vm_machdep.c revision 608
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department, and William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
39 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
40 *	$Id$
41 */
42
43#include "npx.h"
44#include "param.h"
45#include "systm.h"
46#include "proc.h"
47#include "malloc.h"
48#include "buf.h"
49#include "user.h"
50
51#include "../include/cpu.h"
52
53#include "vm/vm.h"
54#include "vm/vm_kern.h"
55
56/*
57 * Finish a fork operation, with process p2 nearly set up.
58 * Copy and update the kernel stack and pcb, making the child
59 * ready to run, and marking it so that it can return differently
60 * than the parent.  Returns 1 in the child process, 0 in the parent.
61 * We currently double-map the user area so that the stack is at the same
62 * address in each process; in the future we will probably relocate
63 * the frame pointers on the stack after copying.
64 */
65cpu_fork(p1, p2)
66	register struct proc *p1, *p2;
67{
68	register struct user *up = p2->p_addr;
69	int foo, offset, addr, i;
70	extern char kstack[];
71	extern int mvesp();
72
73	/*
74	 * Copy pcb and stack from proc p1 to p2.
75	 * We do this as cheaply as possible, copying only the active
76	 * part of the stack.  The stack and pcb need to agree;
77	 * this is tricky, as the final pcb is constructed by savectx,
78	 * but its frame isn't yet on the stack when the stack is copied.
79	 * swtch compensates for this when the child eventually runs.
80	 * This should be done differently, with a single call
81	 * that copies and updates the pcb+stack,
82	 * replacing the bcopy and savectx.
83	 */
84	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
85	offset = mvesp() - (int)kstack;
86	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
87	    (unsigned) ctob(UPAGES) - offset);
88	p2->p_regs = p1->p_regs;
89
90	/*
91	 * Wire top of address space of child to it's kstack.
92	 * First, fault in a page of pte's to map it.
93	 */
94        addr = trunc_page((u_int)vtopte(kstack));
95	vm_map_pageable(&p2->p_vmspace->vm_map, addr, addr+NBPG, FALSE);
96	for (i=0; i < UPAGES; i++)
97		pmap_enter(&p2->p_vmspace->vm_pmap, kstack+i*NBPG,
98			   pmap_extract(kernel_pmap, ((int)p2->p_addr)+i*NBPG),
99			   /*
100			    * The user area has to be mapped writable because
101			    * it contains the kernel stack (when CR0_WP is on
102			    * on a 486 there is no user-read/kernel-write
103			    * mode).  It is protected from user mode access
104			    * by the segment limits.
105			    */
106			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
107	pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb);
108
109	/*
110	 *
111	 * Arrange for a non-local goto when the new process
112	 * is started, to resume here, returning nonzero from setjmp.
113	 */
114	if (savectx(up, 1)) {
115		/*
116		 * Return 1 in child.
117		 */
118		return (1);
119	}
120	return (0);
121}
122
123#ifdef notyet
124/*
125 * cpu_exit is called as the last action during exit.
126 *
127 * We change to an inactive address space and a "safe" stack,
128 * passing thru an argument to the new stack. Now, safely isolated
129 * from the resources we're shedding, we release the address space
130 * and any remaining machine-dependent resources, including the
131 * memory for the user structure and kernel stack.
132 *
133 * Next, we assign a dummy context to be written over by swtch,
134 * calling it to send this process off to oblivion.
135 * [The nullpcb allows us to minimize cost in swtch() by not having
136 * a special case].
137 */
138struct proc *swtch_to_inactive();
139volatile void
140cpu_exit(p)
141	register struct proc *p;
142{
143	static struct pcb nullpcb;	/* pcb to overwrite on last swtch */
144
145#if NNPX > 0
146	npxexit(p);
147#endif	/* NNPX */
148
149	/* move to inactive space and stack, passing arg accross */
150	p = swtch_to_inactive(p);
151
152	/* drop per-process resources */
153	vmspace_free(p->p_vmspace);
154	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
155
156	p->p_addr = (struct user *) &nullpcb;
157	splclock();
158	swtch();
159	/* NOTREACHED */
160}
161#else
162void
163cpu_exit(p)
164	register struct proc *p;
165{
166
167#if NNPX > 0
168	npxexit(p);
169#endif	/* NNPX */
170	splclock();
171	swtch();
172	/*
173	 * This is to shutup the compiler, and if swtch() failed I suppose
174	 * this would be a good thing.  This keeps gcc happy because panic
175	 * is a volatile void function as well.
176	 */
177	panic("cpu_exit");
178}
179
180cpu_wait(p) struct proc *p; {
181
182	/* drop per-process resources */
183	vmspace_free(p->p_vmspace);
184	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
185}
186#endif
187
188/*
189 * Set a red zone in the kernel stack after the u. area.
190 */
191setredzone(pte, vaddr)
192	u_short *pte;
193	caddr_t vaddr;
194{
195/* eventually do this by setting up an expand-down stack segment
196   for ss0: selector, allowing stack access down to top of u.
197   this means though that protection violations need to be handled
198   thru a double fault exception that must do an integral task
199   switch to a known good context, within which a dump can be
200   taken. a sensible scheme might be to save the initial context
201   used by sched (that has physical memory mapped 1:1 at bottom)
202   and take the dump while still in mapped mode */
203}
204
205/*
206 * Move pages from one kernel virtual address to another.
207 * Both addresses are assumed to reside in the Sysmap,
208 * and size must be a multiple of CLSIZE.
209 */
210pagemove(from, to, size)
211	register caddr_t from, to;
212	int size;
213{
214	register struct pte *fpte, *tpte;
215
216	if (size % CLBYTES)
217		panic("pagemove");
218	fpte = kvtopte(from);
219	tpte = kvtopte(to);
220	while (size > 0) {
221		*tpte++ = *fpte;
222		*(int *)fpte++ = 0;
223		from += NBPG;
224		to += NBPG;
225		size -= NBPG;
226	}
227	tlbflush();
228}
229
230/*
231 * Convert kernel VA to physical address
232 */
233kvtop(addr)
234	register caddr_t addr;
235{
236	vm_offset_t va;
237
238	va = pmap_extract(kernel_pmap, (vm_offset_t)addr);
239	if (va == 0)
240		panic("kvtop: zero page frame");
241	return((int)va);
242}
243
244#ifdef notdef
245/*
246 * The probe[rw] routines should probably be redone in assembler
247 * for efficiency.
248 */
249prober(addr)
250	register u_int addr;
251{
252	register int page;
253	register struct proc *p;
254
255	if (addr >= USRSTACK)
256		return(0);
257	p = u.u_procp;
258	page = btop(addr);
259	if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
260		return(1);
261	return(0);
262}
263
264probew(addr)
265	register u_int addr;
266{
267	register int page;
268	register struct proc *p;
269
270	if (addr >= USRSTACK)
271		return(0);
272	p = u.u_procp;
273	page = btop(addr);
274	if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
275		return((*(int *)vtopte(p, page) & PG_PROT) == PG_UW);
276	return(0);
277}
278
279/*
280 * NB: assumes a physically contiguous kernel page table
281 *     (makes life a LOT simpler).
282 */
283kernacc(addr, count, rw)
284	register u_int addr;
285	int count, rw;
286{
287	register struct pde *pde;
288	register struct pte *pte;
289	register int ix, cnt;
290	extern long Syssize;
291
292	if (count <= 0)
293		return(0);
294	pde = (struct pde *)((u_int)u.u_procp->p_p0br + u.u_procp->p_szpt * NBPG);
295	ix = (addr & PD_MASK) >> PD_SHIFT;
296	cnt = ((addr + count + (1 << PD_SHIFT) - 1) & PD_MASK) >> PD_SHIFT;
297	cnt -= ix;
298	for (pde += ix; cnt; cnt--, pde++)
299		if (pde->pd_v == 0)
300			return(0);
301	ix = btop(addr-KERNBASE);
302	cnt = btop(addr-KERNBASE+count+NBPG-1);
303	if (cnt > (int)&Syssize)
304		return(0);
305	cnt -= ix;
306	for (pte = &Sysmap[ix]; cnt; cnt--, pte++)
307		if (pte->pg_v == 0 /*|| (rw == B_WRITE && pte->pg_prot == 1)*/)
308			return(0);
309	return(1);
310}
311
312useracc(addr, count, rw)
313	register u_int addr;
314	int count, rw;
315{
316	register int (*func)();
317	register u_int addr2;
318	extern int prober(), probew();
319
320	if (count <= 0)
321		return(0);
322	addr2 = addr;
323	addr += count;
324	func = (rw == B_READ) ? prober : probew;
325	do {
326		if ((*func)(addr2) == 0)
327			return(0);
328		addr2 = (addr2 + NBPG) & ~PGOFSET;
329	} while (addr2 < addr);
330	return(1);
331}
332#endif
333
334extern vm_map_t phys_map;
335
336/*
337 * Map an IO request into kernel virtual address space.  Requests fall into
338 * one of five catagories:
339 *
340 *	B_PHYS|B_UAREA:	User u-area swap.
341 *			Address is relative to start of u-area (p_addr).
342 *	B_PHYS|B_PAGET:	User page table swap.
343 *			Address is a kernel VA in usrpt (Usrptmap).
344 *	B_PHYS|B_DIRTY:	Dirty page push.
345 *			Address is a VA in proc2's address space.
346 *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
347 *			Address is VA in user's address space.
348 *	B_PHYS:		User "raw" IO request.
349 *			Address is VA in user's address space.
350 *
351 * All requests are (re)mapped into kernel VA space via the useriomap
352 * (a name with only slightly more meaning than "kernelmap")
353 */
354vmapbuf(bp)
355	register struct buf *bp;
356{
357	register int npf;
358	register caddr_t addr;
359	register long flags = bp->b_flags;
360	struct proc *p;
361	int off;
362	vm_offset_t kva;
363	register vm_offset_t pa;
364
365	if ((flags & B_PHYS) == 0)
366		panic("vmapbuf");
367	addr = bp->b_saveaddr = bp->b_un.b_addr;
368	off = (int)addr & PGOFSET;
369	p = bp->b_proc;
370	npf = btoc(round_page(bp->b_bcount + off));
371	kva = kmem_alloc_wait(phys_map, ctob(npf));
372	bp->b_un.b_addr = (caddr_t) (kva + off);
373	while (npf--) {
374		pa = pmap_extract(&p->p_vmspace->vm_pmap, (vm_offset_t)addr);
375		if (pa == 0)
376			panic("vmapbuf: null page frame");
377		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
378			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
379		addr += PAGE_SIZE;
380		kva += PAGE_SIZE;
381	}
382}
383
384/*
385 * Free the io map PTEs associated with this IO operation.
386 * We also invalidate the TLB entries and restore the original b_addr.
387 */
388vunmapbuf(bp)
389	register struct buf *bp;
390{
391	register int npf;
392	register caddr_t addr = bp->b_un.b_addr;
393	vm_offset_t kva;
394
395	if ((bp->b_flags & B_PHYS) == 0)
396		panic("vunmapbuf");
397	npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
398	kva = (vm_offset_t)((int)addr & ~PGOFSET);
399	kmem_free_wakeup(phys_map, kva, ctob(npf));
400	bp->b_un.b_addr = bp->b_saveaddr;
401	bp->b_saveaddr = NULL;
402}
403
404/*
405 * Force reset the processor by invalidating the entire address space!
406 */
407cpu_reset() {
408
409	/* force a shutdown by unmapping entire address space ! */
410	bzero((caddr_t) PTD, NBPG);
411
412	/* "good night, sweet prince .... <THUNK!>" */
413	tlbflush();
414	/* NOTREACHED */
415}
416