vm_machdep.c revision 71257
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 71257 2001-01-19 13:19:02Z peter $
42 */
43
44#include "opt_npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/sysctl.h>
63#include <sys/unistd.h>
64
65#include <machine/cpu.h>
66#include <machine/md_var.h>
67#ifdef SMP
68#include <machine/smp.h>
69#endif
70#include <machine/pcb.h>
71#include <machine/pcb_ext.h>
72#include <machine/vm86.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76#include <sys/lock.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_page.h>
79#include <vm/vm_map.h>
80#include <vm/vm_extern.h>
81
82#include <sys/user.h>
83
84#ifdef PC98
85#include <pc98/pc98/pc98.h>
86#else
87#include <i386/isa/isa.h>
88#endif
89
90static void	cpu_reset_real __P((void));
91#ifdef SMP
92static void	cpu_reset_proxy __P((void));
93static u_int	cpu_reset_proxyid;
94static volatile u_int	cpu_reset_proxy_active;
95#endif
96extern int	_ucodesel, _udatasel;
97
98/*
99 * quick version of vm_fault
100 */
101int
102vm_fault_quick(v, prot)
103	caddr_t v;
104	int prot;
105{
106	int r;
107
108	if (prot & VM_PROT_WRITE)
109		r = subyte(v, fubyte(v));
110	else
111		r = fubyte(v);
112	return(r);
113}
114
115/*
116 * Finish a fork operation, with process p2 nearly set up.
117 * Copy and update the pcb, set up the stack so that the child
118 * ready to run and return to user mode.
119 */
120void
121cpu_fork(p1, p2, flags)
122	register struct proc *p1, *p2;
123	int flags;
124{
125	struct pcb *pcb2;
126
127	if ((flags & RFPROC) == 0) {
128#ifdef USER_LDT
129		if ((flags & RFMEM) == 0) {
130			/* unshare user LDT */
131			struct pcb *pcb1 = &p1->p_addr->u_pcb;
132			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
133			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
134				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
135				user_ldt_free(pcb1);
136				pcb1->pcb_ldt = pcb_ldt;
137				set_user_ldt(pcb1);
138			}
139		}
140#endif
141		return;
142	}
143
144#ifdef DEV_NPX
145	/* Ensure that p1's pcb is up to date. */
146	if (PCPU_GET(npxproc) == p1)
147		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
148#endif
149
150	/* Copy p1's pcb. */
151	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
152	pcb2 = &p2->p_addr->u_pcb;
153
154	/*
155	 * Create a new fresh stack for the new process.
156	 * Copy the trap frame for the return to user mode as if from a
157	 * syscall.  This copies the user mode register values.
158	 */
159	p2->p_md.md_regs = (struct trapframe *)
160			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
161	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
162
163	/*
164	 * Set registers for trampoline to user mode.  Leave space for the
165	 * return address on stack.  These are the kernel mode register values.
166	 */
167	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
168	pcb2->pcb_edi = 0;
169	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
170	pcb2->pcb_ebp = 0;
171	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
172	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
173	pcb2->pcb_eip = (int)fork_trampoline;
174	/*
175	 * pcb2->pcb_ldt:	duplicated below, if necessary.
176	 * pcb2->pcb_savefpu:	cloned above.
177	 * pcb2->pcb_flags:	cloned above (always 0 here?).
178	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
179	 */
180
181	pcb2->pcb_schednest = 0;
182
183	/*
184	 * XXX don't copy the i/o pages.  this should probably be fixed.
185	 */
186	pcb2->pcb_ext = 0;
187
188#ifdef USER_LDT
189        /* Copy the LDT, if necessary. */
190        if (pcb2->pcb_ldt != 0) {
191		if (flags & RFMEM) {
192			pcb2->pcb_ldt->ldt_refcnt++;
193		} else {
194			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
195				pcb2->pcb_ldt->ldt_len);
196		}
197        }
198#endif
199
200	/*
201	 * Now, cpu_switch() can schedule the new process.
202	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
203	 * containing the return address when exiting cpu_switch.
204	 * This will normally be to fork_trampoline(), which will have
205	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
206	 * will set up a stack to call fork_return(p, frame); to complete
207	 * the return to user-mode.
208	 */
209}
210
211/*
212 * Intercept the return address from a freshly forked process that has NOT
213 * been scheduled yet.
214 *
215 * This is needed to make kernel threads stay in kernel mode.
216 */
217void
218cpu_set_fork_handler(p, func, arg)
219	struct proc *p;
220	void (*func) __P((void *));
221	void *arg;
222{
223	/*
224	 * Note that the trap frame follows the args, so the function
225	 * is really called like this:  func(arg, frame);
226	 */
227	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
228	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
229}
230
231void
232cpu_exit(p)
233	register struct proc *p;
234{
235	struct pcb *pcb = &p->p_addr->u_pcb;
236
237#ifdef DEV_NPX
238	npxexit(p);
239#endif
240	if (pcb->pcb_ext != 0) {
241	        /*
242		 * XXX do we need to move the TSS off the allocated pages
243		 * before freeing them?  (not done here)
244		 */
245		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
246		    ctob(IOPAGES + 1));
247		pcb->pcb_ext = 0;
248	}
249#ifdef USER_LDT
250	user_ldt_free(pcb);
251#endif
252        if (pcb->pcb_flags & PCB_DBREGS) {
253                /*
254                 * disable all hardware breakpoints
255                 */
256                reset_dbregs();
257                pcb->pcb_flags &= ~PCB_DBREGS;
258        }
259	mtx_enter(&sched_lock, MTX_SPIN);
260	mtx_exit(&Giant, MTX_DEF | MTX_NOSWITCH);
261	mtx_assert(&Giant, MA_NOTOWNED);
262
263	/*
264	 * We have to wait until after releasing all locks before
265	 * changing p_stat.  If we block on a mutex then we will be
266	 * back at SRUN when we resume and our parent will never
267	 * harvest us.
268	 */
269	p->p_stat = SZOMB;
270
271	mp_fixme("assumption: p_pptr won't change at this time");
272	wakeup(p->p_pptr);
273
274	cnt.v_swtch++;
275	cpu_throw();
276	panic("cpu_exit");
277}
278
279void
280cpu_wait(p)
281	struct proc *p;
282{
283	/* drop per-process resources */
284	pmap_dispose_proc(p);
285
286	/* and clean-out the vmspace */
287	vmspace_free(p->p_vmspace);
288}
289
290/*
291 * Dump the machine specific header information at the start of a core dump.
292 */
293int
294cpu_coredump(p, vp, cred)
295	struct proc *p;
296	struct vnode *vp;
297	struct ucred *cred;
298{
299	int error;
300	caddr_t tempuser;
301
302	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK | M_ZERO);
303	if (!tempuser)
304		return EINVAL;
305
306	bcopy(p->p_addr, tempuser, sizeof(struct user));
307	bcopy(p->p_md.md_regs,
308	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
309	      sizeof(struct trapframe));
310
311	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
312			ctob(UPAGES),
313			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
314			cred, (int *)NULL, p);
315
316	free(tempuser, M_TEMP);
317
318	return error;
319}
320
321#ifdef notyet
322static void
323setredzone(pte, vaddr)
324	u_short *pte;
325	caddr_t vaddr;
326{
327/* eventually do this by setting up an expand-down stack segment
328   for ss0: selector, allowing stack access down to top of u.
329   this means though that protection violations need to be handled
330   thru a double fault exception that must do an integral task
331   switch to a known good context, within which a dump can be
332   taken. a sensible scheme might be to save the initial context
333   used by sched (that has physical memory mapped 1:1 at bottom)
334   and take the dump while still in mapped mode */
335}
336#endif
337
338/*
339 * Convert kernel VA to physical address
340 */
341u_long
342kvtop(void *addr)
343{
344	vm_offset_t va;
345
346	va = pmap_kextract((vm_offset_t)addr);
347	if (va == 0)
348		panic("kvtop: zero page frame");
349	return((int)va);
350}
351
352/*
353 * Map an IO request into kernel virtual address space.
354 *
355 * All requests are (re)mapped into kernel VA space.
356 * Notice that we use b_bufsize for the size of the buffer
357 * to be mapped.  b_bcount might be modified by the driver.
358 */
359void
360vmapbuf(bp)
361	register struct buf *bp;
362{
363	register caddr_t addr, v, kva;
364	vm_offset_t pa;
365
366	if ((bp->b_flags & B_PHYS) == 0)
367		panic("vmapbuf");
368
369	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
370	    addr < bp->b_data + bp->b_bufsize;
371	    addr += PAGE_SIZE, v += PAGE_SIZE) {
372		/*
373		 * Do the vm_fault if needed; do the copy-on-write thing
374		 * when reading stuff off device into memory.
375		 */
376		vm_fault_quick(addr,
377			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
378		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
379		if (pa == 0)
380			panic("vmapbuf: page not present");
381		vm_page_hold(PHYS_TO_VM_PAGE(pa));
382		pmap_kenter((vm_offset_t) v, pa);
383	}
384
385	kva = bp->b_saveaddr;
386	bp->b_saveaddr = bp->b_data;
387	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
388}
389
390/*
391 * Free the io map PTEs associated with this IO operation.
392 * We also invalidate the TLB entries and restore the original b_addr.
393 */
394void
395vunmapbuf(bp)
396	register struct buf *bp;
397{
398	register caddr_t addr;
399	vm_offset_t pa;
400
401	if ((bp->b_flags & B_PHYS) == 0)
402		panic("vunmapbuf");
403
404	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
405	    addr < bp->b_data + bp->b_bufsize;
406	    addr += PAGE_SIZE) {
407		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
408		pmap_kremove((vm_offset_t) addr);
409		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
410	}
411
412	bp->b_data = bp->b_saveaddr;
413}
414
415/*
416 * Force reset the processor by invalidating the entire address space!
417 */
418
419#ifdef SMP
420static void
421cpu_reset_proxy()
422{
423
424	cpu_reset_proxy_active = 1;
425	while (cpu_reset_proxy_active == 1)
426		;	 /* Wait for other cpu to see that we've started */
427	stop_cpus((1<<cpu_reset_proxyid));
428	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
429	DELAY(1000000);
430	cpu_reset_real();
431}
432#endif
433
434void
435cpu_reset()
436{
437#ifdef SMP
438	if (smp_active == 0) {
439		cpu_reset_real();
440		/* NOTREACHED */
441	} else {
442
443		u_int map;
444		int cnt;
445		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
446
447		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
448
449		if (map != 0) {
450			printf("cpu_reset: Stopping other CPUs\n");
451			stop_cpus(map);		/* Stop all other CPUs */
452		}
453
454		if (PCPU_GET(cpuid) == 0) {
455			DELAY(1000000);
456			cpu_reset_real();
457			/* NOTREACHED */
458		} else {
459			/* We are not BSP (CPU #0) */
460
461			cpu_reset_proxyid = PCPU_GET(cpuid);
462			cpustop_restartfunc = cpu_reset_proxy;
463			cpu_reset_proxy_active = 0;
464			printf("cpu_reset: Restarting BSP\n");
465			started_cpus = (1<<0);		/* Restart CPU #0 */
466
467			cnt = 0;
468			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
469				cnt++;	/* Wait for BSP to announce restart */
470			if (cpu_reset_proxy_active == 0)
471				printf("cpu_reset: Failed to restart BSP\n");
472			enable_intr();
473			cpu_reset_proxy_active = 2;
474
475			while (1);
476			/* NOTREACHED */
477		}
478	}
479#else
480	cpu_reset_real();
481#endif
482}
483
484static void
485cpu_reset_real()
486{
487
488#ifdef PC98
489	/*
490	 * Attempt to do a CPU reset via CPU reset port.
491	 */
492	disable_intr();
493	if ((inb(0x35) & 0xa0) != 0xa0) {
494		outb(0x37, 0x0f);		/* SHUT0 = 0. */
495		outb(0x37, 0x0b);		/* SHUT1 = 0. */
496	}
497	outb(0xf0, 0x00);		/* Reset. */
498#else
499	/*
500	 * Attempt to do a CPU reset via the keyboard controller,
501	 * do not turn of the GateA20, as any machine that fails
502	 * to do the reset here would then end up in no man's land.
503	 */
504
505#if !defined(BROKEN_KEYBOARD_RESET)
506	outb(IO_KBD + 4, 0xFE);
507	DELAY(500000);	/* wait 0.5 sec to see if that did it */
508	printf("Keyboard reset did not work, attempting CPU shutdown\n");
509	DELAY(1000000);	/* wait 1 sec for printf to complete */
510#endif
511#endif /* PC98 */
512	/* force a shutdown by unmapping entire address space ! */
513	bzero((caddr_t) PTD, PAGE_SIZE);
514
515	/* "good night, sweet prince .... <THUNK!>" */
516	invltlb();
517	/* NOTREACHED */
518	while(1);
519}
520
521int
522grow_stack(p, sp)
523	struct proc *p;
524	u_int sp;
525{
526	int rv;
527
528	rv = vm_map_growstack (p, sp);
529	if (rv != KERN_SUCCESS)
530		return (0);
531
532	return (1);
533}
534
535SYSCTL_DECL(_vm_stats_misc);
536
537static int cnt_prezero;
538
539SYSCTL_INT(_vm_stats_misc, OID_AUTO,
540	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
541
542/*
543 * Implement the pre-zeroed page mechanism.
544 * This routine is called from the idle loop.
545 */
546
547#define ZIDLE_LO(v)	((v) * 2 / 3)
548#define ZIDLE_HI(v)	((v) * 4 / 5)
549
550int
551vm_page_zero_idle()
552{
553	static int free_rover;
554	static int zero_state;
555	vm_page_t m;
556	int s;
557
558	/*
559	 * Attempt to maintain approximately 1/2 of our free pages in a
560	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
561	 * generally zeroing a page when the system is near steady-state.
562	 * Otherwise we might get 'flutter' during disk I/O / IPC or
563	 * fast sleeps.  We also do not want to be continuously zeroing
564	 * pages because doing so may flush our L1 and L2 caches too much.
565	 */
566
567	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
568		return(0);
569	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
570		return(0);
571
572	if (mtx_try_enter(&Giant, MTX_DEF)) {
573		s = splvm();
574		zero_state = 0;
575		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
576		if (m != NULL && (m->flags & PG_ZERO) == 0) {
577			vm_page_queues[m->queue].lcnt--;
578			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
579			m->queue = PQ_NONE;
580			splx(s);
581			pmap_zero_page(VM_PAGE_TO_PHYS(m));
582			(void)splvm();
583			vm_page_flag_set(m, PG_ZERO);
584			m->queue = PQ_FREE + m->pc;
585			vm_page_queues[m->queue].lcnt++;
586			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
587			    pageq);
588			++vm_page_zero_count;
589			++cnt_prezero;
590			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
591				zero_state = 1;
592		}
593		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
594		splx(s);
595		mtx_exit(&Giant, MTX_DEF);
596		return (1);
597	}
598	return (0);
599}
600
601/*
602 * Software interrupt handler for queued VM system processing.
603 */
604void
605swi_vm(void *dummy)
606{
607	if (busdma_swi_pending != 0)
608		busdma_swi();
609}
610
611/*
612 * Tell whether this address is in some physical memory region.
613 * Currently used by the kernel coredump code in order to avoid
614 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
615 * or other unpredictable behaviour.
616 */
617
618#include "isa.h"
619
620int
621is_physical_memory(addr)
622	vm_offset_t addr;
623{
624
625#if NISA > 0
626	/* The ISA ``memory hole''. */
627	if (addr >= 0xa0000 && addr < 0x100000)
628		return 0;
629#endif
630
631	/*
632	 * stuff other tests for known memory-mapped devices (PCI?)
633	 * here
634	 */
635
636	return 1;
637}
638