vm_machdep.c revision 67360
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 67360 2000-10-20 07:43:55Z jhb $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/sysctl.h>
63#include <sys/unistd.h>
64
65#include <machine/cpu.h>
66#include <machine/md_var.h>
67#ifdef SMP
68#include <machine/smp.h>
69#endif
70#include <machine/pcb.h>
71#include <machine/pcb_ext.h>
72#include <machine/vm86.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76#include <sys/lock.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_page.h>
79#include <vm/vm_map.h>
80#include <vm/vm_extern.h>
81
82#include <sys/user.h>
83
84#ifdef PC98
85#include <pc98/pc98/pc98.h>
86#else
87#include <i386/isa/isa.h>
88#endif
89
90static void	cpu_reset_real __P((void));
91#ifdef SMP
92static void	cpu_reset_proxy __P((void));
93static u_int	cpu_reset_proxyid;
94static volatile u_int	cpu_reset_proxy_active;
95#endif
96extern int	_ucodesel, _udatasel;
97
98/*
99 * quick version of vm_fault
100 */
101int
102vm_fault_quick(v, prot)
103	caddr_t v;
104	int prot;
105{
106	int r;
107
108	if (prot & VM_PROT_WRITE)
109		r = subyte(v, fubyte(v));
110	else
111		r = fubyte(v);
112	return(r);
113}
114
115/*
116 * Finish a fork operation, with process p2 nearly set up.
117 * Copy and update the pcb, set up the stack so that the child
118 * ready to run and return to user mode.
119 */
120void
121cpu_fork(p1, p2, flags)
122	register struct proc *p1, *p2;
123	int flags;
124{
125	struct pcb *pcb2;
126
127	if ((flags & RFPROC) == 0) {
128#ifdef USER_LDT
129		if ((flags & RFMEM) == 0) {
130			/* unshare user LDT */
131			struct pcb *pcb1 = &p1->p_addr->u_pcb;
132			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
133			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
134				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
135				user_ldt_free(pcb1);
136				pcb1->pcb_ldt = pcb_ldt;
137				set_user_ldt(pcb1);
138			}
139		}
140#endif
141		return;
142	}
143
144#if NNPX > 0
145	/* Ensure that p1's pcb is up to date. */
146	if (npxproc == p1)
147		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
148#endif
149
150	/* Copy p1's pcb. */
151	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
152	pcb2 = &p2->p_addr->u_pcb;
153
154	/*
155	 * Create a new fresh stack for the new process.
156	 * Copy the trap frame for the return to user mode as if from a
157	 * syscall.  This copies the user mode register values.
158	 */
159	p2->p_md.md_regs = (struct trapframe *)
160			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
161	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
162
163	/*
164	 * Set registers for trampoline to user mode.  Leave space for the
165	 * return address on stack.  These are the kernel mode register values.
166	 */
167	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
168	pcb2->pcb_edi = 0;
169	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
170	pcb2->pcb_ebp = 0;
171	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
172	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
173	pcb2->pcb_eip = (int)fork_trampoline;
174	/*
175	 * pcb2->pcb_ldt:	duplicated below, if necessary.
176	 * pcb2->pcb_savefpu:	cloned above.
177	 * pcb2->pcb_flags:	cloned above (always 0 here?).
178	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
179	 */
180
181	pcb2->pcb_schednest = 0;
182
183	/*
184	 * XXX don't copy the i/o pages.  this should probably be fixed.
185	 */
186	pcb2->pcb_ext = 0;
187
188#ifdef USER_LDT
189        /* Copy the LDT, if necessary. */
190        if (pcb2->pcb_ldt != 0) {
191		if (flags & RFMEM) {
192			pcb2->pcb_ldt->ldt_refcnt++;
193		} else {
194			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
195				pcb2->pcb_ldt->ldt_len);
196		}
197        }
198#endif
199
200	/*
201	 * Now, cpu_switch() can schedule the new process.
202	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
203	 * containing the return address when exiting cpu_switch.
204	 * This will normally be to fork_trampoline(), which will have
205	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
206	 * will set up a stack to call fork_return(p, frame); to complete
207	 * the return to user-mode.
208	 */
209}
210
211/*
212 * Intercept the return address from a freshly forked process that has NOT
213 * been scheduled yet.
214 *
215 * This is needed to make kernel threads stay in kernel mode.
216 */
217void
218cpu_set_fork_handler(p, func, arg)
219	struct proc *p;
220	void (*func) __P((void *));
221	void *arg;
222{
223	/*
224	 * Note that the trap frame follows the args, so the function
225	 * is really called like this:  func(arg, frame);
226	 */
227	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
228	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
229}
230
231void
232cpu_exit(p)
233	register struct proc *p;
234{
235	struct pcb *pcb = &p->p_addr->u_pcb;
236
237#if NNPX > 0
238	npxexit(p);
239#endif	/* NNPX */
240	if (pcb->pcb_ext != 0) {
241	        /*
242		 * XXX do we need to move the TSS off the allocated pages
243		 * before freeing them?  (not done here)
244		 */
245		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
246		    ctob(IOPAGES + 1));
247		pcb->pcb_ext = 0;
248	}
249#ifdef USER_LDT
250	user_ldt_free(pcb);
251#endif
252        if (pcb->pcb_flags & PCB_DBREGS) {
253                /*
254                 * disable all hardware breakpoints
255                 */
256                reset_dbregs();
257                pcb->pcb_flags &= ~PCB_DBREGS;
258        }
259	mtx_enter(&sched_lock, MTX_SPIN);
260	mtx_exit(&Giant, MTX_DEF | MTX_NOSWITCH);
261	mtx_assert(&Giant, MA_NOTOWNED);
262	cnt.v_swtch++;
263	cpu_throw();
264	panic("cpu_exit");
265}
266
267void
268cpu_wait(p)
269	struct proc *p;
270{
271	/* drop per-process resources */
272	pmap_dispose_proc(p);
273
274	/* and clean-out the vmspace */
275	vmspace_free(p->p_vmspace);
276}
277
278/*
279 * Dump the machine specific header information at the start of a core dump.
280 */
281int
282cpu_coredump(p, vp, cred)
283	struct proc *p;
284	struct vnode *vp;
285	struct ucred *cred;
286{
287	int error;
288	caddr_t tempuser;
289
290	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
291	if (!tempuser)
292		return EINVAL;
293
294	bzero(tempuser, ctob(UPAGES));
295	bcopy(p->p_addr, tempuser, sizeof(struct user));
296	bcopy(p->p_md.md_regs,
297	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
298	      sizeof(struct trapframe));
299
300	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
301			ctob(UPAGES),
302			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
303			cred, (int *)NULL, p);
304
305	free(tempuser, M_TEMP);
306
307	return error;
308}
309
310#ifdef notyet
311static void
312setredzone(pte, vaddr)
313	u_short *pte;
314	caddr_t vaddr;
315{
316/* eventually do this by setting up an expand-down stack segment
317   for ss0: selector, allowing stack access down to top of u.
318   this means though that protection violations need to be handled
319   thru a double fault exception that must do an integral task
320   switch to a known good context, within which a dump can be
321   taken. a sensible scheme might be to save the initial context
322   used by sched (that has physical memory mapped 1:1 at bottom)
323   and take the dump while still in mapped mode */
324}
325#endif
326
327/*
328 * Convert kernel VA to physical address
329 */
330u_long
331kvtop(void *addr)
332{
333	vm_offset_t va;
334
335	va = pmap_kextract((vm_offset_t)addr);
336	if (va == 0)
337		panic("kvtop: zero page frame");
338	return((int)va);
339}
340
341/*
342 * Map an IO request into kernel virtual address space.
343 *
344 * All requests are (re)mapped into kernel VA space.
345 * Notice that we use b_bufsize for the size of the buffer
346 * to be mapped.  b_bcount might be modified by the driver.
347 */
348void
349vmapbuf(bp)
350	register struct buf *bp;
351{
352	register caddr_t addr, v, kva;
353	vm_offset_t pa;
354
355	if ((bp->b_flags & B_PHYS) == 0)
356		panic("vmapbuf");
357
358	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
359	    addr < bp->b_data + bp->b_bufsize;
360	    addr += PAGE_SIZE, v += PAGE_SIZE) {
361		/*
362		 * Do the vm_fault if needed; do the copy-on-write thing
363		 * when reading stuff off device into memory.
364		 */
365		vm_fault_quick(addr,
366			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
367		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
368		if (pa == 0)
369			panic("vmapbuf: page not present");
370		vm_page_hold(PHYS_TO_VM_PAGE(pa));
371		pmap_kenter((vm_offset_t) v, pa);
372	}
373
374	kva = bp->b_saveaddr;
375	bp->b_saveaddr = bp->b_data;
376	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
377}
378
379/*
380 * Free the io map PTEs associated with this IO operation.
381 * We also invalidate the TLB entries and restore the original b_addr.
382 */
383void
384vunmapbuf(bp)
385	register struct buf *bp;
386{
387	register caddr_t addr;
388	vm_offset_t pa;
389
390	if ((bp->b_flags & B_PHYS) == 0)
391		panic("vunmapbuf");
392
393	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
394	    addr < bp->b_data + bp->b_bufsize;
395	    addr += PAGE_SIZE) {
396		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
397		pmap_kremove((vm_offset_t) addr);
398		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
399	}
400
401	bp->b_data = bp->b_saveaddr;
402}
403
404/*
405 * Force reset the processor by invalidating the entire address space!
406 */
407
408#ifdef SMP
409static void
410cpu_reset_proxy()
411{
412
413	cpu_reset_proxy_active = 1;
414	while (cpu_reset_proxy_active == 1)
415		;	 /* Wait for other cpu to see that we've started */
416	stop_cpus((1<<cpu_reset_proxyid));
417	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
418	DELAY(1000000);
419	cpu_reset_real();
420}
421#endif
422
423void
424cpu_reset()
425{
426#ifdef SMP
427	if (smp_active == 0) {
428		cpu_reset_real();
429		/* NOTREACHED */
430	} else {
431
432		u_int map;
433		int cnt;
434		printf("cpu_reset called on cpu#%d\n",cpuid);
435
436		map = other_cpus & ~ stopped_cpus;
437
438		if (map != 0) {
439			printf("cpu_reset: Stopping other CPUs\n");
440			stop_cpus(map);		/* Stop all other CPUs */
441		}
442
443		if (cpuid == 0) {
444			DELAY(1000000);
445			cpu_reset_real();
446			/* NOTREACHED */
447		} else {
448			/* We are not BSP (CPU #0) */
449
450			cpu_reset_proxyid = cpuid;
451			cpustop_restartfunc = cpu_reset_proxy;
452			cpu_reset_proxy_active = 0;
453			printf("cpu_reset: Restarting BSP\n");
454			started_cpus = (1<<0);		/* Restart CPU #0 */
455
456			cnt = 0;
457			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
458				cnt++;	/* Wait for BSP to announce restart */
459			if (cpu_reset_proxy_active == 0)
460				printf("cpu_reset: Failed to restart BSP\n");
461			enable_intr();
462			cpu_reset_proxy_active = 2;
463
464			while (1);
465			/* NOTREACHED */
466		}
467	}
468#else
469	cpu_reset_real();
470#endif
471}
472
473static void
474cpu_reset_real()
475{
476
477#ifdef PC98
478	/*
479	 * Attempt to do a CPU reset via CPU reset port.
480	 */
481	disable_intr();
482	if ((inb(0x35) & 0xa0) != 0xa0) {
483		outb(0x37, 0x0f);		/* SHUT0 = 0. */
484		outb(0x37, 0x0b);		/* SHUT1 = 0. */
485	}
486	outb(0xf0, 0x00);		/* Reset. */
487#else
488	/*
489	 * Attempt to do a CPU reset via the keyboard controller,
490	 * do not turn of the GateA20, as any machine that fails
491	 * to do the reset here would then end up in no man's land.
492	 */
493
494#if !defined(BROKEN_KEYBOARD_RESET)
495	outb(IO_KBD + 4, 0xFE);
496	DELAY(500000);	/* wait 0.5 sec to see if that did it */
497	printf("Keyboard reset did not work, attempting CPU shutdown\n");
498	DELAY(1000000);	/* wait 1 sec for printf to complete */
499#endif
500#endif /* PC98 */
501	/* force a shutdown by unmapping entire address space ! */
502	bzero((caddr_t) PTD, PAGE_SIZE);
503
504	/* "good night, sweet prince .... <THUNK!>" */
505	invltlb();
506	/* NOTREACHED */
507	while(1);
508}
509
510int
511grow_stack(p, sp)
512	struct proc *p;
513	u_int sp;
514{
515	int rv;
516
517	rv = vm_map_growstack (p, sp);
518	if (rv != KERN_SUCCESS)
519		return (0);
520
521	return (1);
522}
523
524SYSCTL_DECL(_vm_stats_misc);
525
526static int cnt_prezero;
527
528SYSCTL_INT(_vm_stats_misc, OID_AUTO,
529	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
530
531/*
532 * Implement the pre-zeroed page mechanism.
533 * This routine is called from the idle loop.
534 */
535
536#define ZIDLE_LO(v)	((v) * 2 / 3)
537#define ZIDLE_HI(v)	((v) * 4 / 5)
538
539int
540vm_page_zero_idle()
541{
542	static int free_rover;
543	static int zero_state;
544	vm_page_t m;
545	int s, intrsave;
546
547	/*
548	 * Attempt to maintain approximately 1/2 of our free pages in a
549	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
550	 * generally zeroing a page when the system is near steady-state.
551	 * Otherwise we might get 'flutter' during disk I/O / IPC or
552	 * fast sleeps.  We also do not want to be continuously zeroing
553	 * pages because doing so may flush our L1 and L2 caches too much.
554	 */
555
556	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
557		return(0);
558	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
559		return(0);
560
561	if (mtx_try_enter(&Giant, MTX_DEF)) {
562		s = splvm();
563		intrsave = save_intr();
564		enable_intr();
565		zero_state = 0;
566		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
567		if (m != NULL && (m->flags & PG_ZERO) == 0) {
568			vm_page_queues[m->queue].lcnt--;
569			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
570			m->queue = PQ_NONE;
571			splx(s);
572			pmap_zero_page(VM_PAGE_TO_PHYS(m));
573			(void)splvm();
574			vm_page_flag_set(m, PG_ZERO);
575			m->queue = PQ_FREE + m->pc;
576			vm_page_queues[m->queue].lcnt++;
577			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
578			    pageq);
579			++vm_page_zero_count;
580			++cnt_prezero;
581			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
582				zero_state = 1;
583		}
584		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
585		splx(s);
586		restore_intr(intrsave);
587		mtx_exit(&Giant, MTX_DEF);
588		return (1);
589	}
590	/*
591	 * We have to enable interrupts for a moment if the try_mplock fails
592	 * in order to potentially take an IPI.   XXX this should be in
593	 * swtch.s
594	 */
595	__asm __volatile("sti; nop; cli" : : : "memory");
596	return (0);
597}
598
599/*
600 * Software interrupt handler for queued VM system processing.
601 */
602void
603swi_vm()
604{
605	if (busdma_swi_pending != 0)
606		busdma_swi();
607}
608
609/*
610 * Tell whether this address is in some physical memory region.
611 * Currently used by the kernel coredump code in order to avoid
612 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
613 * or other unpredictable behaviour.
614 */
615
616#include "isa.h"
617
618int
619is_physical_memory(addr)
620	vm_offset_t addr;
621{
622
623#if NISA > 0
624	/* The ISA ``memory hole''. */
625	if (addr >= 0xa0000 && addr < 0x100000)
626		return 0;
627#endif
628
629	/*
630	 * stuff other tests for known memory-mapped devices (PCI?)
631	 * here
632	 */
633
634	return 1;
635}
636