svm.c revision 283657
1/*-
2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/vmm/amd/svm.c 283657 2015-05-28 17:37:01Z neel $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/smp.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/pcpu.h>
36#include <sys/proc.h>
37#include <sys/sysctl.h>
38
39#include <vm/vm.h>
40#include <vm/pmap.h>
41
42#include <machine/cpufunc.h>
43#include <machine/psl.h>
44#include <machine/pmap.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47#include <machine/smp.h>
48#include <machine/vmm.h>
49#include <machine/vmm_dev.h>
50#include <machine/vmm_instruction_emul.h>
51
52#include "vmm_lapic.h"
53#include "vmm_stat.h"
54#include "vmm_ktr.h"
55#include "vmm_ioport.h"
56#include "vatpic.h"
57#include "vlapic.h"
58#include "vlapic_priv.h"
59
60#include "x86.h"
61#include "vmcb.h"
62#include "svm.h"
63#include "svm_softc.h"
64#include "svm_msr.h"
65#include "npt.h"
66
67SYSCTL_DECL(_hw_vmm);
68SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * SVM CPUID function 0x8000_000A, edx bit decoding.
72 */
73#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84
85#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86				VMCB_CACHE_IOPM		|	\
87				VMCB_CACHE_I		|	\
88				VMCB_CACHE_TPR		|	\
89				VMCB_CACHE_CR2		|	\
90				VMCB_CACHE_CR		|	\
91				VMCB_CACHE_DT		|	\
92				VMCB_CACHE_SEG		|	\
93				VMCB_CACHE_NP)
94
95static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97    0, NULL);
98
99static MALLOC_DEFINE(M_SVM, "svm", "svm");
100static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101
102/* Per-CPU context area. */
103extern struct pcpu __pcpu[];
104
105static uint32_t svm_feature;	/* AMD SVM features. */
106SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
107    "SVM features advertised by CPUID.8000000AH:EDX");
108
109static int disable_npf_assist;
110SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111    &disable_npf_assist, 0, NULL);
112
113/* Maximum ASIDs supported by the processor */
114static uint32_t nasid;
115SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
116    "Number of ASIDs supported by this processor");
117
118/* Current ASID generation for each host cpu */
119static struct asid asid[MAXCPU];
120
121/*
122 * SVM host state saved area of size 4KB for each core.
123 */
124static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125
126static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129
130static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131
132static __inline int
133flush_by_asid(void)
134{
135
136	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137}
138
139static __inline int
140decode_assist(void)
141{
142
143	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144}
145
146static void
147svm_disable(void *arg __unused)
148{
149	uint64_t efer;
150
151	efer = rdmsr(MSR_EFER);
152	efer &= ~EFER_SVM;
153	wrmsr(MSR_EFER, efer);
154}
155
156/*
157 * Disable SVM on all CPUs.
158 */
159static int
160svm_cleanup(void)
161{
162
163	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164	return (0);
165}
166
167/*
168 * Verify that all the features required by bhyve are available.
169 */
170static int
171check_svm_features(void)
172{
173	u_int regs[4];
174
175	/* CPUID Fn8000_000A is for SVM */
176	do_cpuid(0x8000000A, regs);
177	svm_feature = regs[3];
178
179	nasid = regs[1];
180	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
181
182	/* bhyve requires the Nested Paging feature */
183	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
184		printf("SVM: Nested Paging feature not available.\n");
185		return (ENXIO);
186	}
187
188	/* bhyve requires the NRIP Save feature */
189	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
190		printf("SVM: NRIP Save feature not available.\n");
191		return (ENXIO);
192	}
193
194	return (0);
195}
196
197static void
198svm_enable(void *arg __unused)
199{
200	uint64_t efer;
201
202	efer = rdmsr(MSR_EFER);
203	efer |= EFER_SVM;
204	wrmsr(MSR_EFER, efer);
205
206	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
207}
208
209/*
210 * Return 1 if SVM is enabled on this processor and 0 otherwise.
211 */
212static int
213svm_available(void)
214{
215	uint64_t msr;
216
217	/* Section 15.4 Enabling SVM from APM2. */
218	if ((amd_feature2 & AMDID2_SVM) == 0) {
219		printf("SVM: not available.\n");
220		return (0);
221	}
222
223	msr = rdmsr(MSR_VM_CR);
224	if ((msr & VM_CR_SVMDIS) != 0) {
225		printf("SVM: disabled by BIOS.\n");
226		return (0);
227	}
228
229	return (1);
230}
231
232static int
233svm_init(int ipinum)
234{
235	int error, cpu;
236
237	if (!svm_available())
238		return (ENXIO);
239
240	error = check_svm_features();
241	if (error)
242		return (error);
243
244	vmcb_clean &= VMCB_CACHE_DEFAULT;
245
246	for (cpu = 0; cpu < MAXCPU; cpu++) {
247		/*
248		 * Initialize the host ASIDs to their "highest" valid values.
249		 *
250		 * The next ASID allocation will rollover both 'gen' and 'num'
251		 * and start off the sequence at {1,1}.
252		 */
253		asid[cpu].gen = ~0UL;
254		asid[cpu].num = nasid - 1;
255	}
256
257	svm_msr_init();
258	svm_npt_init(ipinum);
259
260	/* Enable SVM on all CPUs */
261	smp_rendezvous(NULL, svm_enable, NULL, NULL);
262
263	return (0);
264}
265
266static void
267svm_restore(void)
268{
269
270	svm_enable(NULL);
271}
272
273/* Pentium compatible MSRs */
274#define MSR_PENTIUM_START 	0
275#define MSR_PENTIUM_END 	0x1FFF
276/* AMD 6th generation and Intel compatible MSRs */
277#define MSR_AMD6TH_START 	0xC0000000UL
278#define MSR_AMD6TH_END 		0xC0001FFFUL
279/* AMD 7th and 8th generation compatible MSRs */
280#define MSR_AMD7TH_START 	0xC0010000UL
281#define MSR_AMD7TH_END 		0xC0011FFFUL
282
283/*
284 * Get the index and bit position for a MSR in permission bitmap.
285 * Two bits are used for each MSR: lower bit for read and higher bit for write.
286 */
287static int
288svm_msr_index(uint64_t msr, int *index, int *bit)
289{
290	uint32_t base, off;
291
292	*index = -1;
293	*bit = (msr % 4) * 2;
294	base = 0;
295
296	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
297		*index = msr / 4;
298		return (0);
299	}
300
301	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
302	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
303		off = (msr - MSR_AMD6TH_START);
304		*index = (off + base) / 4;
305		return (0);
306	}
307
308	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
309	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
310		off = (msr - MSR_AMD7TH_START);
311		*index = (off + base) / 4;
312		return (0);
313	}
314
315	return (EINVAL);
316}
317
318/*
319 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
320 */
321static void
322svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
323{
324	int index, bit, error;
325
326	error = svm_msr_index(msr, &index, &bit);
327	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
328	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
329	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
330	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
331	    "msr %#lx", __func__, bit, msr));
332
333	if (read)
334		perm_bitmap[index] &= ~(1UL << bit);
335
336	if (write)
337		perm_bitmap[index] &= ~(2UL << bit);
338}
339
340static void
341svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
342{
343
344	svm_msr_perm(perm_bitmap, msr, true, true);
345}
346
347static void
348svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
349{
350
351	svm_msr_perm(perm_bitmap, msr, true, false);
352}
353
354static __inline int
355svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
356{
357	struct vmcb_ctrl *ctrl;
358
359	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
360
361	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
362	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
363}
364
365static __inline void
366svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
367    int enabled)
368{
369	struct vmcb_ctrl *ctrl;
370	uint32_t oldval;
371
372	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
373
374	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
375	oldval = ctrl->intercept[idx];
376
377	if (enabled)
378		ctrl->intercept[idx] |= bitmask;
379	else
380		ctrl->intercept[idx] &= ~bitmask;
381
382	if (ctrl->intercept[idx] != oldval) {
383		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
384		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
385		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
386	}
387}
388
389static __inline void
390svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
391{
392
393	svm_set_intercept(sc, vcpu, off, bitmask, 0);
394}
395
396static __inline void
397svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
398{
399
400	svm_set_intercept(sc, vcpu, off, bitmask, 1);
401}
402
403static void
404vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
405    uint64_t msrpm_base_pa, uint64_t np_pml4)
406{
407	struct vmcb_ctrl *ctrl;
408	struct vmcb_state *state;
409	uint32_t mask;
410	int n;
411
412	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
413	state = svm_get_vmcb_state(sc, vcpu);
414
415	ctrl->iopm_base_pa = iopm_base_pa;
416	ctrl->msrpm_base_pa = msrpm_base_pa;
417
418	/* Enable nested paging */
419	ctrl->np_enable = 1;
420	ctrl->n_cr3 = np_pml4;
421
422	/*
423	 * Intercept accesses to the control registers that are not shadowed
424	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
425	 */
426	for (n = 0; n < 16; n++) {
427		mask = (BIT(n) << 16) | BIT(n);
428		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
429			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
430		else
431			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
432	}
433
434
435	/*
436	 * Intercept everything when tracing guest exceptions otherwise
437	 * just intercept machine check exception.
438	 */
439	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
440		for (n = 0; n < 32; n++) {
441			/*
442			 * Skip unimplemented vectors in the exception bitmap.
443			 */
444			if (n == 2 || n == 9) {
445				continue;
446			}
447			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
448		}
449	} else {
450		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
451	}
452
453	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
454	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
455	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
456	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
457	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
458	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
459	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
460	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
461	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
462	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
463	    VMCB_INTCPT_FERR_FREEZE);
464
465	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
466	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
467
468	/*
469	 * From section "Canonicalization and Consistency Checks" in APMv2
470	 * the VMRUN intercept bit must be set to pass the consistency check.
471	 */
472	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
473
474	/*
475	 * The ASID will be set to a non-zero value just before VMRUN.
476	 */
477	ctrl->asid = 0;
478
479	/*
480	 * Section 15.21.1, Interrupt Masking in EFLAGS
481	 * Section 15.21.2, Virtualizing APIC.TPR
482	 *
483	 * This must be set for %rflag and %cr8 isolation of guest and host.
484	 */
485	ctrl->v_intr_masking = 1;
486
487	/* Enable Last Branch Record aka LBR for debugging */
488	ctrl->lbr_virt_en = 1;
489	state->dbgctl = BIT(0);
490
491	/* EFER_SVM must always be set when the guest is executing */
492	state->efer = EFER_SVM;
493
494	/* Set up the PAT to power-on state */
495	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
496	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
497	    PAT_VALUE(2, PAT_UNCACHED)		|
498	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
499	    PAT_VALUE(4, PAT_WRITE_BACK)	|
500	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
501	    PAT_VALUE(6, PAT_UNCACHED)		|
502	    PAT_VALUE(7, PAT_UNCACHEABLE);
503}
504
505/*
506 * Initialize a virtual machine.
507 */
508static void *
509svm_vminit(struct vm *vm, pmap_t pmap)
510{
511	struct svm_softc *svm_sc;
512	struct svm_vcpu *vcpu;
513	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
514	int i;
515
516	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
517	svm_sc->vm = vm;
518	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
519
520	/*
521	 * Intercept read and write accesses to all MSRs.
522	 */
523	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
524
525	/*
526	 * Access to the following MSRs is redirected to the VMCB when the
527	 * guest is executing. Therefore it is safe to allow the guest to
528	 * read/write these MSRs directly without hypervisor involvement.
529	 */
530	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
531	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
532	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
533
534	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
535	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
536	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
537	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
538	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
539	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
540	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
541	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
542
543	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
544
545	/*
546	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
547	 */
548	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
549
550	/* Intercept access to all I/O ports. */
551	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
552
553	iopm_pa = vtophys(svm_sc->iopm_bitmap);
554	msrpm_pa = vtophys(svm_sc->msr_bitmap);
555	pml4_pa = svm_sc->nptp;
556	for (i = 0; i < VM_MAXCPU; i++) {
557		vcpu = svm_get_vcpu(svm_sc, i);
558		vcpu->nextrip = ~0;
559		vcpu->lastcpu = NOCPU;
560		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
561		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
562		svm_msr_guest_init(svm_sc, i);
563	}
564	return (svm_sc);
565}
566
567/*
568 * Collateral for a generic SVM VM-exit.
569 */
570static void
571vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
572{
573
574	vme->exitcode = VM_EXITCODE_SVM;
575	vme->u.svm.exitcode = code;
576	vme->u.svm.exitinfo1 = info1;
577	vme->u.svm.exitinfo2 = info2;
578}
579
580static int
581svm_cpl(struct vmcb_state *state)
582{
583
584	/*
585	 * From APMv2:
586	 *   "Retrieve the CPL from the CPL field in the VMCB, not
587	 *    from any segment DPL"
588	 */
589	return (state->cpl);
590}
591
592static enum vm_cpu_mode
593svm_vcpu_mode(struct vmcb *vmcb)
594{
595	struct vmcb_segment seg;
596	struct vmcb_state *state;
597	int error;
598
599	state = &vmcb->state;
600
601	if (state->efer & EFER_LMA) {
602		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
603		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
604		    error));
605
606		/*
607		 * Section 4.8.1 for APM2, check if Code Segment has
608		 * Long attribute set in descriptor.
609		 */
610		if (seg.attrib & VMCB_CS_ATTRIB_L)
611			return (CPU_MODE_64BIT);
612		else
613			return (CPU_MODE_COMPATIBILITY);
614	} else  if (state->cr0 & CR0_PE) {
615		return (CPU_MODE_PROTECTED);
616	} else {
617		return (CPU_MODE_REAL);
618	}
619}
620
621static enum vm_paging_mode
622svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
623{
624
625	if ((cr0 & CR0_PG) == 0)
626		return (PAGING_MODE_FLAT);
627	if ((cr4 & CR4_PAE) == 0)
628		return (PAGING_MODE_32);
629	if (efer & EFER_LME)
630		return (PAGING_MODE_64);
631	else
632		return (PAGING_MODE_PAE);
633}
634
635/*
636 * ins/outs utility routines
637 */
638static uint64_t
639svm_inout_str_index(struct svm_regctx *regs, int in)
640{
641	uint64_t val;
642
643	val = in ? regs->sctx_rdi : regs->sctx_rsi;
644
645	return (val);
646}
647
648static uint64_t
649svm_inout_str_count(struct svm_regctx *regs, int rep)
650{
651	uint64_t val;
652
653	val = rep ? regs->sctx_rcx : 1;
654
655	return (val);
656}
657
658static void
659svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
660    int in, struct vm_inout_str *vis)
661{
662	int error, s;
663
664	if (in) {
665		vis->seg_name = VM_REG_GUEST_ES;
666	} else {
667		/* The segment field has standard encoding */
668		s = (info1 >> 10) & 0x7;
669		vis->seg_name = vm_segment_name(s);
670	}
671
672	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
673	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
674}
675
676static int
677svm_inout_str_addrsize(uint64_t info1)
678{
679        uint32_t size;
680
681        size = (info1 >> 7) & 0x7;
682        switch (size) {
683        case 1:
684                return (2);     /* 16 bit */
685        case 2:
686                return (4);     /* 32 bit */
687        case 4:
688                return (8);     /* 64 bit */
689        default:
690                panic("%s: invalid size encoding %d", __func__, size);
691        }
692}
693
694static void
695svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
696{
697	struct vmcb_state *state;
698
699	state = &vmcb->state;
700	paging->cr3 = state->cr3;
701	paging->cpl = svm_cpl(state);
702	paging->cpu_mode = svm_vcpu_mode(vmcb);
703	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
704	    state->efer);
705}
706
707#define	UNHANDLED 0
708
709/*
710 * Handle guest I/O intercept.
711 */
712static int
713svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
714{
715	struct vmcb_ctrl *ctrl;
716	struct vmcb_state *state;
717	struct svm_regctx *regs;
718	struct vm_inout_str *vis;
719	uint64_t info1;
720	int inout_string;
721
722	state = svm_get_vmcb_state(svm_sc, vcpu);
723	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
724	regs  = svm_get_guest_regctx(svm_sc, vcpu);
725
726	info1 = ctrl->exitinfo1;
727	inout_string = info1 & BIT(2) ? 1 : 0;
728
729	/*
730	 * The effective segment number in EXITINFO1[12:10] is populated
731	 * only if the processor has the DecodeAssist capability.
732	 *
733	 * XXX this is not specified explicitly in APMv2 but can be verified
734	 * empirically.
735	 */
736	if (inout_string && !decode_assist())
737		return (UNHANDLED);
738
739	vmexit->exitcode 	= VM_EXITCODE_INOUT;
740	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
741	vmexit->u.inout.string 	= inout_string;
742	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
743	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
744	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
745	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
746
747	if (inout_string) {
748		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
749		vis = &vmexit->u.inout_str;
750		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
751		vis->rflags = state->rflags;
752		vis->cr0 = state->cr0;
753		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
754		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
755		vis->addrsize = svm_inout_str_addrsize(info1);
756		svm_inout_str_seginfo(svm_sc, vcpu, info1,
757		    vmexit->u.inout.in, vis);
758	}
759
760	return (UNHANDLED);
761}
762
763static int
764npf_fault_type(uint64_t exitinfo1)
765{
766
767	if (exitinfo1 & VMCB_NPF_INFO1_W)
768		return (VM_PROT_WRITE);
769	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
770		return (VM_PROT_EXECUTE);
771	else
772		return (VM_PROT_READ);
773}
774
775static bool
776svm_npf_emul_fault(uint64_t exitinfo1)
777{
778
779	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
780		return (false);
781	}
782
783	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
784		return (false);
785	}
786
787	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
788		return (false);
789	}
790
791	return (true);
792}
793
794static void
795svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
796{
797	struct vm_guest_paging *paging;
798	struct vmcb_segment seg;
799	struct vmcb_ctrl *ctrl;
800	char *inst_bytes;
801	int error, inst_len;
802
803	ctrl = &vmcb->ctrl;
804	paging = &vmexit->u.inst_emul.paging;
805
806	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
807	vmexit->u.inst_emul.gpa = gpa;
808	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
809	svm_paging_info(vmcb, paging);
810
811	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
812	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
813
814	switch(paging->cpu_mode) {
815	case CPU_MODE_REAL:
816		vmexit->u.inst_emul.cs_base = seg.base;
817		vmexit->u.inst_emul.cs_d = 0;
818		break;
819	case CPU_MODE_PROTECTED:
820	case CPU_MODE_COMPATIBILITY:
821		vmexit->u.inst_emul.cs_base = seg.base;
822
823		/*
824		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
825		 */
826		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
827		    1 : 0;
828		break;
829	default:
830		vmexit->u.inst_emul.cs_base = 0;
831		vmexit->u.inst_emul.cs_d = 0;
832		break;
833	}
834
835	/*
836	 * Copy the instruction bytes into 'vie' if available.
837	 */
838	if (decode_assist() && !disable_npf_assist) {
839		inst_len = ctrl->inst_len;
840		inst_bytes = ctrl->inst_bytes;
841	} else {
842		inst_len = 0;
843		inst_bytes = NULL;
844	}
845	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
846}
847
848#ifdef KTR
849static const char *
850intrtype_to_str(int intr_type)
851{
852	switch (intr_type) {
853	case VMCB_EVENTINJ_TYPE_INTR:
854		return ("hwintr");
855	case VMCB_EVENTINJ_TYPE_NMI:
856		return ("nmi");
857	case VMCB_EVENTINJ_TYPE_INTn:
858		return ("swintr");
859	case VMCB_EVENTINJ_TYPE_EXCEPTION:
860		return ("exception");
861	default:
862		panic("%s: unknown intr_type %d", __func__, intr_type);
863	}
864}
865#endif
866
867/*
868 * Inject an event to vcpu as described in section 15.20, "Event injection".
869 */
870static void
871svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
872		 uint32_t error, bool ec_valid)
873{
874	struct vmcb_ctrl *ctrl;
875
876	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
877
878	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
879	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
880
881	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
882	    __func__, vector));
883
884	switch (intr_type) {
885	case VMCB_EVENTINJ_TYPE_INTR:
886	case VMCB_EVENTINJ_TYPE_NMI:
887	case VMCB_EVENTINJ_TYPE_INTn:
888		break;
889	case VMCB_EVENTINJ_TYPE_EXCEPTION:
890		if (vector >= 0 && vector <= 31 && vector != 2)
891			break;
892		/* FALLTHROUGH */
893	default:
894		panic("%s: invalid intr_type/vector: %d/%d", __func__,
895		    intr_type, vector);
896	}
897	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
898	if (ec_valid) {
899		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
900		ctrl->eventinj |= (uint64_t)error << 32;
901		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
902		    intrtype_to_str(intr_type), vector, error);
903	} else {
904		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
905		    intrtype_to_str(intr_type), vector);
906	}
907}
908
909static void
910svm_update_virqinfo(struct svm_softc *sc, int vcpu)
911{
912	struct vm *vm;
913	struct vlapic *vlapic;
914	struct vmcb_ctrl *ctrl;
915	int pending;
916
917	vm = sc->vm;
918	vlapic = vm_lapic(vm, vcpu);
919	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
920
921	/* Update %cr8 in the emulated vlapic */
922	vlapic_set_cr8(vlapic, ctrl->v_tpr);
923
924	/*
925	 * If V_IRQ indicates that the interrupt injection attempted on then
926	 * last VMRUN was successful then update the vlapic accordingly.
927	 */
928	if (ctrl->v_intr_vector != 0) {
929		pending = ctrl->v_irq;
930		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
931		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
932		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
933		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
934		    pending ? "pending" : "accepted");
935		if (!pending)
936			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
937	}
938}
939
940static void
941svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
942{
943	struct vmcb_ctrl *ctrl;
944	uint64_t intinfo;
945
946	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
947	intinfo = ctrl->exitintinfo;
948	if (!VMCB_EXITINTINFO_VALID(intinfo))
949		return;
950
951	/*
952	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
953	 *
954	 * If a #VMEXIT happened during event delivery then record the event
955	 * that was being delivered.
956	 */
957	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
958		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
959	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
960	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
961}
962
963static __inline int
964vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
965{
966
967	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
968	    VMCB_INTCPT_VINTR));
969}
970
971static __inline void
972enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
973{
974	struct vmcb_ctrl *ctrl;
975
976	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
977
978	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
979		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
980		KASSERT(vintr_intercept_enabled(sc, vcpu),
981		    ("%s: vintr intercept should be enabled", __func__));
982		return;
983	}
984
985	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
986	ctrl->v_irq = 1;
987	ctrl->v_ign_tpr = 1;
988	ctrl->v_intr_vector = 0;
989	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
990	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
991}
992
993static __inline void
994disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
995{
996	struct vmcb_ctrl *ctrl;
997
998	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
999
1000	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1001		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1002		    ("%s: vintr intercept should be disabled", __func__));
1003		return;
1004	}
1005
1006#ifdef KTR
1007	if (ctrl->v_intr_vector == 0)
1008		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1009	else
1010		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
1011#endif
1012	ctrl->v_irq = 0;
1013	ctrl->v_intr_vector = 0;
1014	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1015	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1016}
1017
1018static int
1019svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1020{
1021	struct vmcb_ctrl *ctrl;
1022	int oldval, newval;
1023
1024	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1025	oldval = ctrl->intr_shadow;
1026	newval = val ? 1 : 0;
1027	if (newval != oldval) {
1028		ctrl->intr_shadow = newval;
1029		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1030	}
1031	return (0);
1032}
1033
1034static int
1035svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1036{
1037	struct vmcb_ctrl *ctrl;
1038
1039	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1040	*val = ctrl->intr_shadow;
1041	return (0);
1042}
1043
1044/*
1045 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1046 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1047 * to track when the vcpu is done handling the NMI.
1048 */
1049static int
1050nmi_blocked(struct svm_softc *sc, int vcpu)
1051{
1052	int blocked;
1053
1054	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1055	    VMCB_INTCPT_IRET);
1056	return (blocked);
1057}
1058
1059static void
1060enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1061{
1062
1063	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1064	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1065	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1066}
1067
1068static void
1069clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1070{
1071	int error;
1072
1073	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1074	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1075	/*
1076	 * When the IRET intercept is cleared the vcpu will attempt to execute
1077	 * the "iret" when it runs next. However, it is possible to inject
1078	 * another NMI into the vcpu before the "iret" has actually executed.
1079	 *
1080	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1081	 * it will trap back into the hypervisor. If an NMI is pending for
1082	 * the vcpu it will be injected into the guest.
1083	 *
1084	 * XXX this needs to be fixed
1085	 */
1086	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1087
1088	/*
1089	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1090	 * immediate VMRUN.
1091	 */
1092	error = svm_modify_intr_shadow(sc, vcpu, 1);
1093	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1094}
1095
1096#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1097
1098static int
1099svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1100{
1101	struct vm_exit *vme;
1102	struct vmcb_state *state;
1103	uint64_t changed, lma, oldval;
1104	int error;
1105
1106	state = svm_get_vmcb_state(sc, vcpu);
1107
1108	oldval = state->efer;
1109	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1110
1111	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1112	changed = oldval ^ newval;
1113
1114	if (newval & EFER_MBZ_BITS)
1115		goto gpf;
1116
1117	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1118	if (changed & EFER_LME) {
1119		if (state->cr0 & CR0_PG)
1120			goto gpf;
1121	}
1122
1123	/* EFER.LMA = EFER.LME & CR0.PG */
1124	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1125		lma = EFER_LMA;
1126	else
1127		lma = 0;
1128
1129	if ((newval & EFER_LMA) != lma)
1130		goto gpf;
1131
1132	if (newval & EFER_NXE) {
1133		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1134			goto gpf;
1135	}
1136
1137	/*
1138	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1139	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1140	 */
1141	if (newval & EFER_LMSLE) {
1142		vme = vm_exitinfo(sc->vm, vcpu);
1143		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1144		*retu = true;
1145		return (0);
1146	}
1147
1148	if (newval & EFER_FFXSR) {
1149		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1150			goto gpf;
1151	}
1152
1153	if (newval & EFER_TCE) {
1154		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1155			goto gpf;
1156	}
1157
1158	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1159	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1160	return (0);
1161gpf:
1162	vm_inject_gp(sc->vm, vcpu);
1163	return (0);
1164}
1165
1166static int
1167emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1168    bool *retu)
1169{
1170	int error;
1171
1172	if (lapic_msr(num))
1173		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1174	else if (num == MSR_EFER)
1175		error = svm_write_efer(sc, vcpu, val, retu);
1176	else
1177		error = svm_wrmsr(sc, vcpu, num, val, retu);
1178
1179	return (error);
1180}
1181
1182static int
1183emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1184{
1185	struct vmcb_state *state;
1186	struct svm_regctx *ctx;
1187	uint64_t result;
1188	int error;
1189
1190	if (lapic_msr(num))
1191		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1192	else
1193		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1194
1195	if (error == 0) {
1196		state = svm_get_vmcb_state(sc, vcpu);
1197		ctx = svm_get_guest_regctx(sc, vcpu);
1198		state->rax = result & 0xffffffff;
1199		ctx->sctx_rdx = result >> 32;
1200	}
1201
1202	return (error);
1203}
1204
1205#ifdef KTR
1206static const char *
1207exit_reason_to_str(uint64_t reason)
1208{
1209	static char reasonbuf[32];
1210
1211	switch (reason) {
1212	case VMCB_EXIT_INVALID:
1213		return ("invalvmcb");
1214	case VMCB_EXIT_SHUTDOWN:
1215		return ("shutdown");
1216	case VMCB_EXIT_NPF:
1217		return ("nptfault");
1218	case VMCB_EXIT_PAUSE:
1219		return ("pause");
1220	case VMCB_EXIT_HLT:
1221		return ("hlt");
1222	case VMCB_EXIT_CPUID:
1223		return ("cpuid");
1224	case VMCB_EXIT_IO:
1225		return ("inout");
1226	case VMCB_EXIT_MC:
1227		return ("mchk");
1228	case VMCB_EXIT_INTR:
1229		return ("extintr");
1230	case VMCB_EXIT_NMI:
1231		return ("nmi");
1232	case VMCB_EXIT_VINTR:
1233		return ("vintr");
1234	case VMCB_EXIT_MSR:
1235		return ("msr");
1236	case VMCB_EXIT_IRET:
1237		return ("iret");
1238	case VMCB_EXIT_MONITOR:
1239		return ("monitor");
1240	case VMCB_EXIT_MWAIT:
1241		return ("mwait");
1242	default:
1243		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1244		return (reasonbuf);
1245	}
1246}
1247#endif	/* KTR */
1248
1249/*
1250 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1251 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1252 * and exceptions caused by INT3, INTO and BOUND instructions.
1253 *
1254 * Return 1 if the nRIP is valid and 0 otherwise.
1255 */
1256static int
1257nrip_valid(uint64_t exitcode)
1258{
1259	switch (exitcode) {
1260	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1261	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1262	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1263	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1264	case 0x43:		/* INT3 */
1265	case 0x44:		/* INTO */
1266	case 0x45:		/* BOUND */
1267	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1268	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1269		return (1);
1270	default:
1271		return (0);
1272	}
1273}
1274
1275static int
1276svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1277{
1278	struct vmcb *vmcb;
1279	struct vmcb_state *state;
1280	struct vmcb_ctrl *ctrl;
1281	struct svm_regctx *ctx;
1282	uint64_t code, info1, info2, val;
1283	uint32_t eax, ecx, edx;
1284	int error, errcode_valid, handled, idtvec, reflect;
1285	bool retu;
1286
1287	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1288	vmcb = svm_get_vmcb(svm_sc, vcpu);
1289	state = &vmcb->state;
1290	ctrl = &vmcb->ctrl;
1291
1292	handled = 0;
1293	code = ctrl->exitcode;
1294	info1 = ctrl->exitinfo1;
1295	info2 = ctrl->exitinfo2;
1296
1297	vmexit->exitcode = VM_EXITCODE_BOGUS;
1298	vmexit->rip = state->rip;
1299	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1300
1301	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1302
1303	/*
1304	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1305	 * in an inconsistent state and can trigger assertions that would
1306	 * never happen otherwise.
1307	 */
1308	if (code == VMCB_EXIT_INVALID) {
1309		vm_exit_svm(vmexit, code, info1, info2);
1310		return (0);
1311	}
1312
1313	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1314	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1315
1316	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1317	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1318	    vmexit->inst_length, code, info1, info2));
1319
1320	svm_update_virqinfo(svm_sc, vcpu);
1321	svm_save_intinfo(svm_sc, vcpu);
1322
1323	switch (code) {
1324	case VMCB_EXIT_IRET:
1325		/*
1326		 * Restart execution at "iret" but with the intercept cleared.
1327		 */
1328		vmexit->inst_length = 0;
1329		clear_nmi_blocking(svm_sc, vcpu);
1330		handled = 1;
1331		break;
1332	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1333		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1334		handled = 1;
1335		break;
1336	case VMCB_EXIT_INTR:	/* external interrupt */
1337		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1338		handled = 1;
1339		break;
1340	case VMCB_EXIT_NMI:	/* external NMI */
1341		handled = 1;
1342		break;
1343	case 0x40 ... 0x5F:
1344		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1345		reflect = 1;
1346		idtvec = code - 0x40;
1347		switch (idtvec) {
1348		case IDT_MC:
1349			/*
1350			 * Call the machine check handler by hand. Also don't
1351			 * reflect the machine check back into the guest.
1352			 */
1353			reflect = 0;
1354			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1355			__asm __volatile("int $18");
1356			break;
1357		case IDT_PF:
1358			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1359			    info2);
1360			KASSERT(error == 0, ("%s: error %d updating cr2",
1361			    __func__, error));
1362			/* fallthru */
1363		case IDT_NP:
1364		case IDT_SS:
1365		case IDT_GP:
1366		case IDT_AC:
1367		case IDT_TS:
1368			errcode_valid = 1;
1369			break;
1370
1371		case IDT_DF:
1372			errcode_valid = 1;
1373			info1 = 0;
1374			break;
1375
1376		case IDT_BP:
1377		case IDT_OF:
1378		case IDT_BR:
1379			/*
1380			 * The 'nrip' field is populated for INT3, INTO and
1381			 * BOUND exceptions and this also implies that
1382			 * 'inst_length' is non-zero.
1383			 *
1384			 * Reset 'inst_length' to zero so the guest %rip at
1385			 * event injection is identical to what it was when
1386			 * the exception originally happened.
1387			 */
1388			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1389			    "to zero before injecting exception %d",
1390			    vmexit->inst_length, idtvec);
1391			vmexit->inst_length = 0;
1392			/* fallthru */
1393		default:
1394			errcode_valid = 0;
1395			info1 = 0;
1396			break;
1397		}
1398		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1399		    "when reflecting exception %d into guest",
1400		    vmexit->inst_length, idtvec));
1401
1402		if (reflect) {
1403			/* Reflect the exception back into the guest */
1404			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1405			    "%d/%#x into the guest", idtvec, (int)info1);
1406			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1407			    errcode_valid, info1, 0);
1408			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1409			    __func__, error));
1410		}
1411		handled = 1;
1412		break;
1413	case VMCB_EXIT_MSR:	/* MSR access. */
1414		eax = state->rax;
1415		ecx = ctx->sctx_rcx;
1416		edx = ctx->sctx_rdx;
1417		retu = false;
1418
1419		if (info1) {
1420			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1421			val = (uint64_t)edx << 32 | eax;
1422			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1423			    ecx, val);
1424			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1425				vmexit->exitcode = VM_EXITCODE_WRMSR;
1426				vmexit->u.msr.code = ecx;
1427				vmexit->u.msr.wval = val;
1428			} else if (!retu) {
1429				handled = 1;
1430			} else {
1431				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1432				    ("emulate_wrmsr retu with bogus exitcode"));
1433			}
1434		} else {
1435			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1436			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1437			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1438				vmexit->exitcode = VM_EXITCODE_RDMSR;
1439				vmexit->u.msr.code = ecx;
1440			} else if (!retu) {
1441				handled = 1;
1442			} else {
1443				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1444				    ("emulate_rdmsr retu with bogus exitcode"));
1445			}
1446		}
1447		break;
1448	case VMCB_EXIT_IO:
1449		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1450		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1451		break;
1452	case VMCB_EXIT_CPUID:
1453		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1454		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1455		    (uint32_t *)&state->rax,
1456		    (uint32_t *)&ctx->sctx_rbx,
1457		    (uint32_t *)&ctx->sctx_rcx,
1458		    (uint32_t *)&ctx->sctx_rdx);
1459		break;
1460	case VMCB_EXIT_HLT:
1461		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1462		vmexit->exitcode = VM_EXITCODE_HLT;
1463		vmexit->u.hlt.rflags = state->rflags;
1464		break;
1465	case VMCB_EXIT_PAUSE:
1466		vmexit->exitcode = VM_EXITCODE_PAUSE;
1467		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1468		break;
1469	case VMCB_EXIT_NPF:
1470		/* EXITINFO2 contains the faulting guest physical address */
1471		if (info1 & VMCB_NPF_INFO1_RSV) {
1472			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1473			    "reserved bits set: info1(%#lx) info2(%#lx)",
1474			    info1, info2);
1475		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1476			vmexit->exitcode = VM_EXITCODE_PAGING;
1477			vmexit->u.paging.gpa = info2;
1478			vmexit->u.paging.fault_type = npf_fault_type(info1);
1479			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1480			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1481			    "on gpa %#lx/%#lx at rip %#lx",
1482			    info2, info1, state->rip);
1483		} else if (svm_npf_emul_fault(info1)) {
1484			svm_handle_inst_emul(vmcb, info2, vmexit);
1485			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1486			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1487			    "for gpa %#lx/%#lx at rip %#lx",
1488			    info2, info1, state->rip);
1489		}
1490		break;
1491	case VMCB_EXIT_MONITOR:
1492		vmexit->exitcode = VM_EXITCODE_MONITOR;
1493		break;
1494	case VMCB_EXIT_MWAIT:
1495		vmexit->exitcode = VM_EXITCODE_MWAIT;
1496		break;
1497	default:
1498		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1499		break;
1500	}
1501
1502	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1503	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1504	    vmexit->rip, vmexit->inst_length);
1505
1506	if (handled) {
1507		vmexit->rip += vmexit->inst_length;
1508		vmexit->inst_length = 0;
1509		state->rip = vmexit->rip;
1510	} else {
1511		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1512			/*
1513			 * If this VM exit was not claimed by anybody then
1514			 * treat it as a generic SVM exit.
1515			 */
1516			vm_exit_svm(vmexit, code, info1, info2);
1517		} else {
1518			/*
1519			 * The exitcode and collateral have been populated.
1520			 * The VM exit will be processed further in userland.
1521			 */
1522		}
1523	}
1524	return (handled);
1525}
1526
1527static void
1528svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1529{
1530	uint64_t intinfo;
1531
1532	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1533		return;
1534
1535	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1536	    "valid: %#lx", __func__, intinfo));
1537
1538	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1539		VMCB_EXITINTINFO_VECTOR(intinfo),
1540		VMCB_EXITINTINFO_EC(intinfo),
1541		VMCB_EXITINTINFO_EC_VALID(intinfo));
1542	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1543	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1544}
1545
1546/*
1547 * Inject event to virtual cpu.
1548 */
1549static void
1550svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1551{
1552	struct vmcb_ctrl *ctrl;
1553	struct vmcb_state *state;
1554	struct svm_vcpu *vcpustate;
1555	uint8_t v_tpr;
1556	int vector, need_intr_window, pending_apic_vector;
1557
1558	state = svm_get_vmcb_state(sc, vcpu);
1559	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1560	vcpustate = svm_get_vcpu(sc, vcpu);
1561
1562	need_intr_window = 0;
1563	pending_apic_vector = 0;
1564
1565	if (vcpustate->nextrip != state->rip) {
1566		ctrl->intr_shadow = 0;
1567		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1568		    "cleared due to rip change: %#lx/%#lx",
1569		    vcpustate->nextrip, state->rip);
1570	}
1571
1572	/*
1573	 * Inject pending events or exceptions for this vcpu.
1574	 *
1575	 * An event might be pending because the previous #VMEXIT happened
1576	 * during event delivery (i.e. ctrl->exitintinfo).
1577	 *
1578	 * An event might also be pending because an exception was injected
1579	 * by the hypervisor (e.g. #PF during instruction emulation).
1580	 */
1581	svm_inj_intinfo(sc, vcpu);
1582
1583	/* NMI event has priority over interrupts. */
1584	if (vm_nmi_pending(sc->vm, vcpu)) {
1585		if (nmi_blocked(sc, vcpu)) {
1586			/*
1587			 * Can't inject another NMI if the guest has not
1588			 * yet executed an "iret" after the last NMI.
1589			 */
1590			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1591			    "to NMI-blocking");
1592		} else if (ctrl->intr_shadow) {
1593			/*
1594			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1595			 */
1596			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1597			    "interrupt shadow");
1598			need_intr_window = 1;
1599			goto done;
1600		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1601			/*
1602			 * If there is already an exception/interrupt pending
1603			 * then defer the NMI until after that.
1604			 */
1605			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1606			    "eventinj %#lx", ctrl->eventinj);
1607
1608			/*
1609			 * Use self-IPI to trigger a VM-exit as soon as
1610			 * possible after the event injection is completed.
1611			 *
1612			 * This works only if the external interrupt exiting
1613			 * is at a lower priority than the event injection.
1614			 *
1615			 * Although not explicitly specified in APMv2 the
1616			 * relative priorities were verified empirically.
1617			 */
1618			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1619		} else {
1620			vm_nmi_clear(sc->vm, vcpu);
1621
1622			/* Inject NMI, vector number is not used */
1623			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1624			    IDT_NMI, 0, false);
1625
1626			/* virtual NMI blocking is now in effect */
1627			enable_nmi_blocking(sc, vcpu);
1628
1629			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1630		}
1631	}
1632
1633	if (!vm_extint_pending(sc->vm, vcpu)) {
1634		/*
1635		 * APIC interrupts are delivered using the V_IRQ offload.
1636		 *
1637		 * The primary benefit is that the hypervisor doesn't need to
1638		 * deal with the various conditions that inhibit interrupts.
1639		 * It also means that TPR changes via CR8 will be handled
1640		 * without any hypervisor involvement.
1641		 *
1642		 * Note that the APIC vector must remain pending in the vIRR
1643		 * until it is confirmed that it was delivered to the guest.
1644		 * This can be confirmed based on the value of V_IRQ at the
1645		 * next #VMEXIT (1 = pending, 0 = delivered).
1646		 *
1647		 * Also note that it is possible that another higher priority
1648		 * vector can become pending before this vector is delivered
1649		 * to the guest. This is alright because vcpu_notify_event()
1650		 * will send an IPI and force the vcpu to trap back into the
1651		 * hypervisor. The higher priority vector will be injected on
1652		 * the next VMRUN.
1653		 */
1654		if (vlapic_pending_intr(vlapic, &vector)) {
1655			KASSERT(vector >= 16 && vector <= 255,
1656			    ("invalid vector %d from local APIC", vector));
1657			pending_apic_vector = vector;
1658		}
1659		goto done;
1660	}
1661
1662	/* Ask the legacy pic for a vector to inject */
1663	vatpic_pending_intr(sc->vm, &vector);
1664	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1665	    vector));
1666
1667	/*
1668	 * If the guest has disabled interrupts or is in an interrupt shadow
1669	 * then we cannot inject the pending interrupt.
1670	 */
1671	if ((state->rflags & PSL_I) == 0) {
1672		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1673		    "rflags %#lx", vector, state->rflags);
1674		need_intr_window = 1;
1675		goto done;
1676	}
1677
1678	if (ctrl->intr_shadow) {
1679		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1680		    "interrupt shadow", vector);
1681		need_intr_window = 1;
1682		goto done;
1683	}
1684
1685	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1686		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1687		    "eventinj %#lx", vector, ctrl->eventinj);
1688		need_intr_window = 1;
1689		goto done;
1690	}
1691
1692	/*
1693	 * Legacy PIC interrupts are delivered via the event injection
1694	 * mechanism.
1695	 */
1696	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1697
1698	vm_extint_clear(sc->vm, vcpu);
1699	vatpic_intr_accepted(sc->vm, vector);
1700
1701	/*
1702	 * Force a VM-exit as soon as the vcpu is ready to accept another
1703	 * interrupt. This is done because the PIC might have another vector
1704	 * that it wants to inject. Also, if the APIC has a pending interrupt
1705	 * that was preempted by the ExtInt then it allows us to inject the
1706	 * APIC vector as soon as possible.
1707	 */
1708	need_intr_window = 1;
1709done:
1710	/*
1711	 * The guest can modify the TPR by writing to %CR8. In guest mode
1712	 * the processor reflects this write to V_TPR without hypervisor
1713	 * intervention.
1714	 *
1715	 * The guest can also modify the TPR by writing to it via the memory
1716	 * mapped APIC page. In this case, the write will be emulated by the
1717	 * hypervisor. For this reason V_TPR must be updated before every
1718	 * VMRUN.
1719	 */
1720	v_tpr = vlapic_get_cr8(vlapic);
1721	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1722	if (ctrl->v_tpr != v_tpr) {
1723		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1724		    ctrl->v_tpr, v_tpr);
1725		ctrl->v_tpr = v_tpr;
1726		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1727	}
1728
1729	if (pending_apic_vector) {
1730		/*
1731		 * If an APIC vector is being injected then interrupt window
1732		 * exiting is not possible on this VMRUN.
1733		 */
1734		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1735		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1736		    pending_apic_vector);
1737
1738		ctrl->v_irq = 1;
1739		ctrl->v_ign_tpr = 0;
1740		ctrl->v_intr_vector = pending_apic_vector;
1741		ctrl->v_intr_prio = pending_apic_vector >> 4;
1742		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1743	} else if (need_intr_window) {
1744		/*
1745		 * We use V_IRQ in conjunction with the VINTR intercept to
1746		 * trap into the hypervisor as soon as a virtual interrupt
1747		 * can be delivered.
1748		 *
1749		 * Since injected events are not subject to intercept checks
1750		 * we need to ensure that the V_IRQ is not actually going to
1751		 * be delivered on VM entry. The KASSERT below enforces this.
1752		 */
1753		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1754		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1755		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1756		    "intr_shadow (%u), rflags (%#lx)",
1757		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1758		enable_intr_window_exiting(sc, vcpu);
1759	} else {
1760		disable_intr_window_exiting(sc, vcpu);
1761	}
1762}
1763
1764static __inline void
1765restore_host_tss(void)
1766{
1767	struct system_segment_descriptor *tss_sd;
1768
1769	/*
1770	 * The TSS descriptor was in use prior to launching the guest so it
1771	 * has been marked busy.
1772	 *
1773	 * 'ltr' requires the descriptor to be marked available so change the
1774	 * type to "64-bit available TSS".
1775	 */
1776	tss_sd = PCPU_GET(tss);
1777	tss_sd->sd_type = SDT_SYSTSS;
1778	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1779}
1780
1781static void
1782check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1783{
1784	struct svm_vcpu *vcpustate;
1785	struct vmcb_ctrl *ctrl;
1786	long eptgen;
1787	bool alloc_asid;
1788
1789	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1790	    "active on cpu %u", __func__, thiscpu));
1791
1792	vcpustate = svm_get_vcpu(sc, vcpuid);
1793	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1794
1795	/*
1796	 * The TLB entries associated with the vcpu's ASID are not valid
1797	 * if either of the following conditions is true:
1798	 *
1799	 * 1. The vcpu's ASID generation is different than the host cpu's
1800	 *    ASID generation. This happens when the vcpu migrates to a new
1801	 *    host cpu. It can also happen when the number of vcpus executing
1802	 *    on a host cpu is greater than the number of ASIDs available.
1803	 *
1804	 * 2. The pmap generation number is different than the value cached in
1805	 *    the 'vcpustate'. This happens when the host invalidates pages
1806	 *    belonging to the guest.
1807	 *
1808	 *	asidgen		eptgen	      Action
1809	 *	mismatch	mismatch
1810	 *	   0		   0		(a)
1811	 *	   0		   1		(b1) or (b2)
1812	 *	   1		   0		(c)
1813	 *	   1		   1		(d)
1814	 *
1815	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1816	 *     no further action is needed.
1817	 *
1818	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1819	 *      retained and the TLB entries associated with this ASID
1820	 *      are flushed by VMRUN.
1821	 *
1822	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1823	 *      allocated.
1824	 *
1825	 * (c) A new ASID is allocated.
1826	 *
1827	 * (d) A new ASID is allocated.
1828	 */
1829
1830	alloc_asid = false;
1831	eptgen = pmap->pm_eptgen;
1832	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1833
1834	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1835		alloc_asid = true;	/* (c) and (d) */
1836	} else if (vcpustate->eptgen != eptgen) {
1837		if (flush_by_asid())
1838			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1839		else
1840			alloc_asid = true;			/* (b2) */
1841	} else {
1842		/*
1843		 * This is the common case (a).
1844		 */
1845		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1846		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1847		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1848	}
1849
1850	if (alloc_asid) {
1851		if (++asid[thiscpu].num >= nasid) {
1852			asid[thiscpu].num = 1;
1853			if (++asid[thiscpu].gen == 0)
1854				asid[thiscpu].gen = 1;
1855			/*
1856			 * If this cpu does not support "flush-by-asid"
1857			 * then flush the entire TLB on a generation
1858			 * bump. Subsequent ASID allocation in this
1859			 * generation can be done without a TLB flush.
1860			 */
1861			if (!flush_by_asid())
1862				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1863		}
1864		vcpustate->asid.gen = asid[thiscpu].gen;
1865		vcpustate->asid.num = asid[thiscpu].num;
1866
1867		ctrl->asid = vcpustate->asid.num;
1868		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1869		/*
1870		 * If this cpu supports "flush-by-asid" then the TLB
1871		 * was not flushed after the generation bump. The TLB
1872		 * is flushed selectively after every new ASID allocation.
1873		 */
1874		if (flush_by_asid())
1875			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1876	}
1877	vcpustate->eptgen = eptgen;
1878
1879	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1880	KASSERT(ctrl->asid == vcpustate->asid.num,
1881	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1882}
1883
1884static __inline void
1885disable_gintr(void)
1886{
1887
1888	__asm __volatile("clgi");
1889}
1890
1891static __inline void
1892enable_gintr(void)
1893{
1894
1895        __asm __volatile("stgi");
1896}
1897
1898/*
1899 * Start vcpu with specified RIP.
1900 */
1901static int
1902svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1903	struct vm_eventinfo *evinfo)
1904{
1905	struct svm_regctx *gctx;
1906	struct svm_softc *svm_sc;
1907	struct svm_vcpu *vcpustate;
1908	struct vmcb_state *state;
1909	struct vmcb_ctrl *ctrl;
1910	struct vm_exit *vmexit;
1911	struct vlapic *vlapic;
1912	struct vm *vm;
1913	uint64_t vmcb_pa;
1914	u_int thiscpu;
1915	int handled;
1916
1917	svm_sc = arg;
1918	vm = svm_sc->vm;
1919
1920	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1921	state = svm_get_vmcb_state(svm_sc, vcpu);
1922	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1923	vmexit = vm_exitinfo(vm, vcpu);
1924	vlapic = vm_lapic(vm, vcpu);
1925
1926	/*
1927	 * Stash 'curcpu' on the stack as 'thiscpu'.
1928	 *
1929	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1930	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1931	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1932	 */
1933	thiscpu = curcpu;
1934
1935	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1936	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1937
1938	if (vcpustate->lastcpu != thiscpu) {
1939		/*
1940		 * Force new ASID allocation by invalidating the generation.
1941		 */
1942		vcpustate->asid.gen = 0;
1943
1944		/*
1945		 * Invalidate the VMCB state cache by marking all fields dirty.
1946		 */
1947		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1948
1949		/*
1950		 * XXX
1951		 * Setting 'vcpustate->lastcpu' here is bit premature because
1952		 * we may return from this function without actually executing
1953		 * the VMRUN  instruction. This could happen if a rendezvous
1954		 * or an AST is pending on the first time through the loop.
1955		 *
1956		 * This works for now but any new side-effects of vcpu
1957		 * migration should take this case into account.
1958		 */
1959		vcpustate->lastcpu = thiscpu;
1960		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1961	}
1962
1963	svm_msr_guest_enter(svm_sc, vcpu);
1964
1965	/* Update Guest RIP */
1966	state->rip = rip;
1967
1968	do {
1969		/*
1970		 * Disable global interrupts to guarantee atomicity during
1971		 * loading of guest state. This includes not only the state
1972		 * loaded by the "vmrun" instruction but also software state
1973		 * maintained by the hypervisor: suspended and rendezvous
1974		 * state, NPT generation number, vlapic interrupts etc.
1975		 */
1976		disable_gintr();
1977
1978		if (vcpu_suspended(evinfo)) {
1979			enable_gintr();
1980			vm_exit_suspended(vm, vcpu, state->rip);
1981			break;
1982		}
1983
1984		if (vcpu_rendezvous_pending(evinfo)) {
1985			enable_gintr();
1986			vm_exit_rendezvous(vm, vcpu, state->rip);
1987			break;
1988		}
1989
1990		if (vcpu_reqidle(evinfo)) {
1991			enable_gintr();
1992			vm_exit_reqidle(vm, vcpu, state->rip);
1993			break;
1994		}
1995
1996		/* We are asked to give the cpu by scheduler. */
1997		if (vcpu_should_yield(vm, vcpu)) {
1998			enable_gintr();
1999			vm_exit_astpending(vm, vcpu, state->rip);
2000			break;
2001		}
2002
2003		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2004
2005		/* Activate the nested pmap on 'thiscpu' */
2006		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
2007
2008		/*
2009		 * Check the pmap generation and the ASID generation to
2010		 * ensure that the vcpu does not use stale TLB mappings.
2011		 */
2012		check_asid(svm_sc, vcpu, pmap, thiscpu);
2013
2014		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2015		vcpustate->dirty = 0;
2016		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2017
2018		/* Launch Virtual Machine. */
2019		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2020		svm_launch(vmcb_pa, gctx);
2021
2022		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
2023
2024		/*
2025		 * Restore MSR_GSBASE to point to the pcpu data area.
2026		 *
2027		 * Note that accesses done via PCPU_GET/PCPU_SET will work
2028		 * only after MSR_GSBASE is restored.
2029		 *
2030		 * Also note that we don't bother restoring MSR_KGSBASE
2031		 * since it is not used in the kernel and will be restored
2032		 * when the VMRUN ioctl returns to userspace.
2033		 */
2034		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
2035		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
2036		    thiscpu, curcpu));
2037
2038		/*
2039		 * The host GDTR and IDTR is saved by VMRUN and restored
2040		 * automatically on #VMEXIT. However, the host TSS needs
2041		 * to be restored explicitly.
2042		 */
2043		restore_host_tss();
2044
2045		/* #VMEXIT disables interrupts so re-enable them here. */
2046		enable_gintr();
2047
2048		/* Update 'nextrip' */
2049		vcpustate->nextrip = state->rip;
2050
2051		/* Handle #VMEXIT and if required return to user space. */
2052		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2053	} while (handled);
2054
2055	svm_msr_guest_exit(svm_sc, vcpu);
2056
2057	return (0);
2058}
2059
2060static void
2061svm_vmcleanup(void *arg)
2062{
2063	struct svm_softc *sc = arg;
2064
2065	free(sc, M_SVM);
2066}
2067
2068static register_t *
2069swctx_regptr(struct svm_regctx *regctx, int reg)
2070{
2071
2072	switch (reg) {
2073	case VM_REG_GUEST_RBX:
2074		return (&regctx->sctx_rbx);
2075	case VM_REG_GUEST_RCX:
2076		return (&regctx->sctx_rcx);
2077	case VM_REG_GUEST_RDX:
2078		return (&regctx->sctx_rdx);
2079	case VM_REG_GUEST_RDI:
2080		return (&regctx->sctx_rdi);
2081	case VM_REG_GUEST_RSI:
2082		return (&regctx->sctx_rsi);
2083	case VM_REG_GUEST_RBP:
2084		return (&regctx->sctx_rbp);
2085	case VM_REG_GUEST_R8:
2086		return (&regctx->sctx_r8);
2087	case VM_REG_GUEST_R9:
2088		return (&regctx->sctx_r9);
2089	case VM_REG_GUEST_R10:
2090		return (&regctx->sctx_r10);
2091	case VM_REG_GUEST_R11:
2092		return (&regctx->sctx_r11);
2093	case VM_REG_GUEST_R12:
2094		return (&regctx->sctx_r12);
2095	case VM_REG_GUEST_R13:
2096		return (&regctx->sctx_r13);
2097	case VM_REG_GUEST_R14:
2098		return (&regctx->sctx_r14);
2099	case VM_REG_GUEST_R15:
2100		return (&regctx->sctx_r15);
2101	default:
2102		return (NULL);
2103	}
2104}
2105
2106static int
2107svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2108{
2109	struct svm_softc *svm_sc;
2110	register_t *reg;
2111
2112	svm_sc = arg;
2113
2114	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2115		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2116	}
2117
2118	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2119		return (0);
2120	}
2121
2122	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2123
2124	if (reg != NULL) {
2125		*val = *reg;
2126		return (0);
2127	}
2128
2129	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2130	return (EINVAL);
2131}
2132
2133static int
2134svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2135{
2136	struct svm_softc *svm_sc;
2137	register_t *reg;
2138
2139	svm_sc = arg;
2140
2141	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2142		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2143	}
2144
2145	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2146		return (0);
2147	}
2148
2149	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2150
2151	if (reg != NULL) {
2152		*reg = val;
2153		return (0);
2154	}
2155
2156	/*
2157	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2158	 * vcpu's ASID. This needs to be treated differently depending on
2159	 * whether 'running' is true/false.
2160	 */
2161
2162	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2163	return (EINVAL);
2164}
2165
2166static int
2167svm_setcap(void *arg, int vcpu, int type, int val)
2168{
2169	struct svm_softc *sc;
2170	int error;
2171
2172	sc = arg;
2173	error = 0;
2174	switch (type) {
2175	case VM_CAP_HALT_EXIT:
2176		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2177		    VMCB_INTCPT_HLT, val);
2178		break;
2179	case VM_CAP_PAUSE_EXIT:
2180		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2181		    VMCB_INTCPT_PAUSE, val);
2182		break;
2183	case VM_CAP_UNRESTRICTED_GUEST:
2184		/* Unrestricted guest execution cannot be disabled in SVM */
2185		if (val == 0)
2186			error = EINVAL;
2187		break;
2188	default:
2189		error = ENOENT;
2190		break;
2191	}
2192	return (error);
2193}
2194
2195static int
2196svm_getcap(void *arg, int vcpu, int type, int *retval)
2197{
2198	struct svm_softc *sc;
2199	int error;
2200
2201	sc = arg;
2202	error = 0;
2203
2204	switch (type) {
2205	case VM_CAP_HALT_EXIT:
2206		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2207		    VMCB_INTCPT_HLT);
2208		break;
2209	case VM_CAP_PAUSE_EXIT:
2210		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2211		    VMCB_INTCPT_PAUSE);
2212		break;
2213	case VM_CAP_UNRESTRICTED_GUEST:
2214		*retval = 1;	/* unrestricted guest is always enabled */
2215		break;
2216	default:
2217		error = ENOENT;
2218		break;
2219	}
2220	return (error);
2221}
2222
2223static struct vlapic *
2224svm_vlapic_init(void *arg, int vcpuid)
2225{
2226	struct svm_softc *svm_sc;
2227	struct vlapic *vlapic;
2228
2229	svm_sc = arg;
2230	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2231	vlapic->vm = svm_sc->vm;
2232	vlapic->vcpuid = vcpuid;
2233	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2234
2235	vlapic_init(vlapic);
2236
2237	return (vlapic);
2238}
2239
2240static void
2241svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2242{
2243
2244        vlapic_cleanup(vlapic);
2245        free(vlapic, M_SVM_VLAPIC);
2246}
2247
2248struct vmm_ops vmm_ops_amd = {
2249	svm_init,
2250	svm_cleanup,
2251	svm_restore,
2252	svm_vminit,
2253	svm_vmrun,
2254	svm_vmcleanup,
2255	svm_getreg,
2256	svm_setreg,
2257	vmcb_getdesc,
2258	vmcb_setdesc,
2259	svm_getcap,
2260	svm_setcap,
2261	svm_npt_alloc,
2262	svm_npt_free,
2263	svm_vlapic_init,
2264	svm_vlapic_cleanup
2265};
2266