vm_machdep.c revision 76939
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 76939 2001-05-21 18:30:50Z jhb $
42 */
43
44#include "opt_npx.h"
45#ifdef PC98
46#include "opt_pc98.h"
47#endif
48#include "opt_reset.h"
49#include "opt_isa.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/smp.h>
63#include <sys/sysctl.h>
64#include <sys/unistd.h>
65
66#include <machine/cpu.h>
67#include <machine/md_var.h>
68#include <machine/pcb.h>
69#include <machine/pcb_ext.h>
70#include <machine/vm86.h>
71
72#include <vm/vm.h>
73#include <vm/vm_param.h>
74#include <sys/lock.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_page.h>
77#include <vm/vm_map.h>
78#include <vm/vm_extern.h>
79
80#include <sys/user.h>
81
82#ifdef PC98
83#include <pc98/pc98/pc98.h>
84#else
85#include <i386/isa/isa.h>
86#endif
87
88static void	cpu_reset_real __P((void));
89#ifdef SMP
90static void	cpu_reset_proxy __P((void));
91static u_int	cpu_reset_proxyid;
92static volatile u_int	cpu_reset_proxy_active;
93#endif
94extern int	_ucodesel, _udatasel;
95
96/*
97 * quick version of vm_fault
98 */
99int
100vm_fault_quick(v, prot)
101	caddr_t v;
102	int prot;
103{
104	int r;
105
106	if (prot & VM_PROT_WRITE)
107		r = subyte(v, fubyte(v));
108	else
109		r = fubyte(v);
110	return(r);
111}
112
113/*
114 * Finish a fork operation, with process p2 nearly set up.
115 * Copy and update the pcb, set up the stack so that the child
116 * ready to run and return to user mode.
117 */
118void
119cpu_fork(p1, p2, flags)
120	register struct proc *p1, *p2;
121	int flags;
122{
123	struct pcb *pcb2;
124#ifdef DEV_NPX
125	int savecrit;
126#endif
127
128	if ((flags & RFPROC) == 0) {
129		if ((flags & RFMEM) == 0) {
130			/* unshare user LDT */
131			struct pcb *pcb1 = &p1->p_addr->u_pcb;
132			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
133			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
134				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
135				user_ldt_free(pcb1);
136				pcb1->pcb_ldt = pcb_ldt;
137				set_user_ldt(pcb1);
138			}
139		}
140		return;
141	}
142
143	/* Ensure that p1's pcb is up to date. */
144#ifdef DEV_NPX
145	if (p1 == curproc)
146		p1->p_addr->u_pcb.pcb_gs = rgs();
147	savecrit = critical_enter();
148	if (PCPU_GET(npxproc) == p1)
149		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
150	critical_exit(savecrit);
151#endif
152
153	/* Copy p1's pcb. */
154	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
155	pcb2 = &p2->p_addr->u_pcb;
156
157	/*
158	 * Create a new fresh stack for the new process.
159	 * Copy the trap frame for the return to user mode as if from a
160	 * syscall.  This copies most of the user mode register values.
161	 */
162	p2->p_md.md_regs = (struct trapframe *)
163			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
164	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
165
166	p2->p_md.md_regs->tf_eax = 0;		/* Child returns zero */
167	p2->p_md.md_regs->tf_eflags &= ~PSL_C;	/* success */
168	p2->p_md.md_regs->tf_edx = 1;
169
170	/*
171	 * Set registers for trampoline to user mode.  Leave space for the
172	 * return address on stack.  These are the kernel mode register values.
173	 */
174	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
175	pcb2->pcb_edi = 0;
176	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
177	pcb2->pcb_ebp = 0;
178	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
179	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
180	pcb2->pcb_eip = (int)fork_trampoline;
181	/*-
182	 * pcb2->pcb_dr*:	cloned above.
183	 * pcb2->pcb_ldt:	duplicated below, if necessary.
184	 * pcb2->pcb_savefpu:	cloned above.
185	 * pcb2->pcb_flags:	cloned above.
186	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
187	 * pcb2->pcb_gs:	cloned above.
188	 * pcb2->pcb_ext:	cleared below.
189	 */
190
191	/*
192	 * XXX don't copy the i/o pages.  this should probably be fixed.
193	 */
194	pcb2->pcb_ext = 0;
195
196        /* Copy the LDT, if necessary. */
197	mtx_lock_spin(&sched_lock);
198        if (pcb2->pcb_ldt != 0) {
199		if (flags & RFMEM) {
200			pcb2->pcb_ldt->ldt_refcnt++;
201		} else {
202			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
203				pcb2->pcb_ldt->ldt_len);
204			if (pcb2->pcb_ldt == NULL)
205				panic("could not copy LDT");
206		}
207        }
208	mtx_unlock_spin(&sched_lock);
209
210	/*
211	 * Now, cpu_switch() can schedule the new process.
212	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
213	 * containing the return address when exiting cpu_switch.
214	 * This will normally be to fork_trampoline(), which will have
215	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
216	 * will set up a stack to call fork_return(p, frame); to complete
217	 * the return to user-mode.
218	 */
219}
220
221/*
222 * Intercept the return address from a freshly forked process that has NOT
223 * been scheduled yet.
224 *
225 * This is needed to make kernel threads stay in kernel mode.
226 */
227void
228cpu_set_fork_handler(p, func, arg)
229	struct proc *p;
230	void (*func) __P((void *));
231	void *arg;
232{
233	/*
234	 * Note that the trap frame follows the args, so the function
235	 * is really called like this:  func(arg, frame);
236	 */
237	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
238	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
239}
240
241void
242cpu_exit(p)
243	register struct proc *p;
244{
245	struct pcb *pcb = &p->p_addr->u_pcb;
246
247#ifdef DEV_NPX
248	npxexit(p);
249#endif
250	if (pcb->pcb_ext != 0) {
251	        /*
252		 * XXX do we need to move the TSS off the allocated pages
253		 * before freeing them?  (not done here)
254		 */
255		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
256		    ctob(IOPAGES + 1));
257		pcb->pcb_ext = 0;
258	}
259	if (pcb->pcb_ldt)
260		user_ldt_free(pcb);
261        if (pcb->pcb_flags & PCB_DBREGS) {
262                /*
263                 * disable all hardware breakpoints
264                 */
265                reset_dbregs();
266                pcb->pcb_flags &= ~PCB_DBREGS;
267        }
268	PROC_LOCK(p);
269	mtx_lock_spin(&sched_lock);
270	mtx_unlock_flags(&Giant, MTX_NOSWITCH);
271	mtx_assert(&Giant, MA_NOTOWNED);
272
273	/*
274	 * We have to wait until after releasing all locks before
275	 * changing p_stat.  If we block on a mutex then we will be
276	 * back at SRUN when we resume and our parent will never
277	 * harvest us.
278	 */
279	p->p_stat = SZOMB;
280
281	wakeup(p->p_pptr);
282	PROC_UNLOCK_NOSWITCH(p);
283
284	cnt.v_swtch++;
285	cpu_throw();
286	panic("cpu_exit");
287}
288
289void
290cpu_wait(p)
291	struct proc *p;
292{
293
294	mtx_lock(&vm_mtx);
295	/* drop per-process resources */
296	pmap_dispose_proc(p);
297
298	/* and clean-out the vmspace */
299	vmspace_free(p->p_vmspace);
300	mtx_unlock(&vm_mtx);
301}
302
303/*
304 * Dump the machine specific header information at the start of a core dump.
305 */
306int
307cpu_coredump(p, vp, cred)
308	struct proc *p;
309	struct vnode *vp;
310	struct ucred *cred;
311{
312	int error;
313	caddr_t tempuser;
314
315	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK | M_ZERO);
316	if (!tempuser)
317		return EINVAL;
318
319	bcopy(p->p_addr, tempuser, sizeof(struct user));
320	bcopy(p->p_md.md_regs,
321	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
322	      sizeof(struct trapframe));
323
324	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
325			ctob(UPAGES),
326			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
327			cred, (int *)NULL, p);
328
329	free(tempuser, M_TEMP);
330
331	return error;
332}
333
334#ifdef notyet
335static void
336setredzone(pte, vaddr)
337	u_short *pte;
338	caddr_t vaddr;
339{
340/* eventually do this by setting up an expand-down stack segment
341   for ss0: selector, allowing stack access down to top of u.
342   this means though that protection violations need to be handled
343   thru a double fault exception that must do an integral task
344   switch to a known good context, within which a dump can be
345   taken. a sensible scheme might be to save the initial context
346   used by sched (that has physical memory mapped 1:1 at bottom)
347   and take the dump while still in mapped mode */
348}
349#endif
350
351/*
352 * Convert kernel VA to physical address
353 */
354u_long
355kvtop(void *addr)
356{
357	vm_offset_t va;
358
359	va = pmap_kextract((vm_offset_t)addr);
360	if (va == 0)
361		panic("kvtop: zero page frame");
362	return((int)va);
363}
364
365/*
366 * Map an IO request into kernel virtual address space.
367 *
368 * All requests are (re)mapped into kernel VA space.
369 * Notice that we use b_bufsize for the size of the buffer
370 * to be mapped.  b_bcount might be modified by the driver.
371 */
372void
373vmapbuf(bp)
374	register struct buf *bp;
375{
376	register caddr_t addr, v, kva;
377	vm_offset_t pa;
378
379	if ((bp->b_flags & B_PHYS) == 0)
380		panic("vmapbuf");
381
382	mtx_lock(&vm_mtx);
383	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
384	    addr < bp->b_data + bp->b_bufsize;
385	    addr += PAGE_SIZE, v += PAGE_SIZE) {
386		/*
387		 * Do the vm_fault if needed; do the copy-on-write thing
388		 * when reading stuff off device into memory.
389		 */
390		vm_fault_quick(addr,
391			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
392		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
393		if (pa == 0)
394			panic("vmapbuf: page not present");
395		vm_page_hold(PHYS_TO_VM_PAGE(pa));
396		pmap_kenter((vm_offset_t) v, pa);
397	}
398	mtx_unlock(&vm_mtx);
399
400	kva = bp->b_saveaddr;
401	bp->b_saveaddr = bp->b_data;
402	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
403}
404
405/*
406 * Free the io map PTEs associated with this IO operation.
407 * We also invalidate the TLB entries and restore the original b_addr.
408 */
409void
410vunmapbuf(bp)
411	register struct buf *bp;
412{
413	register caddr_t addr;
414	vm_offset_t pa;
415
416	if ((bp->b_flags & B_PHYS) == 0)
417		panic("vunmapbuf");
418
419	mtx_lock(&vm_mtx);
420	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
421	    addr < bp->b_data + bp->b_bufsize;
422	    addr += PAGE_SIZE) {
423		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
424		pmap_kremove((vm_offset_t) addr);
425		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
426	}
427	mtx_unlock(&vm_mtx);
428
429	bp->b_data = bp->b_saveaddr;
430}
431
432/*
433 * Force reset the processor by invalidating the entire address space!
434 */
435
436#ifdef SMP
437static void
438cpu_reset_proxy()
439{
440
441	cpu_reset_proxy_active = 1;
442	while (cpu_reset_proxy_active == 1)
443		;	 /* Wait for other cpu to see that we've started */
444	stop_cpus((1<<cpu_reset_proxyid));
445	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
446	DELAY(1000000);
447	cpu_reset_real();
448}
449#endif
450
451void
452cpu_reset()
453{
454#ifdef SMP
455	if (smp_active == 0) {
456		cpu_reset_real();
457		/* NOTREACHED */
458	} else {
459
460		u_int map;
461		int cnt;
462		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
463
464		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
465
466		if (map != 0) {
467			printf("cpu_reset: Stopping other CPUs\n");
468			stop_cpus(map);		/* Stop all other CPUs */
469		}
470
471		if (PCPU_GET(cpuid) == 0) {
472			DELAY(1000000);
473			cpu_reset_real();
474			/* NOTREACHED */
475		} else {
476			/* We are not BSP (CPU #0) */
477
478			cpu_reset_proxyid = PCPU_GET(cpuid);
479			cpustop_restartfunc = cpu_reset_proxy;
480			cpu_reset_proxy_active = 0;
481			printf("cpu_reset: Restarting BSP\n");
482			started_cpus = (1<<0);		/* Restart CPU #0 */
483
484			cnt = 0;
485			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
486				cnt++;	/* Wait for BSP to announce restart */
487			if (cpu_reset_proxy_active == 0)
488				printf("cpu_reset: Failed to restart BSP\n");
489			enable_intr();
490			cpu_reset_proxy_active = 2;
491
492			while (1);
493			/* NOTREACHED */
494		}
495	}
496#else
497	cpu_reset_real();
498#endif
499}
500
501static void
502cpu_reset_real()
503{
504
505#ifdef PC98
506	/*
507	 * Attempt to do a CPU reset via CPU reset port.
508	 */
509	disable_intr();
510	if ((inb(0x35) & 0xa0) != 0xa0) {
511		outb(0x37, 0x0f);		/* SHUT0 = 0. */
512		outb(0x37, 0x0b);		/* SHUT1 = 0. */
513	}
514	outb(0xf0, 0x00);		/* Reset. */
515#else
516	/*
517	 * Attempt to do a CPU reset via the keyboard controller,
518	 * do not turn of the GateA20, as any machine that fails
519	 * to do the reset here would then end up in no man's land.
520	 */
521
522#if !defined(BROKEN_KEYBOARD_RESET)
523	outb(IO_KBD + 4, 0xFE);
524	DELAY(500000);	/* wait 0.5 sec to see if that did it */
525	printf("Keyboard reset did not work, attempting CPU shutdown\n");
526	DELAY(1000000);	/* wait 1 sec for printf to complete */
527#endif
528#endif /* PC98 */
529	/* force a shutdown by unmapping entire address space ! */
530	bzero((caddr_t) PTD, PAGE_SIZE);
531
532	/* "good night, sweet prince .... <THUNK!>" */
533	invltlb();
534	/* NOTREACHED */
535	while(1);
536}
537
538int
539grow_stack(p, sp)
540	struct proc *p;
541	u_int sp;
542{
543	int rv;
544
545	rv = vm_map_growstack (p, sp);
546	if (rv != KERN_SUCCESS)
547		return (0);
548
549	return (1);
550}
551
552SYSCTL_DECL(_vm_stats_misc);
553
554static int cnt_prezero;
555
556SYSCTL_INT(_vm_stats_misc, OID_AUTO,
557	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
558
559/*
560 * Implement the pre-zeroed page mechanism.
561 * This routine is called from the idle loop.
562 */
563
564#define ZIDLE_LO(v)	((v) * 2 / 3)
565#define ZIDLE_HI(v)	((v) * 4 / 5)
566
567int
568vm_page_zero_idle()
569{
570	static int free_rover;
571	static int zero_state;
572	vm_page_t m;
573
574	/*
575	 * Attempt to maintain approximately 1/2 of our free pages in a
576	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
577	 * generally zeroing a page when the system is near steady-state.
578	 * Otherwise we might get 'flutter' during disk I/O / IPC or
579	 * fast sleeps.  We also do not want to be continuously zeroing
580	 * pages because doing so may flush our L1 and L2 caches too much.
581	 */
582
583	if (mtx_trylock(&vm_mtx) == 0)
584		return (0);
585	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count)) {
586		mtx_unlock(&vm_mtx);
587		return(0);
588	}
589	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count)) {
590		mtx_unlock(&vm_mtx);
591		return(0);
592	}
593
594		zero_state = 0;
595		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
596		if (m != NULL && (m->flags & PG_ZERO) == 0) {
597			vm_page_queues[m->queue].lcnt--;
598			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
599			m->queue = PQ_NONE;
600			splx(s);
601			pmap_zero_page(VM_PAGE_TO_PHYS(m));
602			(void)splvm();
603			vm_page_flag_set(m, PG_ZERO);
604			m->queue = PQ_FREE + m->pc;
605			vm_page_queues[m->queue].lcnt++;
606			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
607			    pageq);
608			++vm_page_zero_count;
609			++cnt_prezero;
610			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
611				zero_state = 1;
612		}
613		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
614		mtx_unlock(&vm_mtx);
615		return (1);
616}
617
618/*
619 * Software interrupt handler for queued VM system processing.
620 */
621void
622swi_vm(void *dummy)
623{
624	if (busdma_swi_pending != 0)
625		busdma_swi();
626}
627
628/*
629 * Tell whether this address is in some physical memory region.
630 * Currently used by the kernel coredump code in order to avoid
631 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
632 * or other unpredictable behaviour.
633 */
634
635int
636is_physical_memory(addr)
637	vm_offset_t addr;
638{
639
640#ifdef DEV_ISA
641	/* The ISA ``memory hole''. */
642	if (addr >= 0xa0000 && addr < 0x100000)
643		return 0;
644#endif
645
646	/*
647	 * stuff other tests for known memory-mapped devices (PCI?)
648	 * here
649	 */
650
651	return 1;
652}
653