vm_machdep.c revision 9759
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 *	$Id: vm_machdep.c,v 1.40 1995/07/13 08:47:29 davidg Exp $
42 */
43
44#include "npx.h"
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/proc.h>
48#include <sys/malloc.h>
49#include <sys/buf.h>
50#include <sys/vnode.h>
51#include <sys/user.h>
52
53#include <machine/clock.h>
54#include <machine/cpu.h>
55#include <machine/md_var.h>
56
57#include <vm/vm.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_page.h>
60
61#include <i386/isa/isa.h>
62
63#ifdef BOUNCE_BUFFERS
64volatile int	kvasfreecnt;
65
66caddr_t		bouncememory;
67int		bouncepages, bpwait;
68vm_offset_t	*bouncepa;
69int		bmwait, bmfreeing;
70
71#define BITS_IN_UNSIGNED (8*sizeof(unsigned))
72int		bounceallocarraysize;
73unsigned	*bounceallocarray;
74int		bouncefree;
75
76#define SIXTEENMEG (4096*4096)
77#define MAXBKVA 1024
78int		maxbkva = MAXBKVA*NBPG;
79
80/* special list that can be used at interrupt time for eventual kva free */
81struct kvasfree {
82	vm_offset_t addr;
83	vm_offset_t size;
84} kvaf[MAXBKVA];
85
86
87vm_offset_t vm_bounce_kva();
88/*
89 * get bounce buffer pages (count physically contiguous)
90 * (only 1 inplemented now)
91 */
92vm_offset_t
93vm_bounce_page_find(count)
94	int count;
95{
96	int bit;
97	int s,i;
98
99	if (count != 1)
100		panic("vm_bounce_page_find -- no support for > 1 page yet!!!");
101
102	s = splbio();
103retry:
104	for (i = 0; i < bounceallocarraysize; i++) {
105		if (bounceallocarray[i] != 0xffffffff) {
106			bit = ffs(~bounceallocarray[i]);
107			if (bit) {
108				bounceallocarray[i] |= 1 << (bit - 1) ;
109				bouncefree -= count;
110				splx(s);
111				return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))];
112			}
113		}
114	}
115	bpwait = 1;
116	tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0);
117	goto retry;
118}
119
120void
121vm_bounce_kva_free(addr, size, now)
122	vm_offset_t addr;
123	vm_offset_t size;
124	int now;
125{
126	int s = splbio();
127	kvaf[kvasfreecnt].addr = addr;
128	kvaf[kvasfreecnt].size = size;
129	++kvasfreecnt;
130	if( now) {
131		/*
132		 * this will do wakeups
133		 */
134		vm_bounce_kva(0,0);
135	} else {
136		if (bmwait) {
137		/*
138		 * if anyone is waiting on the bounce-map, then wakeup
139		 */
140			wakeup((caddr_t) io_map);
141			bmwait = 0;
142		}
143	}
144	splx(s);
145}
146
147/*
148 * free count bounce buffer pages
149 */
150void
151vm_bounce_page_free(pa, count)
152	vm_offset_t pa;
153	int count;
154{
155	int allocindex;
156	int index;
157	int bit;
158
159	if (count != 1)
160		panic("vm_bounce_page_free -- no support for > 1 page yet!!!");
161
162	for(index=0;index<bouncepages;index++) {
163		if( pa == bouncepa[index])
164			break;
165	}
166
167	if( index == bouncepages)
168		panic("vm_bounce_page_free: invalid bounce buffer");
169
170	allocindex = index / BITS_IN_UNSIGNED;
171	bit = index % BITS_IN_UNSIGNED;
172
173	bounceallocarray[allocindex] &= ~(1 << bit);
174
175	bouncefree += count;
176	if (bpwait) {
177		bpwait = 0;
178		wakeup((caddr_t) &bounceallocarray);
179	}
180}
181
182/*
183 * allocate count bounce buffer kva pages
184 */
185vm_offset_t
186vm_bounce_kva(size, waitok)
187	int size;
188	int waitok;
189{
190	int i;
191	vm_offset_t kva = 0;
192	vm_offset_t off;
193	int s = splbio();
194more:
195	if (!bmfreeing && kvasfreecnt) {
196		bmfreeing = 1;
197		for (i = 0; i < kvasfreecnt; i++) {
198			for(off=0;off<kvaf[i].size;off+=NBPG) {
199				pmap_kremove( kvaf[i].addr + off);
200			}
201			kmem_free_wakeup(io_map, kvaf[i].addr,
202				kvaf[i].size);
203		}
204		kvasfreecnt = 0;
205		bmfreeing = 0;
206		if( bmwait) {
207			bmwait = 0;
208			wakeup( (caddr_t) io_map);
209		}
210	}
211
212	if( size == 0) {
213		splx(s);
214		return NULL;
215	}
216
217	if ((kva = kmem_alloc_pageable(io_map, size)) == 0) {
218		if( !waitok) {
219			splx(s);
220			return NULL;
221		}
222		bmwait = 1;
223		tsleep((caddr_t) io_map, PRIBIO, "bmwait", 0);
224		goto more;
225	}
226	splx(s);
227	return kva;
228}
229
230/*
231 * same as vm_bounce_kva -- but really allocate (but takes pages as arg)
232 */
233vm_offset_t
234vm_bounce_kva_alloc(count)
235int count;
236{
237	int i;
238	vm_offset_t kva;
239	vm_offset_t pa;
240	if( bouncepages == 0) {
241		kva = (vm_offset_t) malloc(count*NBPG, M_TEMP, M_WAITOK);
242		return kva;
243	}
244	kva = vm_bounce_kva(count*NBPG, 1);
245	for(i=0;i<count;i++) {
246		pa = vm_bounce_page_find(1);
247		pmap_kenter(kva + i * NBPG, pa);
248	}
249	return kva;
250}
251
252/*
253 * same as vm_bounce_kva_free -- but really free
254 */
255void
256vm_bounce_kva_alloc_free(kva, count)
257	vm_offset_t kva;
258	int count;
259{
260	int i;
261	vm_offset_t pa;
262	if( bouncepages == 0) {
263		free((caddr_t) kva, M_TEMP);
264		return;
265	}
266	for(i = 0; i < count; i++) {
267		pa = pmap_kextract(kva + i * NBPG);
268		vm_bounce_page_free(pa, 1);
269	}
270	vm_bounce_kva_free(kva, count*NBPG, 0);
271}
272
273/*
274 * do the things necessary to the struct buf to implement
275 * bounce buffers...  inserted before the disk sort
276 */
277void
278vm_bounce_alloc(bp)
279	struct buf *bp;
280{
281	int countvmpg;
282	vm_offset_t vastart, vaend;
283	vm_offset_t vapstart, vapend;
284	vm_offset_t va, kva;
285	vm_offset_t pa;
286	int dobounceflag = 0;
287	int i;
288
289	if (bouncepages == 0)
290		return;
291
292	if (bp->b_flags & B_BOUNCE) {
293		printf("vm_bounce_alloc: called recursively???\n");
294		return;
295	}
296
297	if (bp->b_bufsize < bp->b_bcount) {
298		printf(
299		    "vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n",
300			bp->b_bufsize, bp->b_bcount);
301		panic("vm_bounce_alloc");
302	}
303
304/*
305 *  This is not really necessary
306 *	if( bp->b_bufsize != bp->b_bcount) {
307 *		printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount);
308 *	}
309 */
310
311
312	vastart = (vm_offset_t) bp->b_data;
313	vaend = (vm_offset_t) bp->b_data + bp->b_bufsize;
314
315	vapstart = i386_trunc_page(vastart);
316	vapend = i386_round_page(vaend);
317	countvmpg = (vapend - vapstart) / NBPG;
318
319/*
320 * if any page is above 16MB, then go into bounce-buffer mode
321 */
322	va = vapstart;
323	for (i = 0; i < countvmpg; i++) {
324		pa = pmap_kextract(va);
325		if (pa >= SIXTEENMEG)
326			++dobounceflag;
327		if( pa == 0)
328			panic("vm_bounce_alloc: Unmapped page");
329		va += NBPG;
330	}
331	if (dobounceflag == 0)
332		return;
333
334	if (bouncepages < dobounceflag)
335		panic("Not enough bounce buffers!!!");
336
337/*
338 * allocate a replacement kva for b_addr
339 */
340	kva = vm_bounce_kva(countvmpg*NBPG, 1);
341#if 0
342	printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ",
343		(bp->b_flags & B_READ) ? "read":"write",
344			vapstart, vapend, countvmpg, kva);
345#endif
346	va = vapstart;
347	for (i = 0; i < countvmpg; i++) {
348		pa = pmap_kextract(va);
349		if (pa >= SIXTEENMEG) {
350			/*
351			 * allocate a replacement page
352			 */
353			vm_offset_t bpa = vm_bounce_page_find(1);
354			pmap_kenter(kva + (NBPG * i), bpa);
355#if 0
356			printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa);
357#endif
358			/*
359			 * if we are writing, the copy the data into the page
360			 */
361			if ((bp->b_flags & B_READ) == 0) {
362				bcopy((caddr_t) va, (caddr_t) kva + (NBPG * i), NBPG);
363			}
364		} else {
365			/*
366			 * use original page
367			 */
368			pmap_kenter(kva + (NBPG * i), pa);
369		}
370		va += NBPG;
371	}
372
373/*
374 * flag the buffer as being bounced
375 */
376	bp->b_flags |= B_BOUNCE;
377/*
378 * save the original buffer kva
379 */
380	bp->b_savekva = bp->b_data;
381/*
382 * put our new kva into the buffer (offset by original offset)
383 */
384	bp->b_data = (caddr_t) (((vm_offset_t) kva) |
385				((vm_offset_t) bp->b_savekva & (NBPG - 1)));
386#if 0
387	printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data);
388#endif
389	return;
390}
391
392/*
393 * hook into biodone to free bounce buffer
394 */
395void
396vm_bounce_free(bp)
397	struct buf *bp;
398{
399	int i;
400	vm_offset_t origkva, bouncekva, bouncekvaend;
401
402/*
403 * if this isn't a bounced buffer, then just return
404 */
405	if ((bp->b_flags & B_BOUNCE) == 0)
406		return;
407
408/*
409 *  This check is not necessary
410 *	if (bp->b_bufsize != bp->b_bcount) {
411 *		printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n",
412 *			bp->b_bufsize, bp->b_bcount);
413 *	}
414 */
415
416	origkva = (vm_offset_t) bp->b_savekva;
417	bouncekva = (vm_offset_t) bp->b_data;
418/*
419	printf("free: %d ", bp->b_bufsize);
420*/
421
422/*
423 * check every page in the kva space for b_addr
424 */
425	for (i = 0; i < bp->b_bufsize; ) {
426		vm_offset_t mybouncepa;
427		vm_offset_t copycount;
428
429		copycount = i386_round_page(bouncekva + 1) - bouncekva;
430		mybouncepa = pmap_kextract(i386_trunc_page(bouncekva));
431
432/*
433 * if this is a bounced pa, then process as one
434 */
435		if ( mybouncepa != pmap_kextract( i386_trunc_page( origkva))) {
436			vm_offset_t tocopy = copycount;
437			if (i + tocopy > bp->b_bufsize)
438				tocopy = bp->b_bufsize - i;
439/*
440 * if this is a read, then copy from bounce buffer into original buffer
441 */
442			if (bp->b_flags & B_READ)
443				bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy);
444/*
445 * free the bounce allocation
446 */
447
448/*
449			printf("(kva: %x, pa: %x)", bouncekva, mybouncepa);
450*/
451			vm_bounce_page_free(mybouncepa, 1);
452		}
453
454		origkva += copycount;
455		bouncekva += copycount;
456		i += copycount;
457	}
458
459/*
460	printf("\n");
461*/
462/*
463 * add the old kva into the "to free" list
464 */
465
466	bouncekva= i386_trunc_page((vm_offset_t) bp->b_data);
467	bouncekvaend= i386_round_page((vm_offset_t)bp->b_data + bp->b_bufsize);
468
469/*
470	printf("freeva: %d\n", (bouncekvaend - bouncekva) / NBPG);
471*/
472	vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0);
473	bp->b_data = bp->b_savekva;
474	bp->b_savekva = 0;
475	bp->b_flags &= ~B_BOUNCE;
476
477	return;
478}
479
480
481/*
482 * init the bounce buffer system
483 */
484void
485vm_bounce_init()
486{
487	int i;
488
489	kvasfreecnt = 0;
490
491	if (bouncepages == 0)
492		return;
493
494	bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED;
495	bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT);
496
497	if (!bounceallocarray)
498		panic("Cannot allocate bounce resource array");
499
500	bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT);
501	if (!bouncepa)
502		panic("Cannot allocate physical memory array");
503
504	for(i=0;i<bounceallocarraysize;i++) {
505		bounceallocarray[i] = 0xffffffff;
506	}
507
508	for(i=0;i<bouncepages;i++) {
509		vm_offset_t pa;
510		if( (pa = pmap_kextract((vm_offset_t) bouncememory + i * NBPG)) >= SIXTEENMEG)
511			panic("bounce memory out of range");
512		if( pa == 0)
513			panic("bounce memory not resident");
514		bouncepa[i] = pa;
515		bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int))));
516	}
517	bouncefree = bouncepages;
518
519}
520#endif /* BOUNCE_BUFFERS */
521/*
522 * quick version of vm_fault
523 */
524
525void
526vm_fault_quick( v, prot)
527	vm_offset_t v;
528	int prot;
529{
530	if (prot & VM_PROT_WRITE)
531		subyte((char *)v, fubyte((char *)v));
532	else
533		(void) fubyte((char *)v);
534}
535
536
537/*
538 * Finish a fork operation, with process p2 nearly set up.
539 * Copy and update the kernel stack and pcb, making the child
540 * ready to run, and marking it so that it can return differently
541 * than the parent.  Returns 1 in the child process, 0 in the parent.
542 * We currently double-map the user area so that the stack is at the same
543 * address in each process; in the future we will probably relocate
544 * the frame pointers on the stack after copying.
545 */
546int
547cpu_fork(p1, p2)
548	register struct proc *p1, *p2;
549{
550	register struct user *up = p2->p_addr;
551	int offset;
552
553	/*
554	 * Copy pcb and stack from proc p1 to p2.
555	 * We do this as cheaply as possible, copying only the active
556	 * part of the stack.  The stack and pcb need to agree;
557	 * this is tricky, as the final pcb is constructed by savectx,
558	 * but its frame isn't yet on the stack when the stack is copied.
559	 * swtch compensates for this when the child eventually runs.
560	 * This should be done differently, with a single call
561	 * that copies and updates the pcb+stack,
562	 * replacing the bcopy and savectx.
563	 */
564	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
565	offset = mvesp() - (int)kstack;
566	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
567	    (unsigned) ctob(UPAGES) - offset);
568	p2->p_md.md_regs = p1->p_md.md_regs;
569
570	pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb);
571
572	/*
573	 *
574	 * Arrange for a non-local goto when the new process
575	 * is started, to resume here, returning nonzero from setjmp.
576	 */
577	if (savectx(&up->u_pcb, 1)) {
578		/*
579		 * Return 1 in child.
580		 */
581		return (1);
582	}
583	return (0);
584}
585
586void
587cpu_exit(p)
588	register struct proc *p;
589{
590
591#if NNPX > 0
592	npxexit(p);
593#endif	/* NNPX */
594	cnt.v_swtch++;
595	cpu_switch(p);
596	panic("cpu_exit");
597}
598
599void
600cpu_wait(p) struct proc *p; {
601/*	extern vm_map_t upages_map; */
602
603	/* drop per-process resources */
604 	pmap_remove(vm_map_pmap(u_map), (vm_offset_t) p->p_addr,
605		((vm_offset_t) p->p_addr) + ctob(UPAGES));
606	kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
607	vmspace_free(p->p_vmspace);
608}
609
610/*
611 * Dump the machine specific header information at the start of a core dump.
612 */
613int
614cpu_coredump(p, vp, cred)
615	struct proc *p;
616	struct vnode *vp;
617	struct ucred *cred;
618{
619
620	return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
621	    (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
622	    p));
623}
624
625/*
626 * Set a red zone in the kernel stack after the u. area.
627 */
628void
629setredzone(pte, vaddr)
630	u_short *pte;
631	caddr_t vaddr;
632{
633/* eventually do this by setting up an expand-down stack segment
634   for ss0: selector, allowing stack access down to top of u.
635   this means though that protection violations need to be handled
636   thru a double fault exception that must do an integral task
637   switch to a known good context, within which a dump can be
638   taken. a sensible scheme might be to save the initial context
639   used by sched (that has physical memory mapped 1:1 at bottom)
640   and take the dump while still in mapped mode */
641}
642
643/*
644 * Move pages from one kernel virtual address to another.
645 * Both addresses are assumed to reside in the Sysmap,
646 * and size must be a multiple of CLSIZE.
647 */
648
649void
650pagemove(from, to, size)
651	register caddr_t from, to;
652	int size;
653{
654	register vm_offset_t pa;
655
656	if (size & CLOFSET)
657		panic("pagemove");
658	while (size > 0) {
659		pa = pmap_kextract((vm_offset_t)from);
660		if (pa == 0)
661			panic("pagemove 2");
662		if (pmap_kextract((vm_offset_t)to) != 0)
663			panic("pagemove 3");
664		pmap_kremove((vm_offset_t)from);
665		pmap_kenter((vm_offset_t)to, pa);
666		from += PAGE_SIZE;
667		to += PAGE_SIZE;
668		size -= PAGE_SIZE;
669	}
670}
671
672/*
673 * Convert kernel VA to physical address
674 */
675u_long
676kvtop(void *addr)
677{
678	vm_offset_t va;
679
680	va = pmap_kextract((vm_offset_t)addr);
681	if (va == 0)
682		panic("kvtop: zero page frame");
683	return((int)va);
684}
685
686/*
687 * Map an IO request into kernel virtual address space.
688 *
689 * All requests are (re)mapped into kernel VA space.
690 * Notice that we use b_bufsize for the size of the buffer
691 * to be mapped.  b_bcount might be modified by the driver.
692 */
693void
694vmapbuf(bp)
695	register struct buf *bp;
696{
697	register int npf;
698	register caddr_t addr;
699	int off;
700	vm_offset_t kva;
701	vm_offset_t pa, v;
702
703	if ((bp->b_flags & B_PHYS) == 0)
704		panic("vmapbuf");
705
706	/*
707	 * this is the kva that is to be used for
708	 * the temporary kernel mapping
709	 */
710	kva = (vm_offset_t) bp->b_saveaddr;
711
712	for (addr = (caddr_t)trunc_page(bp->b_data);
713		addr < bp->b_data + bp->b_bufsize;
714		addr += PAGE_SIZE) {
715
716/*
717 * do the vm_fault if needed, do the copy-on-write thing when
718 * reading stuff off device into memory.
719 */
720		vm_fault_quick(addr,
721			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
722		pa = pmap_kextract((vm_offset_t) addr);
723		if (pa == 0)
724			panic("vmapbuf: page not present");
725/*
726 * hold the data page
727 */
728#ifdef DIAGNOSTIC
729		if( VM_PAGE_TO_PHYS(PHYS_TO_VM_PAGE(pa)) != pa)
730			panic("vmapbuf: confused PHYS_TO_VM_PAGE mapping");
731#endif
732		vm_page_hold(PHYS_TO_VM_PAGE(pa));
733	}
734
735	addr = bp->b_saveaddr = bp->b_data;
736	off = (int)addr & PGOFSET;
737	npf = btoc(round_page(bp->b_bufsize + off));
738	bp->b_data = (caddr_t) (kva + off);
739	while (npf--) {
740		pa = pmap_kextract((vm_offset_t)addr);
741		if (pa == 0)
742			panic("vmapbuf: null page frame");
743		pmap_kenter(kva, trunc_page(pa));
744		addr += PAGE_SIZE;
745		kva += PAGE_SIZE;
746	}
747}
748
749/*
750 * Free the io map PTEs associated with this IO operation.
751 * We also invalidate the TLB entries and restore the original b_addr.
752 */
753void
754vunmapbuf(bp)
755	register struct buf *bp;
756{
757	register caddr_t addr;
758	vm_offset_t v,pa;
759
760	if ((bp->b_flags & B_PHYS) == 0)
761		panic("vunmapbuf");
762
763	for (addr = (caddr_t)trunc_page((vm_offset_t) bp->b_data);
764		addr < bp->b_data + bp->b_bufsize;
765		addr += NBPG)
766		pmap_kremove((vm_offset_t) addr);
767
768	bp->b_data = bp->b_saveaddr;
769	bp->b_saveaddr = NULL;
770
771/*
772 * unhold the pde, and data pages
773 */
774	for (addr = (caddr_t)trunc_page((vm_offset_t) bp->b_data);
775		addr < bp->b_data + bp->b_bufsize;
776		addr += NBPG) {
777	/*
778	 * release the data page
779	 */
780		pa = pmap_kextract((vm_offset_t) addr);
781		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
782	}
783}
784
785/*
786 * Force reset the processor by invalidating the entire address space!
787 */
788void
789cpu_reset() {
790
791	/*
792	 * Attempt to do a CPU reset via the keyboard controller,
793	 * do not turn of the GateA20, as any machine that fails
794	 * to do the reset here would then end up in no man's land.
795	 */
796
797#ifndef BROKEN_KEYBOARD_RESET
798	outb(IO_KBD + 4, 0xFE);
799	DELAY(500000);	/* wait 0.5 sec to see if that did it */
800	printf("Keyboard reset did not work, attempting CPU shutdown\n");
801	DELAY(1000000);	/* wait 1 sec for printf to complete */
802#endif
803
804	/* force a shutdown by unmapping entire address space ! */
805	bzero((caddr_t) PTD, NBPG);
806
807	/* "good night, sweet prince .... <THUNK!>" */
808	pmap_update();
809	/* NOTREACHED */
810	while(1);
811}
812
813/*
814 * Grow the user stack to allow for 'sp'. This version grows the stack in
815 *	chunks of SGROWSIZ.
816 */
817int
818grow(p, sp)
819	struct proc *p;
820	u_int sp;
821{
822	unsigned int nss;
823	caddr_t v;
824	struct vmspace *vm = p->p_vmspace;
825
826	if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK)
827	    return (1);
828
829	nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE);
830
831	if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur)
832		return (0);
833
834	if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT,
835	    SGROWSIZ) < nss) {
836		int grow_amount;
837		/*
838		 * If necessary, grow the VM that the stack occupies
839		 * to allow for the rlimit. This allows us to not have
840		 * to allocate all of the VM up-front in execve (which
841		 * is expensive).
842		 * Grow the VM by the amount requested rounded up to
843		 * the nearest SGROWSIZ to provide for some hysteresis.
844		 */
845		grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ);
846		v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT,
847		    SGROWSIZ) - grow_amount;
848		/*
849		 * If there isn't enough room to extend by SGROWSIZ, then
850		 * just extend to the maximum size
851		 */
852		if (v < vm->vm_maxsaddr) {
853			v = vm->vm_maxsaddr;
854			grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT);
855		}
856		if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v,
857		    grow_amount, FALSE) != KERN_SUCCESS)) {
858			return (0);
859		}
860		vm->vm_ssize += grow_amount >> PAGE_SHIFT;
861	}
862
863	return (1);
864}
865