vm_machdep.c revision 64529
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 64529 2000-08-11 09:05:12Z peter $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/sysctl.h>
61#include <sys/unistd.h>
62
63#include <machine/clock.h>
64#include <machine/cpu.h>
65#include <machine/md_var.h>
66#ifdef SMP
67#include <machine/smp.h>
68#endif
69#include <machine/pcb.h>
70#include <machine/pcb_ext.h>
71#include <machine/vm86.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_page.h>
78#include <vm/vm_map.h>
79#include <vm/vm_extern.h>
80
81#include <sys/user.h>
82
83#ifdef PC98
84#include <pc98/pc98/pc98.h>
85#else
86#include <i386/isa/isa.h>
87#endif
88
89static void	cpu_reset_real __P((void));
90#ifdef SMP
91static void	cpu_reset_proxy __P((void));
92static u_int	cpu_reset_proxyid;
93static volatile u_int	cpu_reset_proxy_active;
94#endif
95extern int	_ucodesel, _udatasel;
96
97/*
98 * quick version of vm_fault
99 */
100int
101vm_fault_quick(v, prot)
102	caddr_t v;
103	int prot;
104{
105	int r;
106
107	if (prot & VM_PROT_WRITE)
108		r = subyte(v, fubyte(v));
109	else
110		r = fubyte(v);
111	return(r);
112}
113
114/*
115 * Finish a fork operation, with process p2 nearly set up.
116 * Copy and update the pcb, set up the stack so that the child
117 * ready to run and return to user mode.
118 */
119void
120cpu_fork(p1, p2, flags)
121	register struct proc *p1, *p2;
122	int flags;
123{
124	struct pcb *pcb2;
125
126	if ((flags & RFPROC) == 0) {
127#ifdef USER_LDT
128		if ((flags & RFMEM) == 0) {
129			/* unshare user LDT */
130			struct pcb *pcb1 = &p1->p_addr->u_pcb;
131			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
132			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
133				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
134				user_ldt_free(pcb1);
135				pcb1->pcb_ldt = pcb_ldt;
136				set_user_ldt(pcb1);
137			}
138		}
139#endif
140		return;
141	}
142
143#if NNPX > 0
144	/* Ensure that p1's pcb is up to date. */
145	if (npxproc == p1)
146		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
147#endif
148
149	/* Copy p1's pcb. */
150	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
151	pcb2 = &p2->p_addr->u_pcb;
152
153	/*
154	 * Create a new fresh stack for the new process.
155	 * Copy the trap frame for the return to user mode as if from a
156	 * syscall.  This copies the user mode register values.
157	 */
158	p2->p_md.md_regs = (struct trapframe *)
159			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
160	bcopy(p1->p_md.md_regs, p2->p_md.md_regs, sizeof(*p2->p_md.md_regs));
161
162	/*
163	 * Set registers for trampoline to user mode.  Leave space for the
164	 * return address on stack.  These are the kernel mode register values.
165	 */
166	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
167	pcb2->pcb_edi = 0;
168	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
169	pcb2->pcb_ebp = 0;
170	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
171	pcb2->pcb_ebx = (int)p2;		/* fork_trampoline argument */
172	pcb2->pcb_eip = (int)fork_trampoline;
173	/*
174	 * pcb2->pcb_ldt:	duplicated below, if necessary.
175	 * pcb2->pcb_savefpu:	cloned above.
176	 * pcb2->pcb_flags:	cloned above (always 0 here?).
177	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
178	 */
179
180#ifdef SMP
181	pcb2->pcb_mpnest = 1;
182#endif
183	/*
184	 * XXX don't copy the i/o pages.  this should probably be fixed.
185	 */
186	pcb2->pcb_ext = 0;
187
188#ifdef USER_LDT
189        /* Copy the LDT, if necessary. */
190        if (pcb2->pcb_ldt != 0) {
191		if (flags & RFMEM) {
192			pcb2->pcb_ldt->ldt_refcnt++;
193		} else {
194			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
195				pcb2->pcb_ldt->ldt_len);
196		}
197        }
198#endif
199
200	/*
201	 * Now, cpu_switch() can schedule the new process.
202	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
203	 * containing the return address when exiting cpu_switch.
204	 * This will normally be to fork_trampoline(), which will have
205	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
206	 * will set up a stack to call fork_return(p, frame); to complete
207	 * the return to user-mode.
208	 */
209}
210
211/*
212 * Intercept the return address from a freshly forked process that has NOT
213 * been scheduled yet.
214 *
215 * This is needed to make kernel threads stay in kernel mode.
216 */
217void
218cpu_set_fork_handler(p, func, arg)
219	struct proc *p;
220	void (*func) __P((void *));
221	void *arg;
222{
223	/*
224	 * Note that the trap frame follows the args, so the function
225	 * is really called like this:  func(arg, frame);
226	 */
227	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
228	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
229}
230
231void
232cpu_exit(p)
233	register struct proc *p;
234{
235	struct pcb *pcb = &p->p_addr->u_pcb;
236
237#if NNPX > 0
238	npxexit(p);
239#endif	/* NNPX */
240	if (pcb->pcb_ext != 0) {
241	        /*
242		 * XXX do we need to move the TSS off the allocated pages
243		 * before freeing them?  (not done here)
244		 */
245		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
246		    ctob(IOPAGES + 1));
247		pcb->pcb_ext = 0;
248	}
249#ifdef USER_LDT
250	user_ldt_free(pcb);
251#endif
252        if (pcb->pcb_flags & PCB_DBREGS) {
253                /*
254                 * disable all hardware breakpoints
255                 */
256                reset_dbregs();
257                pcb->pcb_flags &= ~PCB_DBREGS;
258        }
259	cnt.v_swtch++;
260	cpu_switch(p);
261	panic("cpu_exit");
262}
263
264void
265cpu_wait(p)
266	struct proc *p;
267{
268	/* drop per-process resources */
269	pmap_dispose_proc(p);
270
271	/* and clean-out the vmspace */
272	vmspace_free(p->p_vmspace);
273}
274
275/*
276 * Dump the machine specific header information at the start of a core dump.
277 */
278int
279cpu_coredump(p, vp, cred)
280	struct proc *p;
281	struct vnode *vp;
282	struct ucred *cred;
283{
284	int error;
285	caddr_t tempuser;
286
287	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
288	if (!tempuser)
289		return EINVAL;
290
291	bzero(tempuser, ctob(UPAGES));
292	bcopy(p->p_addr, tempuser, sizeof(struct user));
293	bcopy(p->p_md.md_regs,
294	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
295	      sizeof(struct trapframe));
296
297	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
298			ctob(UPAGES),
299			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
300			cred, (int *)NULL, p);
301
302	free(tempuser, M_TEMP);
303
304	return error;
305}
306
307#ifdef notyet
308static void
309setredzone(pte, vaddr)
310	u_short *pte;
311	caddr_t vaddr;
312{
313/* eventually do this by setting up an expand-down stack segment
314   for ss0: selector, allowing stack access down to top of u.
315   this means though that protection violations need to be handled
316   thru a double fault exception that must do an integral task
317   switch to a known good context, within which a dump can be
318   taken. a sensible scheme might be to save the initial context
319   used by sched (that has physical memory mapped 1:1 at bottom)
320   and take the dump while still in mapped mode */
321}
322#endif
323
324/*
325 * Convert kernel VA to physical address
326 */
327u_long
328kvtop(void *addr)
329{
330	vm_offset_t va;
331
332	va = pmap_kextract((vm_offset_t)addr);
333	if (va == 0)
334		panic("kvtop: zero page frame");
335	return((int)va);
336}
337
338/*
339 * Map an IO request into kernel virtual address space.
340 *
341 * All requests are (re)mapped into kernel VA space.
342 * Notice that we use b_bufsize for the size of the buffer
343 * to be mapped.  b_bcount might be modified by the driver.
344 */
345void
346vmapbuf(bp)
347	register struct buf *bp;
348{
349	register caddr_t addr, v, kva;
350	vm_offset_t pa;
351
352	if ((bp->b_flags & B_PHYS) == 0)
353		panic("vmapbuf");
354
355	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
356	    addr < bp->b_data + bp->b_bufsize;
357	    addr += PAGE_SIZE, v += PAGE_SIZE) {
358		/*
359		 * Do the vm_fault if needed; do the copy-on-write thing
360		 * when reading stuff off device into memory.
361		 */
362		vm_fault_quick(addr,
363			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
364		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
365		if (pa == 0)
366			panic("vmapbuf: page not present");
367		vm_page_hold(PHYS_TO_VM_PAGE(pa));
368		pmap_kenter((vm_offset_t) v, pa);
369	}
370
371	kva = bp->b_saveaddr;
372	bp->b_saveaddr = bp->b_data;
373	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
374}
375
376/*
377 * Free the io map PTEs associated with this IO operation.
378 * We also invalidate the TLB entries and restore the original b_addr.
379 */
380void
381vunmapbuf(bp)
382	register struct buf *bp;
383{
384	register caddr_t addr;
385	vm_offset_t pa;
386
387	if ((bp->b_flags & B_PHYS) == 0)
388		panic("vunmapbuf");
389
390	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
391	    addr < bp->b_data + bp->b_bufsize;
392	    addr += PAGE_SIZE) {
393		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
394		pmap_kremove((vm_offset_t) addr);
395		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
396	}
397
398	bp->b_data = bp->b_saveaddr;
399}
400
401/*
402 * Force reset the processor by invalidating the entire address space!
403 */
404
405#ifdef SMP
406static void
407cpu_reset_proxy()
408{
409	u_int saved_mp_lock;
410
411	cpu_reset_proxy_active = 1;
412	while (cpu_reset_proxy_active == 1)
413		;	 /* Wait for other cpu to disable interupts */
414	saved_mp_lock = mp_lock;
415	mp_lock = 1;
416	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
417	cpu_reset_proxy_active = 3;
418	while (cpu_reset_proxy_active == 3)
419		;	/* Wait for other cpu to enable interrupts */
420	stop_cpus((1<<cpu_reset_proxyid));
421	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
422	DELAY(1000000);
423	cpu_reset_real();
424}
425#endif
426
427void
428cpu_reset()
429{
430#ifdef SMP
431	if (smp_active == 0) {
432		cpu_reset_real();
433		/* NOTREACHED */
434	} else {
435
436		u_int map;
437		int cnt;
438		printf("cpu_reset called on cpu#%d\n",cpuid);
439
440		map = other_cpus & ~ stopped_cpus;
441
442		if (map != 0) {
443			printf("cpu_reset: Stopping other CPUs\n");
444			stop_cpus(map);		/* Stop all other CPUs */
445		}
446
447		if (cpuid == 0) {
448			DELAY(1000000);
449			cpu_reset_real();
450			/* NOTREACHED */
451		} else {
452			/* We are not BSP (CPU #0) */
453
454			cpu_reset_proxyid = cpuid;
455			cpustop_restartfunc = cpu_reset_proxy;
456			printf("cpu_reset: Restarting BSP\n");
457			started_cpus = (1<<0);		/* Restart CPU #0 */
458
459			cnt = 0;
460			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
461				cnt++;	/* Wait for BSP to announce restart */
462			if (cpu_reset_proxy_active == 0)
463				printf("cpu_reset: Failed to restart BSP\n");
464			__asm __volatile("cli" : : : "memory");
465			cpu_reset_proxy_active = 2;
466			cnt = 0;
467			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
468				cnt++;	/* Do nothing */
469			if (cpu_reset_proxy_active == 2) {
470				printf("cpu_reset: BSP did not grab mp lock\n");
471				cpu_reset_real();	/* XXX: Bogus ? */
472			}
473			cpu_reset_proxy_active = 4;
474			__asm __volatile("sti" : : : "memory");
475			while (1);
476			/* NOTREACHED */
477		}
478	}
479#else
480	cpu_reset_real();
481#endif
482}
483
484static void
485cpu_reset_real()
486{
487
488#ifdef PC98
489	/*
490	 * Attempt to do a CPU reset via CPU reset port.
491	 */
492	disable_intr();
493	if ((inb(0x35) & 0xa0) != 0xa0) {
494		outb(0x37, 0x0f);		/* SHUT0 = 0. */
495		outb(0x37, 0x0b);		/* SHUT1 = 0. */
496	}
497	outb(0xf0, 0x00);		/* Reset. */
498#else
499	/*
500	 * Attempt to do a CPU reset via the keyboard controller,
501	 * do not turn of the GateA20, as any machine that fails
502	 * to do the reset here would then end up in no man's land.
503	 */
504
505#if !defined(BROKEN_KEYBOARD_RESET)
506	outb(IO_KBD + 4, 0xFE);
507	DELAY(500000);	/* wait 0.5 sec to see if that did it */
508	printf("Keyboard reset did not work, attempting CPU shutdown\n");
509	DELAY(1000000);	/* wait 1 sec for printf to complete */
510#endif
511#endif /* PC98 */
512	/* force a shutdown by unmapping entire address space ! */
513	bzero((caddr_t) PTD, PAGE_SIZE);
514
515	/* "good night, sweet prince .... <THUNK!>" */
516	invltlb();
517	/* NOTREACHED */
518	while(1);
519}
520
521int
522grow_stack(p, sp)
523	struct proc *p;
524	u_int sp;
525{
526	int rv;
527
528	rv = vm_map_growstack (p, sp);
529	if (rv != KERN_SUCCESS)
530		return (0);
531
532	return (1);
533}
534
535SYSCTL_DECL(_vm_stats_misc);
536
537static int cnt_prezero;
538
539SYSCTL_INT(_vm_stats_misc, OID_AUTO,
540	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
541
542/*
543 * Implement the pre-zeroed page mechanism.
544 * This routine is called from the idle loop.
545 */
546
547#define ZIDLE_LO(v)	((v) * 2 / 3)
548#define ZIDLE_HI(v)	((v) * 4 / 5)
549
550int
551vm_page_zero_idle()
552{
553	static int free_rover;
554	static int zero_state;
555	vm_page_t m;
556	int s;
557
558	/*
559	 * Attempt to maintain approximately 1/2 of our free pages in a
560	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
561	 * generally zeroing a page when the system is near steady-state.
562	 * Otherwise we might get 'flutter' during disk I/O / IPC or
563	 * fast sleeps.  We also do not want to be continuously zeroing
564	 * pages because doing so may flush our L1 and L2 caches too much.
565	 */
566
567	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
568		return(0);
569	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
570		return(0);
571
572#ifdef SMP
573	if (try_mplock()) {
574#endif
575		s = splvm();
576		__asm __volatile("sti" : : : "memory");
577		zero_state = 0;
578		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
579		if (m != NULL && (m->flags & PG_ZERO) == 0) {
580			vm_page_queues[m->queue].lcnt--;
581			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
582			m->queue = PQ_NONE;
583			splx(s);
584			pmap_zero_page(VM_PAGE_TO_PHYS(m));
585			(void)splvm();
586			vm_page_flag_set(m, PG_ZERO);
587			m->queue = PQ_FREE + m->pc;
588			vm_page_queues[m->queue].lcnt++;
589			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
590			    pageq);
591			++vm_page_zero_count;
592			++cnt_prezero;
593			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
594				zero_state = 1;
595		}
596		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
597		splx(s);
598		__asm __volatile("cli" : : : "memory");
599#ifdef SMP
600		rel_mplock();
601#endif
602		return (1);
603#ifdef SMP
604	}
605#endif
606	/*
607	 * We have to enable interrupts for a moment if the try_mplock fails
608	 * in order to potentially take an IPI.   XXX this should be in
609	 * swtch.s
610	 */
611	__asm __volatile("sti; nop; cli" : : : "memory");
612	return (0);
613}
614
615/*
616 * Software interrupt handler for queued VM system processing.
617 */
618void
619swi_vm()
620{
621	if (busdma_swi_pending != 0)
622		busdma_swi();
623}
624
625/*
626 * Tell whether this address is in some physical memory region.
627 * Currently used by the kernel coredump code in order to avoid
628 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
629 * or other unpredictable behaviour.
630 */
631
632#include "isa.h"
633
634int
635is_physical_memory(addr)
636	vm_offset_t addr;
637{
638
639#if NISA > 0
640	/* The ISA ``memory hole''. */
641	if (addr >= 0xa0000 && addr < 0x100000)
642		return 0;
643#endif
644
645	/*
646	 * stuff other tests for known memory-mapped devices (PCI?)
647	 * here
648	 */
649
650	return 1;
651}
652