vm_machdep.c revision 57362
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 57362 2000-02-20 20:51:23Z bsd $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/malloc.h>
53#include <sys/proc.h>
54#include <sys/buf.h>
55#include <sys/vnode.h>
56#include <sys/vmmeter.h>
57#include <sys/kernel.h>
58#include <sys/sysctl.h>
59#include <sys/unistd.h>
60
61#include <machine/clock.h>
62#include <machine/cpu.h>
63#include <machine/md_var.h>
64#ifdef SMP
65#include <machine/smp.h>
66#endif
67#include <machine/pcb.h>
68#include <machine/pcb_ext.h>
69#include <machine/vm86.h>
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/vm_kern.h>
75#include <vm/vm_page.h>
76#include <vm/vm_map.h>
77#include <vm/vm_extern.h>
78
79#include <sys/user.h>
80
81#ifdef PC98
82#include <pc98/pc98/pc98.h>
83#else
84#include <i386/isa/isa.h>
85#endif
86
87static void	cpu_reset_real __P((void));
88#ifdef SMP
89static void	cpu_reset_proxy __P((void));
90static u_int	cpu_reset_proxyid;
91static volatile u_int	cpu_reset_proxy_active;
92#endif
93
94/*
95 * quick version of vm_fault
96 */
97int
98vm_fault_quick(v, prot)
99	caddr_t v;
100	int prot;
101{
102	int r;
103
104	if (prot & VM_PROT_WRITE)
105		r = subyte(v, fubyte(v));
106	else
107		r = fubyte(v);
108	return(r);
109}
110
111/*
112 * Finish a fork operation, with process p2 nearly set up.
113 * Copy and update the pcb, set up the stack so that the child
114 * ready to run and return to user mode.
115 */
116void
117cpu_fork(p1, p2, flags)
118	register struct proc *p1, *p2;
119	int flags;
120{
121	struct pcb *pcb2;
122
123	if ((flags & RFPROC) == 0) {
124#ifdef USER_LDT
125		if ((flags & RFMEM) == 0) {
126			/* unshare user LDT */
127			struct pcb *pcb1 = &p1->p_addr->u_pcb;
128			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
129			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
130				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
131				user_ldt_free(pcb1);
132				pcb1->pcb_ldt = pcb_ldt;
133				set_user_ldt(pcb1);
134			}
135		}
136#endif
137		return;
138	}
139
140#if NNPX > 0
141	/* Ensure that p1's pcb is up to date. */
142	if (npxproc == p1)
143		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
144#endif
145
146	/* Copy p1's pcb. */
147	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
148	pcb2 = &p2->p_addr->u_pcb;
149
150	/*
151	 * Create a new fresh stack for the new process.
152	 * Copy the trap frame for the return to user mode as if from a
153	 * syscall.  This copies the user mode register values.
154	 */
155	p2->p_md.md_regs = (struct trapframe *)
156			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
157	*p2->p_md.md_regs = *p1->p_md.md_regs;
158
159	/*
160	 * Set registers for trampoline to user mode.  Leave space for the
161	 * return address on stack.  These are the kernel mode register values.
162	 */
163	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
164	pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
165	pcb2->pcb_esi = (int)fork_return;
166	pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
167	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
168	pcb2->pcb_ebx = (int)p2;
169	pcb2->pcb_eip = (int)fork_trampoline;
170	/*
171	 * pcb2->pcb_ldt:	duplicated below, if necessary.
172	 * pcb2->pcb_savefpu:	cloned above.
173	 * pcb2->pcb_flags:	cloned above (always 0 here?).
174	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
175	 */
176
177#ifdef SMP
178	pcb2->pcb_mpnest = 1;
179#endif
180	/*
181	 * XXX don't copy the i/o pages.  this should probably be fixed.
182	 */
183	pcb2->pcb_ext = 0;
184
185#ifdef USER_LDT
186        /* Copy the LDT, if necessary. */
187        if (pcb2->pcb_ldt != 0) {
188		if (flags & RFMEM) {
189			pcb2->pcb_ldt->ldt_refcnt++;
190		} else {
191			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
192				pcb2->pcb_ldt->ldt_len);
193		}
194        }
195#endif
196
197	/*
198	 * Now, cpu_switch() can schedule the new process.
199	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
200	 * containing the return address when exiting cpu_switch.
201	 * This will normally be to proc_trampoline(), which will have
202	 * %ebx loaded with the new proc's pointer.  proc_trampoline()
203	 * will set up a stack to call fork_return(p, frame); to complete
204	 * the return to user-mode.
205	 */
206}
207
208/*
209 * Intercept the return address from a freshly forked process that has NOT
210 * been scheduled yet.
211 *
212 * This is needed to make kernel threads stay in kernel mode.
213 */
214void
215cpu_set_fork_handler(p, func, arg)
216	struct proc *p;
217	void (*func) __P((void *));
218	void *arg;
219{
220	/*
221	 * Note that the trap frame follows the args, so the function
222	 * is really called like this:  func(arg, frame);
223	 */
224	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
225	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
226}
227
228void
229cpu_exit(p)
230	register struct proc *p;
231{
232	struct pcb *pcb = &p->p_addr->u_pcb;
233
234#if NNPX > 0
235	npxexit(p);
236#endif	/* NNPX */
237	if (pcb->pcb_ext != 0) {
238	        /*
239		 * XXX do we need to move the TSS off the allocated pages
240		 * before freeing them?  (not done here)
241		 */
242		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
243		    ctob(IOPAGES + 1));
244		pcb->pcb_ext = 0;
245	}
246#ifdef USER_LDT
247	user_ldt_free(pcb);
248#endif
249        if (pcb->pcb_flags & PCB_DBREGS) {
250                /*
251                 * disable all hardware breakpoints
252                 */
253                reset_dbregs();
254                pcb->pcb_flags &= ~PCB_DBREGS;
255        }
256	cnt.v_swtch++;
257	cpu_switch(p);
258	panic("cpu_exit");
259}
260
261void
262cpu_wait(p)
263	struct proc *p;
264{
265	/* drop per-process resources */
266	pmap_dispose_proc(p);
267
268	/* and clean-out the vmspace */
269	vmspace_free(p->p_vmspace);
270}
271
272/*
273 * Dump the machine specific header information at the start of a core dump.
274 */
275int
276cpu_coredump(p, vp, cred)
277	struct proc *p;
278	struct vnode *vp;
279	struct ucred *cred;
280{
281	int error;
282	caddr_t tempuser;
283
284	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
285	if (!tempuser)
286		return EINVAL;
287
288	bzero(tempuser, ctob(UPAGES));
289	bcopy(p->p_addr, tempuser, sizeof(struct user));
290	bcopy(p->p_md.md_regs,
291	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
292	      sizeof(struct trapframe));
293
294	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
295			ctob(UPAGES),
296			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
297			cred, (int *)NULL, p);
298
299	free(tempuser, M_TEMP);
300
301	return error;
302}
303
304#ifdef notyet
305static void
306setredzone(pte, vaddr)
307	u_short *pte;
308	caddr_t vaddr;
309{
310/* eventually do this by setting up an expand-down stack segment
311   for ss0: selector, allowing stack access down to top of u.
312   this means though that protection violations need to be handled
313   thru a double fault exception that must do an integral task
314   switch to a known good context, within which a dump can be
315   taken. a sensible scheme might be to save the initial context
316   used by sched (that has physical memory mapped 1:1 at bottom)
317   and take the dump while still in mapped mode */
318}
319#endif
320
321/*
322 * Convert kernel VA to physical address
323 */
324u_long
325kvtop(void *addr)
326{
327	vm_offset_t va;
328
329	va = pmap_kextract((vm_offset_t)addr);
330	if (va == 0)
331		panic("kvtop: zero page frame");
332	return((int)va);
333}
334
335/*
336 * Map an IO request into kernel virtual address space.
337 *
338 * All requests are (re)mapped into kernel VA space.
339 * Notice that we use b_bufsize for the size of the buffer
340 * to be mapped.  b_bcount might be modified by the driver.
341 */
342void
343vmapbuf(bp)
344	register struct buf *bp;
345{
346	register caddr_t addr, v, kva;
347	vm_offset_t pa;
348
349	if ((bp->b_flags & B_PHYS) == 0)
350		panic("vmapbuf");
351
352	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
353	    addr < bp->b_data + bp->b_bufsize;
354	    addr += PAGE_SIZE, v += PAGE_SIZE) {
355		/*
356		 * Do the vm_fault if needed; do the copy-on-write thing
357		 * when reading stuff off device into memory.
358		 */
359		vm_fault_quick(addr,
360			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
361		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
362		if (pa == 0)
363			panic("vmapbuf: page not present");
364		vm_page_hold(PHYS_TO_VM_PAGE(pa));
365		pmap_kenter((vm_offset_t) v, pa);
366	}
367
368	kva = bp->b_saveaddr;
369	bp->b_saveaddr = bp->b_data;
370	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
371}
372
373/*
374 * Free the io map PTEs associated with this IO operation.
375 * We also invalidate the TLB entries and restore the original b_addr.
376 */
377void
378vunmapbuf(bp)
379	register struct buf *bp;
380{
381	register caddr_t addr;
382	vm_offset_t pa;
383
384	if ((bp->b_flags & B_PHYS) == 0)
385		panic("vunmapbuf");
386
387	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
388	    addr < bp->b_data + bp->b_bufsize;
389	    addr += PAGE_SIZE) {
390		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
391		pmap_kremove((vm_offset_t) addr);
392		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
393	}
394
395	bp->b_data = bp->b_saveaddr;
396}
397
398/*
399 * Force reset the processor by invalidating the entire address space!
400 */
401
402#ifdef SMP
403static void
404cpu_reset_proxy()
405{
406	u_int saved_mp_lock;
407
408	cpu_reset_proxy_active = 1;
409	while (cpu_reset_proxy_active == 1)
410		;	 /* Wait for other cpu to disable interupts */
411	saved_mp_lock = mp_lock;
412	mp_lock = 1;
413	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
414	cpu_reset_proxy_active = 3;
415	while (cpu_reset_proxy_active == 3)
416		;	/* Wait for other cpu to enable interrupts */
417	stop_cpus((1<<cpu_reset_proxyid));
418	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
419	DELAY(1000000);
420	cpu_reset_real();
421}
422#endif
423
424void
425cpu_reset()
426{
427#ifdef SMP
428	if (smp_active == 0) {
429		cpu_reset_real();
430		/* NOTREACHED */
431	} else {
432
433		u_int map;
434		int cnt;
435		printf("cpu_reset called on cpu#%d\n",cpuid);
436
437		map = other_cpus & ~ stopped_cpus;
438
439		if (map != 0) {
440			printf("cpu_reset: Stopping other CPUs\n");
441			stop_cpus(map);		/* Stop all other CPUs */
442		}
443
444		if (cpuid == 0) {
445			DELAY(1000000);
446			cpu_reset_real();
447			/* NOTREACHED */
448		} else {
449			/* We are not BSP (CPU #0) */
450
451			cpu_reset_proxyid = cpuid;
452			cpustop_restartfunc = cpu_reset_proxy;
453			printf("cpu_reset: Restarting BSP\n");
454			started_cpus = (1<<0);		/* Restart CPU #0 */
455
456			cnt = 0;
457			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
458				cnt++;	/* Wait for BSP to announce restart */
459			if (cpu_reset_proxy_active == 0)
460				printf("cpu_reset: Failed to restart BSP\n");
461			__asm __volatile("cli" : : : "memory");
462			cpu_reset_proxy_active = 2;
463			cnt = 0;
464			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
465				cnt++;	/* Do nothing */
466			if (cpu_reset_proxy_active == 2) {
467				printf("cpu_reset: BSP did not grab mp lock\n");
468				cpu_reset_real();	/* XXX: Bogus ? */
469			}
470			cpu_reset_proxy_active = 4;
471			__asm __volatile("sti" : : : "memory");
472			while (1);
473			/* NOTREACHED */
474		}
475	}
476#else
477	cpu_reset_real();
478#endif
479}
480
481static void
482cpu_reset_real()
483{
484
485#ifdef PC98
486	/*
487	 * Attempt to do a CPU reset via CPU reset port.
488	 */
489	disable_intr();
490	if ((inb(0x35) & 0xa0) != 0xa0) {
491		outb(0x37, 0x0f);		/* SHUT0 = 0. */
492		outb(0x37, 0x0b);		/* SHUT1 = 0. */
493	}
494	outb(0xf0, 0x00);		/* Reset. */
495#else
496	/*
497	 * Attempt to do a CPU reset via the keyboard controller,
498	 * do not turn of the GateA20, as any machine that fails
499	 * to do the reset here would then end up in no man's land.
500	 */
501
502#if !defined(BROKEN_KEYBOARD_RESET)
503	outb(IO_KBD + 4, 0xFE);
504	DELAY(500000);	/* wait 0.5 sec to see if that did it */
505	printf("Keyboard reset did not work, attempting CPU shutdown\n");
506	DELAY(1000000);	/* wait 1 sec for printf to complete */
507#endif
508#endif /* PC98 */
509	/* force a shutdown by unmapping entire address space ! */
510	bzero((caddr_t) PTD, PAGE_SIZE);
511
512	/* "good night, sweet prince .... <THUNK!>" */
513	invltlb();
514	/* NOTREACHED */
515	while(1);
516}
517
518int
519grow_stack(p, sp)
520	struct proc *p;
521	u_int sp;
522{
523	int rv;
524
525	rv = vm_map_growstack (p, sp);
526	if (rv != KERN_SUCCESS)
527		return (0);
528
529	return (1);
530}
531
532SYSCTL_DECL(_vm_stats_misc);
533
534static int cnt_prezero;
535
536SYSCTL_INT(_vm_stats_misc, OID_AUTO,
537	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
538
539/*
540 * Implement the pre-zeroed page mechanism.
541 * This routine is called from the idle loop.
542 */
543
544#define ZIDLE_LO(v)	((v) * 2 / 3)
545#define ZIDLE_HI(v)	((v) * 4 / 5)
546
547int
548vm_page_zero_idle()
549{
550	static int free_rover;
551	static int zero_state;
552	vm_page_t m;
553	int s;
554
555	/*
556	 * Attempt to maintain approximately 1/2 of our free pages in a
557	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
558	 * generally zeroing a page when the system is near steady-state.
559	 * Otherwise we might get 'flutter' during disk I/O / IPC or
560	 * fast sleeps.  We also do not want to be continuously zeroing
561	 * pages because doing so may flush our L1 and L2 caches too much.
562	 */
563
564	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
565		return(0);
566	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
567		return(0);
568
569#ifdef SMP
570	if (try_mplock()) {
571#endif
572		s = splvm();
573		__asm __volatile("sti" : : : "memory");
574		zero_state = 0;
575		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
576		if (m != NULL && (m->flags & PG_ZERO) == 0) {
577			vm_page_queues[m->queue].lcnt--;
578			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
579			m->queue = PQ_NONE;
580			splx(s);
581#if 0
582			rel_mplock();
583#endif
584			pmap_zero_page(VM_PAGE_TO_PHYS(m));
585#if 0
586			get_mplock();
587#endif
588			(void)splvm();
589			vm_page_flag_set(m, PG_ZERO);
590			m->queue = PQ_FREE + m->pc;
591			vm_page_queues[m->queue].lcnt++;
592			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
593			    pageq);
594			++vm_page_zero_count;
595			++cnt_prezero;
596			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
597				zero_state = 1;
598		}
599		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
600		splx(s);
601		__asm __volatile("cli" : : : "memory");
602#ifdef SMP
603		rel_mplock();
604#endif
605		return (1);
606#ifdef SMP
607	}
608#endif
609	return (0);
610}
611
612/*
613 * Software interrupt handler for queued VM system processing.
614 */
615void
616swi_vm()
617{
618	if (busdma_swi_pending != 0)
619		busdma_swi();
620}
621
622/*
623 * Tell whether this address is in some physical memory region.
624 * Currently used by the kernel coredump code in order to avoid
625 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
626 * or other unpredictable behaviour.
627 */
628
629#include "isa.h"
630
631int
632is_physical_memory(addr)
633	vm_offset_t addr;
634{
635
636#if NISA > 0
637	/* The ISA ``memory hole''. */
638	if (addr >= 0xa0000 && addr < 0x100000)
639		return 0;
640#endif
641
642	/*
643	 * stuff other tests for known memory-mapped devices (PCI?)
644	 * here
645	 */
646
647	return 1;
648}
649