vm_machdep.c revision 72200
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 72200 2001-02-09 06:11:45Z bmilekic $
42 */
43
44#include "opt_npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50#include "opt_isa.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/malloc.h>
55#include <sys/proc.h>
56#include <sys/bio.h>
57#include <sys/buf.h>
58#include <sys/vnode.h>
59#include <sys/vmmeter.h>
60#include <sys/kernel.h>
61#include <sys/ktr.h>
62#include <sys/mutex.h>
63#include <sys/sysctl.h>
64#include <sys/unistd.h>
65
66#include <machine/cpu.h>
67#include <machine/md_var.h>
68#ifdef SMP
69#include <machine/smp.h>
70#endif
71#include <machine/pcb.h>
72#include <machine/pcb_ext.h>
73#include <machine/vm86.h>
74
75#include <vm/vm.h>
76#include <vm/vm_param.h>
77#include <sys/lock.h>
78#include <vm/vm_kern.h>
79#include <vm/vm_page.h>
80#include <vm/vm_map.h>
81#include <vm/vm_extern.h>
82
83#include <sys/user.h>
84
85#ifdef PC98
86#include <pc98/pc98/pc98.h>
87#else
88#include <i386/isa/isa.h>
89#endif
90
91static void	cpu_reset_real __P((void));
92#ifdef SMP
93static void	cpu_reset_proxy __P((void));
94static u_int	cpu_reset_proxyid;
95static volatile u_int	cpu_reset_proxy_active;
96#endif
97extern int	_ucodesel, _udatasel;
98
99/*
100 * quick version of vm_fault
101 */
102int
103vm_fault_quick(v, prot)
104	caddr_t v;
105	int prot;
106{
107	int r;
108
109	if (prot & VM_PROT_WRITE)
110		r = subyte(v, fubyte(v));
111	else
112		r = fubyte(v);
113	return(r);
114}
115
116/*
117 * Finish a fork operation, with process p2 nearly set up.
118 * Copy and update the pcb, set up the stack so that the child
119 * ready to run and return to user mode.
120 */
121void
122cpu_fork(p1, p2, flags)
123	register struct proc *p1, *p2;
124	int flags;
125{
126	struct pcb *pcb2;
127
128	if ((flags & RFPROC) == 0) {
129#ifdef USER_LDT
130		if ((flags & RFMEM) == 0) {
131			/* unshare user LDT */
132			struct pcb *pcb1 = &p1->p_addr->u_pcb;
133			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
134			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
135				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
136				user_ldt_free(pcb1);
137				pcb1->pcb_ldt = pcb_ldt;
138				set_user_ldt(pcb1);
139			}
140		}
141#endif
142		return;
143	}
144
145#ifdef DEV_NPX
146	/* Ensure that p1's pcb is up to date. */
147	if (PCPU_GET(npxproc) == p1)
148		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
149#endif
150
151	/* Copy p1's pcb. */
152	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
153	pcb2 = &p2->p_addr->u_pcb;
154
155	/*
156	 * Create a new fresh stack for the new process.
157	 * Copy the trap frame for the return to user mode as if from a
158	 * syscall.  This copies the user mode register values.
159	 */
160	p2->p_md.md_regs = (struct trapframe *)
161			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
162	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
163
164	p2->p_md.md_regs->tf_eax = 0;		/* Child returns zero */
165	p2->p_md.md_regs->tf_eflags &= ~PSL_C;	/* success */
166	p2->p_md.md_regs->tf_edx = 1;
167
168	/*
169	 * Set registers for trampoline to user mode.  Leave space for the
170	 * return address on stack.  These are the kernel mode register values.
171	 */
172	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
173	pcb2->pcb_edi = 0;
174	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
175	pcb2->pcb_ebp = 0;
176	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
177	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
178	pcb2->pcb_eip = (int)fork_trampoline;
179	/*
180	 * pcb2->pcb_ldt:	duplicated below, if necessary.
181	 * pcb2->pcb_savefpu:	cloned above.
182	 * pcb2->pcb_flags:	cloned above (always 0 here?).
183	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
184	 */
185
186	pcb2->pcb_schednest = 0;
187
188	/*
189	 * XXX don't copy the i/o pages.  this should probably be fixed.
190	 */
191	pcb2->pcb_ext = 0;
192
193#ifdef USER_LDT
194        /* Copy the LDT, if necessary. */
195        if (pcb2->pcb_ldt != 0) {
196		if (flags & RFMEM) {
197			pcb2->pcb_ldt->ldt_refcnt++;
198		} else {
199			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
200				pcb2->pcb_ldt->ldt_len);
201		}
202        }
203#endif
204
205	/*
206	 * Now, cpu_switch() can schedule the new process.
207	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
208	 * containing the return address when exiting cpu_switch.
209	 * This will normally be to fork_trampoline(), which will have
210	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
211	 * will set up a stack to call fork_return(p, frame); to complete
212	 * the return to user-mode.
213	 */
214}
215
216/*
217 * Intercept the return address from a freshly forked process that has NOT
218 * been scheduled yet.
219 *
220 * This is needed to make kernel threads stay in kernel mode.
221 */
222void
223cpu_set_fork_handler(p, func, arg)
224	struct proc *p;
225	void (*func) __P((void *));
226	void *arg;
227{
228	/*
229	 * Note that the trap frame follows the args, so the function
230	 * is really called like this:  func(arg, frame);
231	 */
232	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
233	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
234}
235
236void
237cpu_exit(p)
238	register struct proc *p;
239{
240	struct pcb *pcb = &p->p_addr->u_pcb;
241
242#ifdef DEV_NPX
243	npxexit(p);
244#endif
245	if (pcb->pcb_ext != 0) {
246	        /*
247		 * XXX do we need to move the TSS off the allocated pages
248		 * before freeing them?  (not done here)
249		 */
250		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
251		    ctob(IOPAGES + 1));
252		pcb->pcb_ext = 0;
253	}
254#ifdef USER_LDT
255	user_ldt_free(pcb);
256#endif
257        if (pcb->pcb_flags & PCB_DBREGS) {
258                /*
259                 * disable all hardware breakpoints
260                 */
261                reset_dbregs();
262                pcb->pcb_flags &= ~PCB_DBREGS;
263        }
264	mtx_lock_spin(&sched_lock);
265	mtx_unlock_flags(&Giant, MTX_NOSWITCH);
266	mtx_assert(&Giant, MA_NOTOWNED);
267
268	/*
269	 * We have to wait until after releasing all locks before
270	 * changing p_stat.  If we block on a mutex then we will be
271	 * back at SRUN when we resume and our parent will never
272	 * harvest us.
273	 */
274	p->p_stat = SZOMB;
275
276	mp_fixme("assumption: p_pptr won't change at this time");
277	wakeup(p->p_pptr);
278
279	cnt.v_swtch++;
280	cpu_throw();
281	panic("cpu_exit");
282}
283
284void
285cpu_wait(p)
286	struct proc *p;
287{
288	/* drop per-process resources */
289	pmap_dispose_proc(p);
290
291	/* and clean-out the vmspace */
292	vmspace_free(p->p_vmspace);
293}
294
295/*
296 * Dump the machine specific header information at the start of a core dump.
297 */
298int
299cpu_coredump(p, vp, cred)
300	struct proc *p;
301	struct vnode *vp;
302	struct ucred *cred;
303{
304	int error;
305	caddr_t tempuser;
306
307	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK | M_ZERO);
308	if (!tempuser)
309		return EINVAL;
310
311	bcopy(p->p_addr, tempuser, sizeof(struct user));
312	bcopy(p->p_md.md_regs,
313	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
314	      sizeof(struct trapframe));
315
316	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
317			ctob(UPAGES),
318			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
319			cred, (int *)NULL, p);
320
321	free(tempuser, M_TEMP);
322
323	return error;
324}
325
326#ifdef notyet
327static void
328setredzone(pte, vaddr)
329	u_short *pte;
330	caddr_t vaddr;
331{
332/* eventually do this by setting up an expand-down stack segment
333   for ss0: selector, allowing stack access down to top of u.
334   this means though that protection violations need to be handled
335   thru a double fault exception that must do an integral task
336   switch to a known good context, within which a dump can be
337   taken. a sensible scheme might be to save the initial context
338   used by sched (that has physical memory mapped 1:1 at bottom)
339   and take the dump while still in mapped mode */
340}
341#endif
342
343/*
344 * Convert kernel VA to physical address
345 */
346u_long
347kvtop(void *addr)
348{
349	vm_offset_t va;
350
351	va = pmap_kextract((vm_offset_t)addr);
352	if (va == 0)
353		panic("kvtop: zero page frame");
354	return((int)va);
355}
356
357/*
358 * Map an IO request into kernel virtual address space.
359 *
360 * All requests are (re)mapped into kernel VA space.
361 * Notice that we use b_bufsize for the size of the buffer
362 * to be mapped.  b_bcount might be modified by the driver.
363 */
364void
365vmapbuf(bp)
366	register struct buf *bp;
367{
368	register caddr_t addr, v, kva;
369	vm_offset_t pa;
370
371	if ((bp->b_flags & B_PHYS) == 0)
372		panic("vmapbuf");
373
374	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
375	    addr < bp->b_data + bp->b_bufsize;
376	    addr += PAGE_SIZE, v += PAGE_SIZE) {
377		/*
378		 * Do the vm_fault if needed; do the copy-on-write thing
379		 * when reading stuff off device into memory.
380		 */
381		vm_fault_quick(addr,
382			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
383		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
384		if (pa == 0)
385			panic("vmapbuf: page not present");
386		vm_page_hold(PHYS_TO_VM_PAGE(pa));
387		pmap_kenter((vm_offset_t) v, pa);
388	}
389
390	kva = bp->b_saveaddr;
391	bp->b_saveaddr = bp->b_data;
392	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
393}
394
395/*
396 * Free the io map PTEs associated with this IO operation.
397 * We also invalidate the TLB entries and restore the original b_addr.
398 */
399void
400vunmapbuf(bp)
401	register struct buf *bp;
402{
403	register caddr_t addr;
404	vm_offset_t pa;
405
406	if ((bp->b_flags & B_PHYS) == 0)
407		panic("vunmapbuf");
408
409	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
410	    addr < bp->b_data + bp->b_bufsize;
411	    addr += PAGE_SIZE) {
412		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
413		pmap_kremove((vm_offset_t) addr);
414		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
415	}
416
417	bp->b_data = bp->b_saveaddr;
418}
419
420/*
421 * Force reset the processor by invalidating the entire address space!
422 */
423
424#ifdef SMP
425static void
426cpu_reset_proxy()
427{
428
429	cpu_reset_proxy_active = 1;
430	while (cpu_reset_proxy_active == 1)
431		;	 /* Wait for other cpu to see that we've started */
432	stop_cpus((1<<cpu_reset_proxyid));
433	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
434	DELAY(1000000);
435	cpu_reset_real();
436}
437#endif
438
439void
440cpu_reset()
441{
442#ifdef SMP
443	if (smp_active == 0) {
444		cpu_reset_real();
445		/* NOTREACHED */
446	} else {
447
448		u_int map;
449		int cnt;
450		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
451
452		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
453
454		if (map != 0) {
455			printf("cpu_reset: Stopping other CPUs\n");
456			stop_cpus(map);		/* Stop all other CPUs */
457		}
458
459		if (PCPU_GET(cpuid) == 0) {
460			DELAY(1000000);
461			cpu_reset_real();
462			/* NOTREACHED */
463		} else {
464			/* We are not BSP (CPU #0) */
465
466			cpu_reset_proxyid = PCPU_GET(cpuid);
467			cpustop_restartfunc = cpu_reset_proxy;
468			cpu_reset_proxy_active = 0;
469			printf("cpu_reset: Restarting BSP\n");
470			started_cpus = (1<<0);		/* Restart CPU #0 */
471
472			cnt = 0;
473			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
474				cnt++;	/* Wait for BSP to announce restart */
475			if (cpu_reset_proxy_active == 0)
476				printf("cpu_reset: Failed to restart BSP\n");
477			enable_intr();
478			cpu_reset_proxy_active = 2;
479
480			while (1);
481			/* NOTREACHED */
482		}
483	}
484#else
485	cpu_reset_real();
486#endif
487}
488
489static void
490cpu_reset_real()
491{
492
493#ifdef PC98
494	/*
495	 * Attempt to do a CPU reset via CPU reset port.
496	 */
497	disable_intr();
498	if ((inb(0x35) & 0xa0) != 0xa0) {
499		outb(0x37, 0x0f);		/* SHUT0 = 0. */
500		outb(0x37, 0x0b);		/* SHUT1 = 0. */
501	}
502	outb(0xf0, 0x00);		/* Reset. */
503#else
504	/*
505	 * Attempt to do a CPU reset via the keyboard controller,
506	 * do not turn of the GateA20, as any machine that fails
507	 * to do the reset here would then end up in no man's land.
508	 */
509
510#if !defined(BROKEN_KEYBOARD_RESET)
511	outb(IO_KBD + 4, 0xFE);
512	DELAY(500000);	/* wait 0.5 sec to see if that did it */
513	printf("Keyboard reset did not work, attempting CPU shutdown\n");
514	DELAY(1000000);	/* wait 1 sec for printf to complete */
515#endif
516#endif /* PC98 */
517	/* force a shutdown by unmapping entire address space ! */
518	bzero((caddr_t) PTD, PAGE_SIZE);
519
520	/* "good night, sweet prince .... <THUNK!>" */
521	invltlb();
522	/* NOTREACHED */
523	while(1);
524}
525
526int
527grow_stack(p, sp)
528	struct proc *p;
529	u_int sp;
530{
531	int rv;
532
533	rv = vm_map_growstack (p, sp);
534	if (rv != KERN_SUCCESS)
535		return (0);
536
537	return (1);
538}
539
540SYSCTL_DECL(_vm_stats_misc);
541
542static int cnt_prezero;
543
544SYSCTL_INT(_vm_stats_misc, OID_AUTO,
545	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
546
547/*
548 * Implement the pre-zeroed page mechanism.
549 * This routine is called from the idle loop.
550 */
551
552#define ZIDLE_LO(v)	((v) * 2 / 3)
553#define ZIDLE_HI(v)	((v) * 4 / 5)
554
555int
556vm_page_zero_idle()
557{
558	static int free_rover;
559	static int zero_state;
560	vm_page_t m;
561	int s;
562
563	/*
564	 * Attempt to maintain approximately 1/2 of our free pages in a
565	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
566	 * generally zeroing a page when the system is near steady-state.
567	 * Otherwise we might get 'flutter' during disk I/O / IPC or
568	 * fast sleeps.  We also do not want to be continuously zeroing
569	 * pages because doing so may flush our L1 and L2 caches too much.
570	 */
571
572	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
573		return(0);
574	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
575		return(0);
576
577	if (mtx_trylock(&Giant)) {
578		s = splvm();
579		zero_state = 0;
580		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
581		if (m != NULL && (m->flags & PG_ZERO) == 0) {
582			vm_page_queues[m->queue].lcnt--;
583			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
584			m->queue = PQ_NONE;
585			splx(s);
586			pmap_zero_page(VM_PAGE_TO_PHYS(m));
587			(void)splvm();
588			vm_page_flag_set(m, PG_ZERO);
589			m->queue = PQ_FREE + m->pc;
590			vm_page_queues[m->queue].lcnt++;
591			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
592			    pageq);
593			++vm_page_zero_count;
594			++cnt_prezero;
595			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
596				zero_state = 1;
597		}
598		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
599		splx(s);
600		mtx_unlock(&Giant);
601		return (1);
602	}
603	return (0);
604}
605
606/*
607 * Software interrupt handler for queued VM system processing.
608 */
609void
610swi_vm(void *dummy)
611{
612	if (busdma_swi_pending != 0)
613		busdma_swi();
614}
615
616/*
617 * Tell whether this address is in some physical memory region.
618 * Currently used by the kernel coredump code in order to avoid
619 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
620 * or other unpredictable behaviour.
621 */
622
623int
624is_physical_memory(addr)
625	vm_offset_t addr;
626{
627
628#ifdef DEV_ISA
629	/* The ISA ``memory hole''. */
630	if (addr >= 0xa0000 && addr < 0x100000)
631		return 0;
632#endif
633
634	/*
635	 * stuff other tests for known memory-mapped devices (PCI?)
636	 * here
637	 */
638
639	return 1;
640}
641