vm_machdep.c revision 72930
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 72930 2001-02-23 01:25:02Z peter $
42 */
43
44#include "opt_npx.h"
45#ifdef PC98
46#include "opt_pc98.h"
47#endif
48#include "opt_reset.h"
49#include "opt_isa.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/sysctl.h>
63#include <sys/unistd.h>
64
65#include <machine/cpu.h>
66#include <machine/md_var.h>
67#ifdef SMP
68#include <machine/smp.h>
69#endif
70#include <machine/pcb.h>
71#include <machine/pcb_ext.h>
72#include <machine/vm86.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76#include <sys/lock.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_page.h>
79#include <vm/vm_map.h>
80#include <vm/vm_extern.h>
81
82#include <sys/user.h>
83
84#ifdef PC98
85#include <pc98/pc98/pc98.h>
86#else
87#include <i386/isa/isa.h>
88#endif
89
90static void	cpu_reset_real __P((void));
91#ifdef SMP
92static void	cpu_reset_proxy __P((void));
93static u_int	cpu_reset_proxyid;
94static volatile u_int	cpu_reset_proxy_active;
95#endif
96extern int	_ucodesel, _udatasel;
97
98/*
99 * quick version of vm_fault
100 */
101int
102vm_fault_quick(v, prot)
103	caddr_t v;
104	int prot;
105{
106	int r;
107
108	if (prot & VM_PROT_WRITE)
109		r = subyte(v, fubyte(v));
110	else
111		r = fubyte(v);
112	return(r);
113}
114
115/*
116 * Finish a fork operation, with process p2 nearly set up.
117 * Copy and update the pcb, set up the stack so that the child
118 * ready to run and return to user mode.
119 */
120void
121cpu_fork(p1, p2, flags)
122	register struct proc *p1, *p2;
123	int flags;
124{
125	struct pcb *pcb2;
126
127	if ((flags & RFPROC) == 0) {
128		if ((flags & RFMEM) == 0) {
129			/* unshare user LDT */
130			struct pcb *pcb1 = &p1->p_addr->u_pcb;
131			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
132			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
133				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
134				user_ldt_free(pcb1);
135				pcb1->pcb_ldt = pcb_ldt;
136				set_user_ldt(pcb1);
137			}
138		}
139		return;
140	}
141
142#ifdef DEV_NPX
143	/* Ensure that p1's pcb is up to date. */
144	if (PCPU_GET(npxproc) == p1)
145		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
146#endif
147
148	/* Copy p1's pcb. */
149	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
150	pcb2 = &p2->p_addr->u_pcb;
151
152	/*
153	 * Create a new fresh stack for the new process.
154	 * Copy the trap frame for the return to user mode as if from a
155	 * syscall.  This copies the user mode register values.
156	 */
157	p2->p_md.md_regs = (struct trapframe *)
158			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
159	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
160
161	p2->p_md.md_regs->tf_eax = 0;		/* Child returns zero */
162	p2->p_md.md_regs->tf_eflags &= ~PSL_C;	/* success */
163	p2->p_md.md_regs->tf_edx = 1;
164
165	/*
166	 * Set registers for trampoline to user mode.  Leave space for the
167	 * return address on stack.  These are the kernel mode register values.
168	 */
169	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
170	pcb2->pcb_edi = 0;
171	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
172	pcb2->pcb_ebp = 0;
173	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
174	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
175	pcb2->pcb_eip = (int)fork_trampoline;
176	/*
177	 * pcb2->pcb_ldt:	duplicated below, if necessary.
178	 * pcb2->pcb_savefpu:	cloned above.
179	 * pcb2->pcb_flags:	cloned above (always 0 here?).
180	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
181	 */
182
183	/*
184	 * XXX don't copy the i/o pages.  this should probably be fixed.
185	 */
186	pcb2->pcb_ext = 0;
187
188        /* Copy the LDT, if necessary. */
189        if (pcb2->pcb_ldt != 0) {
190		if (flags & RFMEM) {
191			pcb2->pcb_ldt->ldt_refcnt++;
192		} else {
193			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
194				pcb2->pcb_ldt->ldt_len);
195		}
196        }
197
198	/*
199	 * Now, cpu_switch() can schedule the new process.
200	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
201	 * containing the return address when exiting cpu_switch.
202	 * This will normally be to fork_trampoline(), which will have
203	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
204	 * will set up a stack to call fork_return(p, frame); to complete
205	 * the return to user-mode.
206	 */
207}
208
209/*
210 * Intercept the return address from a freshly forked process that has NOT
211 * been scheduled yet.
212 *
213 * This is needed to make kernel threads stay in kernel mode.
214 */
215void
216cpu_set_fork_handler(p, func, arg)
217	struct proc *p;
218	void (*func) __P((void *));
219	void *arg;
220{
221	/*
222	 * Note that the trap frame follows the args, so the function
223	 * is really called like this:  func(arg, frame);
224	 */
225	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
226	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
227}
228
229void
230cpu_exit(p)
231	register struct proc *p;
232{
233	struct pcb *pcb = &p->p_addr->u_pcb;
234
235#ifdef DEV_NPX
236	npxexit(p);
237#endif
238	if (pcb->pcb_ext != 0) {
239	        /*
240		 * XXX do we need to move the TSS off the allocated pages
241		 * before freeing them?  (not done here)
242		 */
243		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
244		    ctob(IOPAGES + 1));
245		pcb->pcb_ext = 0;
246	}
247	if (pcb->pcb_ldt)
248		user_ldt_free(pcb);
249        if (pcb->pcb_flags & PCB_DBREGS) {
250                /*
251                 * disable all hardware breakpoints
252                 */
253                reset_dbregs();
254                pcb->pcb_flags &= ~PCB_DBREGS;
255        }
256	mtx_lock_spin(&sched_lock);
257	mtx_unlock_flags(&Giant, MTX_NOSWITCH);
258	mtx_assert(&Giant, MA_NOTOWNED);
259
260	/*
261	 * We have to wait until after releasing all locks before
262	 * changing p_stat.  If we block on a mutex then we will be
263	 * back at SRUN when we resume and our parent will never
264	 * harvest us.
265	 */
266	p->p_stat = SZOMB;
267
268	mp_fixme("assumption: p_pptr won't change at this time");
269	wakeup(p->p_pptr);
270
271	cnt.v_swtch++;
272	cpu_throw();
273	panic("cpu_exit");
274}
275
276void
277cpu_wait(p)
278	struct proc *p;
279{
280	/* drop per-process resources */
281	pmap_dispose_proc(p);
282
283	/* and clean-out the vmspace */
284	vmspace_free(p->p_vmspace);
285}
286
287/*
288 * Dump the machine specific header information at the start of a core dump.
289 */
290int
291cpu_coredump(p, vp, cred)
292	struct proc *p;
293	struct vnode *vp;
294	struct ucred *cred;
295{
296	int error;
297	caddr_t tempuser;
298
299	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK | M_ZERO);
300	if (!tempuser)
301		return EINVAL;
302
303	bcopy(p->p_addr, tempuser, sizeof(struct user));
304	bcopy(p->p_md.md_regs,
305	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
306	      sizeof(struct trapframe));
307
308	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
309			ctob(UPAGES),
310			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
311			cred, (int *)NULL, p);
312
313	free(tempuser, M_TEMP);
314
315	return error;
316}
317
318#ifdef notyet
319static void
320setredzone(pte, vaddr)
321	u_short *pte;
322	caddr_t vaddr;
323{
324/* eventually do this by setting up an expand-down stack segment
325   for ss0: selector, allowing stack access down to top of u.
326   this means though that protection violations need to be handled
327   thru a double fault exception that must do an integral task
328   switch to a known good context, within which a dump can be
329   taken. a sensible scheme might be to save the initial context
330   used by sched (that has physical memory mapped 1:1 at bottom)
331   and take the dump while still in mapped mode */
332}
333#endif
334
335/*
336 * Convert kernel VA to physical address
337 */
338u_long
339kvtop(void *addr)
340{
341	vm_offset_t va;
342
343	va = pmap_kextract((vm_offset_t)addr);
344	if (va == 0)
345		panic("kvtop: zero page frame");
346	return((int)va);
347}
348
349/*
350 * Map an IO request into kernel virtual address space.
351 *
352 * All requests are (re)mapped into kernel VA space.
353 * Notice that we use b_bufsize for the size of the buffer
354 * to be mapped.  b_bcount might be modified by the driver.
355 */
356void
357vmapbuf(bp)
358	register struct buf *bp;
359{
360	register caddr_t addr, v, kva;
361	vm_offset_t pa;
362
363	if ((bp->b_flags & B_PHYS) == 0)
364		panic("vmapbuf");
365
366	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
367	    addr < bp->b_data + bp->b_bufsize;
368	    addr += PAGE_SIZE, v += PAGE_SIZE) {
369		/*
370		 * Do the vm_fault if needed; do the copy-on-write thing
371		 * when reading stuff off device into memory.
372		 */
373		vm_fault_quick(addr,
374			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
375		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
376		if (pa == 0)
377			panic("vmapbuf: page not present");
378		vm_page_hold(PHYS_TO_VM_PAGE(pa));
379		pmap_kenter((vm_offset_t) v, pa);
380	}
381
382	kva = bp->b_saveaddr;
383	bp->b_saveaddr = bp->b_data;
384	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
385}
386
387/*
388 * Free the io map PTEs associated with this IO operation.
389 * We also invalidate the TLB entries and restore the original b_addr.
390 */
391void
392vunmapbuf(bp)
393	register struct buf *bp;
394{
395	register caddr_t addr;
396	vm_offset_t pa;
397
398	if ((bp->b_flags & B_PHYS) == 0)
399		panic("vunmapbuf");
400
401	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
402	    addr < bp->b_data + bp->b_bufsize;
403	    addr += PAGE_SIZE) {
404		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
405		pmap_kremove((vm_offset_t) addr);
406		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
407	}
408
409	bp->b_data = bp->b_saveaddr;
410}
411
412/*
413 * Force reset the processor by invalidating the entire address space!
414 */
415
416#ifdef SMP
417static void
418cpu_reset_proxy()
419{
420
421	cpu_reset_proxy_active = 1;
422	while (cpu_reset_proxy_active == 1)
423		;	 /* Wait for other cpu to see that we've started */
424	stop_cpus((1<<cpu_reset_proxyid));
425	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
426	DELAY(1000000);
427	cpu_reset_real();
428}
429#endif
430
431void
432cpu_reset()
433{
434#ifdef SMP
435	if (smp_active == 0) {
436		cpu_reset_real();
437		/* NOTREACHED */
438	} else {
439
440		u_int map;
441		int cnt;
442		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
443
444		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
445
446		if (map != 0) {
447			printf("cpu_reset: Stopping other CPUs\n");
448			stop_cpus(map);		/* Stop all other CPUs */
449		}
450
451		if (PCPU_GET(cpuid) == 0) {
452			DELAY(1000000);
453			cpu_reset_real();
454			/* NOTREACHED */
455		} else {
456			/* We are not BSP (CPU #0) */
457
458			cpu_reset_proxyid = PCPU_GET(cpuid);
459			cpustop_restartfunc = cpu_reset_proxy;
460			cpu_reset_proxy_active = 0;
461			printf("cpu_reset: Restarting BSP\n");
462			started_cpus = (1<<0);		/* Restart CPU #0 */
463
464			cnt = 0;
465			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
466				cnt++;	/* Wait for BSP to announce restart */
467			if (cpu_reset_proxy_active == 0)
468				printf("cpu_reset: Failed to restart BSP\n");
469			enable_intr();
470			cpu_reset_proxy_active = 2;
471
472			while (1);
473			/* NOTREACHED */
474		}
475	}
476#else
477	cpu_reset_real();
478#endif
479}
480
481static void
482cpu_reset_real()
483{
484
485#ifdef PC98
486	/*
487	 * Attempt to do a CPU reset via CPU reset port.
488	 */
489	disable_intr();
490	if ((inb(0x35) & 0xa0) != 0xa0) {
491		outb(0x37, 0x0f);		/* SHUT0 = 0. */
492		outb(0x37, 0x0b);		/* SHUT1 = 0. */
493	}
494	outb(0xf0, 0x00);		/* Reset. */
495#else
496	/*
497	 * Attempt to do a CPU reset via the keyboard controller,
498	 * do not turn of the GateA20, as any machine that fails
499	 * to do the reset here would then end up in no man's land.
500	 */
501
502#if !defined(BROKEN_KEYBOARD_RESET)
503	outb(IO_KBD + 4, 0xFE);
504	DELAY(500000);	/* wait 0.5 sec to see if that did it */
505	printf("Keyboard reset did not work, attempting CPU shutdown\n");
506	DELAY(1000000);	/* wait 1 sec for printf to complete */
507#endif
508#endif /* PC98 */
509	/* force a shutdown by unmapping entire address space ! */
510	bzero((caddr_t) PTD, PAGE_SIZE);
511
512	/* "good night, sweet prince .... <THUNK!>" */
513	invltlb();
514	/* NOTREACHED */
515	while(1);
516}
517
518int
519grow_stack(p, sp)
520	struct proc *p;
521	u_int sp;
522{
523	int rv;
524
525	rv = vm_map_growstack (p, sp);
526	if (rv != KERN_SUCCESS)
527		return (0);
528
529	return (1);
530}
531
532SYSCTL_DECL(_vm_stats_misc);
533
534static int cnt_prezero;
535
536SYSCTL_INT(_vm_stats_misc, OID_AUTO,
537	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
538
539/*
540 * Implement the pre-zeroed page mechanism.
541 * This routine is called from the idle loop.
542 */
543
544#define ZIDLE_LO(v)	((v) * 2 / 3)
545#define ZIDLE_HI(v)	((v) * 4 / 5)
546
547int
548vm_page_zero_idle()
549{
550	static int free_rover;
551	static int zero_state;
552	vm_page_t m;
553	int s;
554
555	/*
556	 * Attempt to maintain approximately 1/2 of our free pages in a
557	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
558	 * generally zeroing a page when the system is near steady-state.
559	 * Otherwise we might get 'flutter' during disk I/O / IPC or
560	 * fast sleeps.  We also do not want to be continuously zeroing
561	 * pages because doing so may flush our L1 and L2 caches too much.
562	 */
563
564	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
565		return(0);
566	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
567		return(0);
568
569	if (mtx_trylock(&Giant)) {
570		s = splvm();
571		zero_state = 0;
572		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
573		if (m != NULL && (m->flags & PG_ZERO) == 0) {
574			vm_page_queues[m->queue].lcnt--;
575			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
576			m->queue = PQ_NONE;
577			splx(s);
578			pmap_zero_page(VM_PAGE_TO_PHYS(m));
579			(void)splvm();
580			vm_page_flag_set(m, PG_ZERO);
581			m->queue = PQ_FREE + m->pc;
582			vm_page_queues[m->queue].lcnt++;
583			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
584			    pageq);
585			++vm_page_zero_count;
586			++cnt_prezero;
587			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
588				zero_state = 1;
589		}
590		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
591		splx(s);
592		mtx_unlock(&Giant);
593		return (1);
594	}
595	return (0);
596}
597
598/*
599 * Software interrupt handler for queued VM system processing.
600 */
601void
602swi_vm(void *dummy)
603{
604	if (busdma_swi_pending != 0)
605		busdma_swi();
606}
607
608/*
609 * Tell whether this address is in some physical memory region.
610 * Currently used by the kernel coredump code in order to avoid
611 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
612 * or other unpredictable behaviour.
613 */
614
615int
616is_physical_memory(addr)
617	vm_offset_t addr;
618{
619
620#ifdef DEV_ISA
621	/* The ISA ``memory hole''. */
622	if (addr >= 0xa0000 && addr < 0x100000)
623		return 0;
624#endif
625
626	/*
627	 * stuff other tests for known memory-mapped devices (PCI?)
628	 * here
629	 */
630
631	return 1;
632}
633