vm_machdep.c revision 65557
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 65557 2000-09-07 01:33:02Z jasone $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/sysctl.h>
62#include <sys/unistd.h>
63
64#include <machine/clock.h>
65#include <machine/cpu.h>
66#include <machine/md_var.h>
67#include <machine/mutex.h>
68#ifdef SMP
69#include <machine/smp.h>
70#endif
71#include <machine/pcb.h>
72#include <machine/pcb_ext.h>
73#include <machine/vm86.h>
74
75#include <vm/vm.h>
76#include <vm/vm_param.h>
77#include <sys/lock.h>
78#include <vm/vm_kern.h>
79#include <vm/vm_page.h>
80#include <vm/vm_map.h>
81#include <vm/vm_extern.h>
82
83#include <sys/user.h>
84
85#ifdef PC98
86#include <pc98/pc98/pc98.h>
87#else
88#include <i386/isa/isa.h>
89#endif
90
91static void	cpu_reset_real __P((void));
92#ifdef SMP
93static void	cpu_reset_proxy __P((void));
94static u_int	cpu_reset_proxyid;
95static volatile u_int	cpu_reset_proxy_active;
96#endif
97extern int	_ucodesel, _udatasel;
98
99/*
100 * quick version of vm_fault
101 */
102int
103vm_fault_quick(v, prot)
104	caddr_t v;
105	int prot;
106{
107	int r;
108
109	if (prot & VM_PROT_WRITE)
110		r = subyte(v, fubyte(v));
111	else
112		r = fubyte(v);
113	return(r);
114}
115
116/*
117 * Finish a fork operation, with process p2 nearly set up.
118 * Copy and update the pcb, set up the stack so that the child
119 * ready to run and return to user mode.
120 */
121void
122cpu_fork(p1, p2, flags)
123	register struct proc *p1, *p2;
124	int flags;
125{
126	struct pcb *pcb2;
127
128	if ((flags & RFPROC) == 0) {
129#ifdef USER_LDT
130		if ((flags & RFMEM) == 0) {
131			/* unshare user LDT */
132			struct pcb *pcb1 = &p1->p_addr->u_pcb;
133			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
134			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
135				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
136				user_ldt_free(pcb1);
137				pcb1->pcb_ldt = pcb_ldt;
138				set_user_ldt(pcb1);
139			}
140		}
141#endif
142		return;
143	}
144
145#if NNPX > 0
146	/* Ensure that p1's pcb is up to date. */
147	if (npxproc == p1)
148		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
149#endif
150
151	/* Copy p1's pcb. */
152	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
153	pcb2 = &p2->p_addr->u_pcb;
154
155	/*
156	 * Create a new fresh stack for the new process.
157	 * Copy the trap frame for the return to user mode as if from a
158	 * syscall.  This copies the user mode register values.
159	 */
160	p2->p_md.md_regs = (struct trapframe *)
161			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
162	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
163
164	/*
165	 * Set registers for trampoline to user mode.  Leave space for the
166	 * return address on stack.  These are the kernel mode register values.
167	 */
168	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
169	pcb2->pcb_edi = 0;
170	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
171	pcb2->pcb_ebp = 0;
172	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
173	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
174	pcb2->pcb_eip = (int)fork_trampoline;
175	/*
176	 * pcb2->pcb_ldt:	duplicated below, if necessary.
177	 * pcb2->pcb_savefpu:	cloned above.
178	 * pcb2->pcb_flags:	cloned above (always 0 here?).
179	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
180	 */
181
182	pcb2->pcb_schednest = 0;
183
184	/*
185	 * XXX don't copy the i/o pages.  this should probably be fixed.
186	 */
187	pcb2->pcb_ext = 0;
188
189#ifdef USER_LDT
190        /* Copy the LDT, if necessary. */
191        if (pcb2->pcb_ldt != 0) {
192		if (flags & RFMEM) {
193			pcb2->pcb_ldt->ldt_refcnt++;
194		} else {
195			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
196				pcb2->pcb_ldt->ldt_len);
197		}
198        }
199#endif
200
201	/*
202	 * Now, cpu_switch() can schedule the new process.
203	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
204	 * containing the return address when exiting cpu_switch.
205	 * This will normally be to fork_trampoline(), which will have
206	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
207	 * will set up a stack to call fork_return(p, frame); to complete
208	 * the return to user-mode.
209	 */
210}
211
212/*
213 * Intercept the return address from a freshly forked process that has NOT
214 * been scheduled yet.
215 *
216 * This is needed to make kernel threads stay in kernel mode.
217 */
218void
219cpu_set_fork_handler(p, func, arg)
220	struct proc *p;
221	void (*func) __P((void *));
222	void *arg;
223{
224	/*
225	 * Note that the trap frame follows the args, so the function
226	 * is really called like this:  func(arg, frame);
227	 */
228	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
229	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
230}
231
232void
233cpu_exit(p)
234	register struct proc *p;
235{
236	struct pcb *pcb = &p->p_addr->u_pcb;
237
238#if NNPX > 0
239	npxexit(p);
240#endif	/* NNPX */
241	if (pcb->pcb_ext != 0) {
242	        /*
243		 * XXX do we need to move the TSS off the allocated pages
244		 * before freeing them?  (not done here)
245		 */
246		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
247		    ctob(IOPAGES + 1));
248		pcb->pcb_ext = 0;
249	}
250#ifdef USER_LDT
251	user_ldt_free(pcb);
252#endif
253        if (pcb->pcb_flags & PCB_DBREGS) {
254                /*
255                 * disable all hardware breakpoints
256                 */
257                reset_dbregs();
258                pcb->pcb_flags &= ~PCB_DBREGS;
259        }
260	mtx_enter(&sched_lock, MTX_SPIN);
261	mtx_exit(&Giant, MTX_DEF | MTX_NOSWITCH);
262	mtx_assert(&Giant, MA_NOTOWNED);
263	cnt.v_swtch++;
264	cpu_switch();
265	panic("cpu_exit");
266}
267
268void
269cpu_wait(p)
270	struct proc *p;
271{
272	/* drop per-process resources */
273	pmap_dispose_proc(p);
274
275	/* and clean-out the vmspace */
276	vmspace_free(p->p_vmspace);
277}
278
279/*
280 * Dump the machine specific header information at the start of a core dump.
281 */
282int
283cpu_coredump(p, vp, cred)
284	struct proc *p;
285	struct vnode *vp;
286	struct ucred *cred;
287{
288	int error;
289	caddr_t tempuser;
290
291	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
292	if (!tempuser)
293		return EINVAL;
294
295	bzero(tempuser, ctob(UPAGES));
296	bcopy(p->p_addr, tempuser, sizeof(struct user));
297	bcopy(p->p_md.md_regs,
298	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
299	      sizeof(struct trapframe));
300
301	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
302			ctob(UPAGES),
303			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
304			cred, (int *)NULL, p);
305
306	free(tempuser, M_TEMP);
307
308	return error;
309}
310
311#ifdef notyet
312static void
313setredzone(pte, vaddr)
314	u_short *pte;
315	caddr_t vaddr;
316{
317/* eventually do this by setting up an expand-down stack segment
318   for ss0: selector, allowing stack access down to top of u.
319   this means though that protection violations need to be handled
320   thru a double fault exception that must do an integral task
321   switch to a known good context, within which a dump can be
322   taken. a sensible scheme might be to save the initial context
323   used by sched (that has physical memory mapped 1:1 at bottom)
324   and take the dump while still in mapped mode */
325}
326#endif
327
328/*
329 * Convert kernel VA to physical address
330 */
331u_long
332kvtop(void *addr)
333{
334	vm_offset_t va;
335
336	va = pmap_kextract((vm_offset_t)addr);
337	if (va == 0)
338		panic("kvtop: zero page frame");
339	return((int)va);
340}
341
342/*
343 * Map an IO request into kernel virtual address space.
344 *
345 * All requests are (re)mapped into kernel VA space.
346 * Notice that we use b_bufsize for the size of the buffer
347 * to be mapped.  b_bcount might be modified by the driver.
348 */
349void
350vmapbuf(bp)
351	register struct buf *bp;
352{
353	register caddr_t addr, v, kva;
354	vm_offset_t pa;
355
356	if ((bp->b_flags & B_PHYS) == 0)
357		panic("vmapbuf");
358
359	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
360	    addr < bp->b_data + bp->b_bufsize;
361	    addr += PAGE_SIZE, v += PAGE_SIZE) {
362		/*
363		 * Do the vm_fault if needed; do the copy-on-write thing
364		 * when reading stuff off device into memory.
365		 */
366		vm_fault_quick(addr,
367			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
368		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
369		if (pa == 0)
370			panic("vmapbuf: page not present");
371		vm_page_hold(PHYS_TO_VM_PAGE(pa));
372		pmap_kenter((vm_offset_t) v, pa);
373	}
374
375	kva = bp->b_saveaddr;
376	bp->b_saveaddr = bp->b_data;
377	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
378}
379
380/*
381 * Free the io map PTEs associated with this IO operation.
382 * We also invalidate the TLB entries and restore the original b_addr.
383 */
384void
385vunmapbuf(bp)
386	register struct buf *bp;
387{
388	register caddr_t addr;
389	vm_offset_t pa;
390
391	if ((bp->b_flags & B_PHYS) == 0)
392		panic("vunmapbuf");
393
394	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
395	    addr < bp->b_data + bp->b_bufsize;
396	    addr += PAGE_SIZE) {
397		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
398		pmap_kremove((vm_offset_t) addr);
399		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
400	}
401
402	bp->b_data = bp->b_saveaddr;
403}
404
405/*
406 * Force reset the processor by invalidating the entire address space!
407 */
408
409#ifdef SMP
410static void
411cpu_reset_proxy()
412{
413
414	cpu_reset_proxy_active = 1;
415	while (cpu_reset_proxy_active == 1)
416		;	 /* Wait for other cpu to see that we've started */
417	stop_cpus((1<<cpu_reset_proxyid));
418	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
419	DELAY(1000000);
420	cpu_reset_real();
421}
422#endif
423
424void
425cpu_reset()
426{
427#ifdef SMP
428	if (smp_active == 0) {
429		cpu_reset_real();
430		/* NOTREACHED */
431	} else {
432
433		u_int map;
434		int cnt;
435		printf("cpu_reset called on cpu#%d\n",cpuid);
436
437		map = other_cpus & ~ stopped_cpus;
438
439		if (map != 0) {
440			printf("cpu_reset: Stopping other CPUs\n");
441			stop_cpus(map);		/* Stop all other CPUs */
442		}
443
444		if (cpuid == 0) {
445			DELAY(1000000);
446			cpu_reset_real();
447			/* NOTREACHED */
448		} else {
449			/* We are not BSP (CPU #0) */
450
451			cpu_reset_proxyid = cpuid;
452			cpustop_restartfunc = cpu_reset_proxy;
453			cpu_reset_proxy_active = 0;
454			printf("cpu_reset: Restarting BSP\n");
455			started_cpus = (1<<0);		/* Restart CPU #0 */
456
457			cnt = 0;
458			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
459				cnt++;	/* Wait for BSP to announce restart */
460			if (cpu_reset_proxy_active == 0)
461				printf("cpu_reset: Failed to restart BSP\n");
462			enable_intr();
463			cpu_reset_proxy_active = 2;
464
465			while (1);
466			/* NOTREACHED */
467		}
468	}
469#else
470	cpu_reset_real();
471#endif
472}
473
474static void
475cpu_reset_real()
476{
477
478#ifdef PC98
479	/*
480	 * Attempt to do a CPU reset via CPU reset port.
481	 */
482	disable_intr();
483	if ((inb(0x35) & 0xa0) != 0xa0) {
484		outb(0x37, 0x0f);		/* SHUT0 = 0. */
485		outb(0x37, 0x0b);		/* SHUT1 = 0. */
486	}
487	outb(0xf0, 0x00);		/* Reset. */
488#else
489	/*
490	 * Attempt to do a CPU reset via the keyboard controller,
491	 * do not turn of the GateA20, as any machine that fails
492	 * to do the reset here would then end up in no man's land.
493	 */
494
495#if !defined(BROKEN_KEYBOARD_RESET)
496	outb(IO_KBD + 4, 0xFE);
497	DELAY(500000);	/* wait 0.5 sec to see if that did it */
498	printf("Keyboard reset did not work, attempting CPU shutdown\n");
499	DELAY(1000000);	/* wait 1 sec for printf to complete */
500#endif
501#endif /* PC98 */
502	/* force a shutdown by unmapping entire address space ! */
503	bzero((caddr_t) PTD, PAGE_SIZE);
504
505	/* "good night, sweet prince .... <THUNK!>" */
506	invltlb();
507	/* NOTREACHED */
508	while(1);
509}
510
511int
512grow_stack(p, sp)
513	struct proc *p;
514	u_int sp;
515{
516	int rv;
517
518	rv = vm_map_growstack (p, sp);
519	if (rv != KERN_SUCCESS)
520		return (0);
521
522	return (1);
523}
524
525SYSCTL_DECL(_vm_stats_misc);
526
527static int cnt_prezero;
528
529SYSCTL_INT(_vm_stats_misc, OID_AUTO,
530	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
531
532/*
533 * Implement the pre-zeroed page mechanism.
534 * This routine is called from the idle loop.
535 */
536
537#define ZIDLE_LO(v)	((v) * 2 / 3)
538#define ZIDLE_HI(v)	((v) * 4 / 5)
539
540int
541vm_page_zero_idle()
542{
543	static int free_rover;
544	static int zero_state;
545	vm_page_t m;
546	int s, intrsave;
547
548	/*
549	 * Attempt to maintain approximately 1/2 of our free pages in a
550	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
551	 * generally zeroing a page when the system is near steady-state.
552	 * Otherwise we might get 'flutter' during disk I/O / IPC or
553	 * fast sleeps.  We also do not want to be continuously zeroing
554	 * pages because doing so may flush our L1 and L2 caches too much.
555	 */
556
557	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
558		return(0);
559	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
560		return(0);
561
562	if (mtx_try_enter(&Giant, MTX_DEF)) {
563		s = splvm();
564		intrsave = save_intr();
565		enable_intr();
566		zero_state = 0;
567		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
568		if (m != NULL && (m->flags & PG_ZERO) == 0) {
569			vm_page_queues[m->queue].lcnt--;
570			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
571			m->queue = PQ_NONE;
572			splx(s);
573			pmap_zero_page(VM_PAGE_TO_PHYS(m));
574			(void)splvm();
575			vm_page_flag_set(m, PG_ZERO);
576			m->queue = PQ_FREE + m->pc;
577			vm_page_queues[m->queue].lcnt++;
578			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
579			    pageq);
580			++vm_page_zero_count;
581			++cnt_prezero;
582			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
583				zero_state = 1;
584		}
585		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
586		splx(s);
587		restore_intr(intrsave);
588		mtx_exit(&Giant, MTX_DEF);
589		return (1);
590	}
591	/*
592	 * We have to enable interrupts for a moment if the try_mplock fails
593	 * in order to potentially take an IPI.   XXX this should be in
594	 * swtch.s
595	 */
596	__asm __volatile("sti; nop; cli" : : : "memory");
597	return (0);
598}
599
600/*
601 * Software interrupt handler for queued VM system processing.
602 */
603void
604swi_vm()
605{
606	if (busdma_swi_pending != 0)
607		busdma_swi();
608}
609
610/*
611 * Tell whether this address is in some physical memory region.
612 * Currently used by the kernel coredump code in order to avoid
613 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
614 * or other unpredictable behaviour.
615 */
616
617#include "isa.h"
618
619int
620is_physical_memory(addr)
621	vm_offset_t addr;
622{
623
624#if NISA > 0
625	/* The ISA ``memory hole''. */
626	if (addr >= 0xa0000 && addr < 0x100000)
627		return 0;
628#endif
629
630	/*
631	 * stuff other tests for known memory-mapped devices (PCI?)
632	 * here
633	 */
634
635	return 1;
636}
637