}
2108
2109	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2110	return (EINVAL);
2111}
2112
2113static int
2114svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2115{
2116	struct svm_softc *svm_sc;
2117	register_t *reg;
2118
2119	svm_sc = arg;
2120
2121	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2122		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2123	}
2124
2125	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2126		return (0);
2127	}
2128
2129	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2130
2131	if (reg != NULL) {
2132		*reg = val;
2133		return (0);
2134	}
2135
2136	/*
2137	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2138	 * vcpu's ASID. This needs to be treated differently depending on
2139	 * whether 'running' is true/false.
2140	 */
2141
2142	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2143	return (EINVAL);
2144}
2145
2146static int
2147svm_setcap(void *arg, int vcpu, int type, int val)
2148{
2149	struct svm_softc *sc;
2150	int error;
2151
2152	sc = arg;
2153	error = 0;
2154	switch (type) {
2155	case VM_CAP_HALT_EXIT:
2156		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2157		    VMCB_INTCPT_HLT, val);
2158		break;
2159	case VM_CAP_PAUSE_EXIT:
2160		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2161		    VMCB_INTCPT_PAUSE, val);
2162		break;
2163	case VM_CAP_UNRESTRICTED_GUEST:
2164		/* Unrestricted guest execution cannot be disabled in SVM */
2165		if (val == 0)
2166			error = EINVAL;
2167		break;
2168	default:
2169		error = ENOENT;
2170		break;
2171	}
2172	return (error);
2173}
2174
2175static int
2176svm_getcap(void *arg, int vcpu, int type, int *retval)
2177{
2178	struct svm_softc *sc;
2179	int error;
2180
2181	sc = arg;
2182	error = 0;
2183
2184	switch (type) {
2185	case VM_CAP_HALT_EXIT:
2186		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2187		    VMCB_INTCPT_HLT);
2188		break;
2189	case VM_CAP_PAUSE_EXIT:
2190		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2191		    VMCB_INTCPT_PAUSE);
2192		break;
2193	case VM_CAP_UNRESTRICTED_GUEST:
2194		*retval = 1;	/* unrestricted guest is always enabled */
2195		break;
2196	default:
2197		error = ENOENT;
2198		break;
2199	}
2200	return (error);
2201}
2202
2203static struct vlapic *
2204svm_vlapic_init(void *arg, int vcpuid)
2205{
2206	struct svm_softc *svm_sc;
2207	struct vlapic *vlapic;
2208
2209	svm_sc = arg;
2210	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2211	vlapic->vm = svm_sc->vm;
2212	vlapic->vcpuid = vcpuid;
2213	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2214
2215	vlapic_init(vlapic);
2216
2217	return (vlapic);
2218}
2219
2220static void
2221svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2222{
2223
2224        vlapic_cleanup(vlapic);
2225        free(vlapic, M_SVM_VLAPIC);
2226}
2227
2228struct vmm_ops vmm_ops_amd = {
2229	svm_init,
2230	svm_cleanup,
2231	svm_restore,
2232	svm_vminit,
2233	svm_vmrun,
2234	svm_vmcleanup,
2235	svm_getreg,
2236	svm_setreg,
2237	vmcb_getdesc,
2238	vmcb_setdesc,
2239	svm_getcap,
2240	svm_setcap,
2241	svm_npt_alloc,
2242	svm_npt_free,
2243	svm_vlapic_init,
2244	svm_vlapic_cleanup
2245};
2246