vm_machdep.c revision 61469
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 61469 2000-06-10 02:05:57Z peter $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49#include "opt_reset.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/proc.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/vnode.h>
58#include <sys/vmmeter.h>
59#include <sys/kernel.h>
60#include <sys/sysctl.h>
61#include <sys/unistd.h>
62
63#include <machine/clock.h>
64#include <machine/cpu.h>
65#include <machine/md_var.h>
66#ifdef SMP
67#include <machine/smp.h>
68#endif
69#include <machine/pcb.h>
70#include <machine/pcb_ext.h>
71#include <machine/vm86.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_page.h>
78#include <vm/vm_map.h>
79#include <vm/vm_extern.h>
80
81#include <sys/user.h>
82
83#ifdef PC98
84#include <pc98/pc98/pc98.h>
85#else
86#include <i386/isa/isa.h>
87#endif
88
89static void	cpu_reset_real __P((void));
90#ifdef SMP
91static void	cpu_reset_proxy __P((void));
92static u_int	cpu_reset_proxyid;
93static volatile u_int	cpu_reset_proxy_active;
94#endif
95
96/*
97 * quick version of vm_fault
98 */
99int
100vm_fault_quick(v, prot)
101	caddr_t v;
102	int prot;
103{
104	int r;
105
106	if (prot & VM_PROT_WRITE)
107		r = subyte(v, fubyte(v));
108	else
109		r = fubyte(v);
110	return(r);
111}
112
113/*
114 * Finish a fork operation, with process p2 nearly set up.
115 * Copy and update the pcb, set up the stack so that the child
116 * ready to run and return to user mode.
117 */
118void
119cpu_fork(p1, p2, flags)
120	register struct proc *p1, *p2;
121	int flags;
122{
123	struct pcb *pcb2;
124
125	if ((flags & RFPROC) == 0) {
126#ifdef USER_LDT
127		if ((flags & RFMEM) == 0) {
128			/* unshare user LDT */
129			struct pcb *pcb1 = &p1->p_addr->u_pcb;
130			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
131			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
132				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
133				user_ldt_free(pcb1);
134				pcb1->pcb_ldt = pcb_ldt;
135				set_user_ldt(pcb1);
136			}
137		}
138#endif
139		return;
140	}
141
142#if NNPX > 0
143	/* Ensure that p1's pcb is up to date. */
144	if (npxproc == p1)
145		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
146#endif
147
148	/* Copy p1's pcb. */
149	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
150	pcb2 = &p2->p_addr->u_pcb;
151
152	/*
153	 * Create a new fresh stack for the new process.
154	 * Copy the trap frame for the return to user mode as if from a
155	 * syscall.  This copies the user mode register values.
156	 */
157	p2->p_md.md_regs = (struct trapframe *)
158			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
159	*p2->p_md.md_regs = *p1->p_md.md_regs;
160
161	/*
162	 * Set registers for trampoline to user mode.  Leave space for the
163	 * return address on stack.  These are the kernel mode register values.
164	 */
165	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
166	pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
167	pcb2->pcb_esi = (int)fork_return;
168	pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
169	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
170	pcb2->pcb_ebx = (int)p2;
171	pcb2->pcb_eip = (int)fork_trampoline;
172	/*
173	 * pcb2->pcb_ldt:	duplicated below, if necessary.
174	 * pcb2->pcb_savefpu:	cloned above.
175	 * pcb2->pcb_flags:	cloned above (always 0 here?).
176	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
177	 */
178
179#ifdef SMP
180	pcb2->pcb_mpnest = 1;
181#endif
182	/*
183	 * XXX don't copy the i/o pages.  this should probably be fixed.
184	 */
185	pcb2->pcb_ext = 0;
186
187#ifdef USER_LDT
188        /* Copy the LDT, if necessary. */
189        if (pcb2->pcb_ldt != 0) {
190		if (flags & RFMEM) {
191			pcb2->pcb_ldt->ldt_refcnt++;
192		} else {
193			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
194				pcb2->pcb_ldt->ldt_len);
195		}
196        }
197#endif
198
199	/*
200	 * Now, cpu_switch() can schedule the new process.
201	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
202	 * containing the return address when exiting cpu_switch.
203	 * This will normally be to proc_trampoline(), which will have
204	 * %ebx loaded with the new proc's pointer.  proc_trampoline()
205	 * will set up a stack to call fork_return(p, frame); to complete
206	 * the return to user-mode.
207	 */
208}
209
210/*
211 * Intercept the return address from a freshly forked process that has NOT
212 * been scheduled yet.
213 *
214 * This is needed to make kernel threads stay in kernel mode.
215 */
216void
217cpu_set_fork_handler(p, func, arg)
218	struct proc *p;
219	void (*func) __P((void *));
220	void *arg;
221{
222	/*
223	 * Note that the trap frame follows the args, so the function
224	 * is really called like this:  func(arg, frame);
225	 */
226	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
227	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
228}
229
230void
231cpu_exit(p)
232	register struct proc *p;
233{
234	struct pcb *pcb = &p->p_addr->u_pcb;
235
236#if NNPX > 0
237	npxexit(p);
238#endif	/* NNPX */
239	if (pcb->pcb_ext != 0) {
240	        /*
241		 * XXX do we need to move the TSS off the allocated pages
242		 * before freeing them?  (not done here)
243		 */
244		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
245		    ctob(IOPAGES + 1));
246		pcb->pcb_ext = 0;
247	}
248#ifdef USER_LDT
249	user_ldt_free(pcb);
250#endif
251        if (pcb->pcb_flags & PCB_DBREGS) {
252                /*
253                 * disable all hardware breakpoints
254                 */
255                reset_dbregs();
256                pcb->pcb_flags &= ~PCB_DBREGS;
257        }
258	cnt.v_swtch++;
259	cpu_switch(p);
260	panic("cpu_exit");
261}
262
263void
264cpu_wait(p)
265	struct proc *p;
266{
267	/* drop per-process resources */
268	pmap_dispose_proc(p);
269
270	/* and clean-out the vmspace */
271	vmspace_free(p->p_vmspace);
272}
273
274/*
275 * Dump the machine specific header information at the start of a core dump.
276 */
277int
278cpu_coredump(p, vp, cred)
279	struct proc *p;
280	struct vnode *vp;
281	struct ucred *cred;
282{
283	int error;
284	caddr_t tempuser;
285
286	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
287	if (!tempuser)
288		return EINVAL;
289
290	bzero(tempuser, ctob(UPAGES));
291	bcopy(p->p_addr, tempuser, sizeof(struct user));
292	bcopy(p->p_md.md_regs,
293	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
294	      sizeof(struct trapframe));
295
296	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
297			ctob(UPAGES),
298			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
299			cred, (int *)NULL, p);
300
301	free(tempuser, M_TEMP);
302
303	return error;
304}
305
306#ifdef notyet
307static void
308setredzone(pte, vaddr)
309	u_short *pte;
310	caddr_t vaddr;
311{
312/* eventually do this by setting up an expand-down stack segment
313   for ss0: selector, allowing stack access down to top of u.
314   this means though that protection violations need to be handled
315   thru a double fault exception that must do an integral task
316   switch to a known good context, within which a dump can be
317   taken. a sensible scheme might be to save the initial context
318   used by sched (that has physical memory mapped 1:1 at bottom)
319   and take the dump while still in mapped mode */
320}
321#endif
322
323/*
324 * Convert kernel VA to physical address
325 */
326u_long
327kvtop(void *addr)
328{
329	vm_offset_t va;
330
331	va = pmap_kextract((vm_offset_t)addr);
332	if (va == 0)
333		panic("kvtop: zero page frame");
334	return((int)va);
335}
336
337/*
338 * Map an IO request into kernel virtual address space.
339 *
340 * All requests are (re)mapped into kernel VA space.
341 * Notice that we use b_bufsize for the size of the buffer
342 * to be mapped.  b_bcount might be modified by the driver.
343 */
344void
345vmapbuf(bp)
346	register struct buf *bp;
347{
348	register caddr_t addr, v, kva;
349	vm_offset_t pa;
350
351	if ((bp->b_flags & B_PHYS) == 0)
352		panic("vmapbuf");
353
354	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
355	    addr < bp->b_data + bp->b_bufsize;
356	    addr += PAGE_SIZE, v += PAGE_SIZE) {
357		/*
358		 * Do the vm_fault if needed; do the copy-on-write thing
359		 * when reading stuff off device into memory.
360		 */
361		vm_fault_quick(addr,
362			(bp->b_iocmd == BIO_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
363		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
364		if (pa == 0)
365			panic("vmapbuf: page not present");
366		vm_page_hold(PHYS_TO_VM_PAGE(pa));
367		pmap_kenter((vm_offset_t) v, pa);
368	}
369
370	kva = bp->b_saveaddr;
371	bp->b_saveaddr = bp->b_data;
372	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
373}
374
375/*
376 * Free the io map PTEs associated with this IO operation.
377 * We also invalidate the TLB entries and restore the original b_addr.
378 */
379void
380vunmapbuf(bp)
381	register struct buf *bp;
382{
383	register caddr_t addr;
384	vm_offset_t pa;
385
386	if ((bp->b_flags & B_PHYS) == 0)
387		panic("vunmapbuf");
388
389	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
390	    addr < bp->b_data + bp->b_bufsize;
391	    addr += PAGE_SIZE) {
392		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
393		pmap_kremove((vm_offset_t) addr);
394		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
395	}
396
397	bp->b_data = bp->b_saveaddr;
398}
399
400/*
401 * Force reset the processor by invalidating the entire address space!
402 */
403
404#ifdef SMP
405static void
406cpu_reset_proxy()
407{
408	u_int saved_mp_lock;
409
410	cpu_reset_proxy_active = 1;
411	while (cpu_reset_proxy_active == 1)
412		;	 /* Wait for other cpu to disable interupts */
413	saved_mp_lock = mp_lock;
414	mp_lock = 1;
415	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
416	cpu_reset_proxy_active = 3;
417	while (cpu_reset_proxy_active == 3)
418		;	/* Wait for other cpu to enable interrupts */
419	stop_cpus((1<<cpu_reset_proxyid));
420	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
421	DELAY(1000000);
422	cpu_reset_real();
423}
424#endif
425
426void
427cpu_reset()
428{
429#ifdef SMP
430	if (smp_active == 0) {
431		cpu_reset_real();
432		/* NOTREACHED */
433	} else {
434
435		u_int map;
436		int cnt;
437		printf("cpu_reset called on cpu#%d\n",cpuid);
438
439		map = other_cpus & ~ stopped_cpus;
440
441		if (map != 0) {
442			printf("cpu_reset: Stopping other CPUs\n");
443			stop_cpus(map);		/* Stop all other CPUs */
444		}
445
446		if (cpuid == 0) {
447			DELAY(1000000);
448			cpu_reset_real();
449			/* NOTREACHED */
450		} else {
451			/* We are not BSP (CPU #0) */
452
453			cpu_reset_proxyid = cpuid;
454			cpustop_restartfunc = cpu_reset_proxy;
455			printf("cpu_reset: Restarting BSP\n");
456			started_cpus = (1<<0);		/* Restart CPU #0 */
457
458			cnt = 0;
459			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
460				cnt++;	/* Wait for BSP to announce restart */
461			if (cpu_reset_proxy_active == 0)
462				printf("cpu_reset: Failed to restart BSP\n");
463			__asm __volatile("cli" : : : "memory");
464			cpu_reset_proxy_active = 2;
465			cnt = 0;
466			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
467				cnt++;	/* Do nothing */
468			if (cpu_reset_proxy_active == 2) {
469				printf("cpu_reset: BSP did not grab mp lock\n");
470				cpu_reset_real();	/* XXX: Bogus ? */
471			}
472			cpu_reset_proxy_active = 4;
473			__asm __volatile("sti" : : : "memory");
474			while (1);
475			/* NOTREACHED */
476		}
477	}
478#else
479	cpu_reset_real();
480#endif
481}
482
483static void
484cpu_reset_real()
485{
486
487#ifdef PC98
488	/*
489	 * Attempt to do a CPU reset via CPU reset port.
490	 */
491	disable_intr();
492	if ((inb(0x35) & 0xa0) != 0xa0) {
493		outb(0x37, 0x0f);		/* SHUT0 = 0. */
494		outb(0x37, 0x0b);		/* SHUT1 = 0. */
495	}
496	outb(0xf0, 0x00);		/* Reset. */
497#else
498	/*
499	 * Attempt to do a CPU reset via the keyboard controller,
500	 * do not turn of the GateA20, as any machine that fails
501	 * to do the reset here would then end up in no man's land.
502	 */
503
504#if !defined(BROKEN_KEYBOARD_RESET)
505	outb(IO_KBD + 4, 0xFE);
506	DELAY(500000);	/* wait 0.5 sec to see if that did it */
507	printf("Keyboard reset did not work, attempting CPU shutdown\n");
508	DELAY(1000000);	/* wait 1 sec for printf to complete */
509#endif
510#endif /* PC98 */
511	/* force a shutdown by unmapping entire address space ! */
512	bzero((caddr_t) PTD, PAGE_SIZE);
513
514	/* "good night, sweet prince .... <THUNK!>" */
515	invltlb();
516	/* NOTREACHED */
517	while(1);
518}
519
520int
521grow_stack(p, sp)
522	struct proc *p;
523	u_int sp;
524{
525	int rv;
526
527	rv = vm_map_growstack (p, sp);
528	if (rv != KERN_SUCCESS)
529		return (0);
530
531	return (1);
532}
533
534SYSCTL_DECL(_vm_stats_misc);
535
536static int cnt_prezero;
537
538SYSCTL_INT(_vm_stats_misc, OID_AUTO,
539	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
540
541/*
542 * Implement the pre-zeroed page mechanism.
543 * This routine is called from the idle loop.
544 */
545
546#define ZIDLE_LO(v)	((v) * 2 / 3)
547#define ZIDLE_HI(v)	((v) * 4 / 5)
548
549int
550vm_page_zero_idle()
551{
552	static int free_rover;
553	static int zero_state;
554	vm_page_t m;
555	int s;
556
557	/*
558	 * Attempt to maintain approximately 1/2 of our free pages in a
559	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
560	 * generally zeroing a page when the system is near steady-state.
561	 * Otherwise we might get 'flutter' during disk I/O / IPC or
562	 * fast sleeps.  We also do not want to be continuously zeroing
563	 * pages because doing so may flush our L1 and L2 caches too much.
564	 */
565
566	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
567		return(0);
568	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
569		return(0);
570
571#ifdef SMP
572	if (try_mplock()) {
573#endif
574		s = splvm();
575		__asm __volatile("sti" : : : "memory");
576		zero_state = 0;
577		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
578		if (m != NULL && (m->flags & PG_ZERO) == 0) {
579			vm_page_queues[m->queue].lcnt--;
580			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
581			m->queue = PQ_NONE;
582			splx(s);
583			pmap_zero_page(VM_PAGE_TO_PHYS(m));
584			(void)splvm();
585			vm_page_flag_set(m, PG_ZERO);
586			m->queue = PQ_FREE + m->pc;
587			vm_page_queues[m->queue].lcnt++;
588			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
589			    pageq);
590			++vm_page_zero_count;
591			++cnt_prezero;
592			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
593				zero_state = 1;
594		}
595		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
596		splx(s);
597		__asm __volatile("cli" : : : "memory");
598#ifdef SMP
599		rel_mplock();
600#endif
601		return (1);
602#ifdef SMP
603	}
604#endif
605	/*
606	 * We have to enable interrupts for a moment if the try_mplock fails
607	 * in order to potentially take an IPI.   XXX this should be in
608	 * swtch.s
609	 */
610	__asm __volatile("sti; nop; cli" : : : "memory");
611	return (0);
612}
613
614/*
615 * Software interrupt handler for queued VM system processing.
616 */
617void
618swi_vm()
619{
620	if (busdma_swi_pending != 0)
621		busdma_swi();
622}
623
624/*
625 * Tell whether this address is in some physical memory region.
626 * Currently used by the kernel coredump code in order to avoid
627 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
628 * or other unpredictable behaviour.
629 */
630
631#include "isa.h"
632
633int
634is_physical_memory(addr)
635	vm_offset_t addr;
636{
637
638#if NISA > 0
639	/* The ISA ``memory hole''. */
640	if (addr >= 0xa0000 && addr < 0x100000)
641		return 0;
642#endif
643
644	/*
645	 * stuff other tests for known memory-mapped devices (PCI?)
646	 * here
647	 */
648
649	return 1;
650}
651