vm_machdep.c revision 54188
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 54188 1999-12-06 04:53:08Z luoqi $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/malloc.h>
53#include <sys/proc.h>
54#include <sys/buf.h>
55#include <sys/vnode.h>
56#include <sys/vmmeter.h>
57#include <sys/kernel.h>
58#include <sys/sysctl.h>
59#include <sys/unistd.h>
60
61#include <machine/clock.h>
62#include <machine/cpu.h>
63#include <machine/md_var.h>
64#ifdef SMP
65#include <machine/smp.h>
66#endif
67#include <machine/pcb.h>
68#include <machine/pcb_ext.h>
69#include <machine/vm86.h>
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/vm_kern.h>
75#include <vm/vm_page.h>
76#include <vm/vm_map.h>
77#include <vm/vm_extern.h>
78
79#include <sys/user.h>
80
81#ifdef PC98
82#include <pc98/pc98/pc98.h>
83#else
84#include <i386/isa/isa.h>
85#endif
86
87static void	cpu_reset_real __P((void));
88#ifdef SMP
89static void	cpu_reset_proxy __P((void));
90static u_int	cpu_reset_proxyid;
91static volatile u_int	cpu_reset_proxy_active;
92#endif
93
94/*
95 * quick version of vm_fault
96 */
97int
98vm_fault_quick(v, prot)
99	caddr_t v;
100	int prot;
101{
102	int r;
103
104	if (prot & VM_PROT_WRITE)
105		r = subyte(v, fubyte(v));
106	else
107		r = fubyte(v);
108	return(r);
109}
110
111/*
112 * Finish a fork operation, with process p2 nearly set up.
113 * Copy and update the pcb, set up the stack so that the child
114 * ready to run and return to user mode.
115 */
116void
117cpu_fork(p1, p2, flags)
118	register struct proc *p1, *p2;
119	int flags;
120{
121	struct pcb *pcb2;
122
123	if ((flags & RFPROC) == 0) {
124#ifdef USER_LDT
125		if ((flags & RFMEM) == 0) {
126			/* unshare user LDT */
127			struct pcb *pcb1 = &p1->p_addr->u_pcb;
128			struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt;
129			if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) {
130				pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len);
131				user_ldt_free(pcb1);
132				pcb1->pcb_ldt = pcb_ldt;
133				set_user_ldt(pcb1);
134			}
135		}
136#endif
137		return;
138	}
139
140#if NNPX > 0
141	/* Ensure that p1's pcb is up to date. */
142	if (npxproc == p1)
143		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
144#endif
145
146	/* Copy p1's pcb. */
147	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
148	pcb2 = &p2->p_addr->u_pcb;
149
150	/*
151	 * Create a new fresh stack for the new process.
152	 * Copy the trap frame for the return to user mode as if from a
153	 * syscall.  This copies the user mode register values.
154	 */
155	p2->p_md.md_regs = (struct trapframe *)
156			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
157	*p2->p_md.md_regs = *p1->p_md.md_regs;
158
159	/*
160	 * Set registers for trampoline to user mode.  Leave space for the
161	 * return address on stack.  These are the kernel mode register values.
162	 */
163	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
164	pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
165	pcb2->pcb_esi = (int)fork_return;
166	pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
167	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
168	pcb2->pcb_ebx = (int)p2;
169	pcb2->pcb_eip = (int)fork_trampoline;
170	/*
171	 * pcb2->pcb_ldt:	duplicated below, if necessary.
172	 * pcb2->pcb_savefpu:	cloned above.
173	 * pcb2->pcb_flags:	cloned above (always 0 here?).
174	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
175	 */
176
177#ifdef SMP
178	pcb2->pcb_mpnest = 1;
179#endif
180	/*
181	 * XXX don't copy the i/o pages.  this should probably be fixed.
182	 */
183	pcb2->pcb_ext = 0;
184
185#ifdef USER_LDT
186        /* Copy the LDT, if necessary. */
187        if (pcb2->pcb_ldt != 0) {
188		if (flags & RFMEM) {
189			pcb2->pcb_ldt->ldt_refcnt++;
190		} else {
191			pcb2->pcb_ldt = user_ldt_alloc(pcb2,
192				pcb2->pcb_ldt->ldt_len);
193		}
194        }
195#endif
196
197	/*
198	 * Now, cpu_switch() can schedule the new process.
199	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
200	 * containing the return address when exiting cpu_switch.
201	 * This will normally be to proc_trampoline(), which will have
202	 * %ebx loaded with the new proc's pointer.  proc_trampoline()
203	 * will set up a stack to call fork_return(p, frame); to complete
204	 * the return to user-mode.
205	 */
206}
207
208/*
209 * Intercept the return address from a freshly forked process that has NOT
210 * been scheduled yet.
211 *
212 * This is needed to make kernel threads stay in kernel mode.
213 */
214void
215cpu_set_fork_handler(p, func, arg)
216	struct proc *p;
217	void (*func) __P((void *));
218	void *arg;
219{
220	/*
221	 * Note that the trap frame follows the args, so the function
222	 * is really called like this:  func(arg, frame);
223	 */
224	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
225	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
226}
227
228void
229cpu_exit(p)
230	register struct proc *p;
231{
232	struct pcb *pcb = &p->p_addr->u_pcb;
233
234#if NNPX > 0
235	npxexit(p);
236#endif	/* NNPX */
237	if (pcb->pcb_ext != 0) {
238	        /*
239		 * XXX do we need to move the TSS off the allocated pages
240		 * before freeing them?  (not done here)
241		 */
242		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
243		    ctob(IOPAGES + 1));
244		pcb->pcb_ext = 0;
245	}
246#ifdef USER_LDT
247	user_ldt_free(pcb);
248#endif
249	cnt.v_swtch++;
250	cpu_switch(p);
251	panic("cpu_exit");
252}
253
254void
255cpu_wait(p)
256	struct proc *p;
257{
258	/* drop per-process resources */
259	pmap_dispose_proc(p);
260
261	/* and clean-out the vmspace */
262	vmspace_free(p->p_vmspace);
263}
264
265/*
266 * Dump the machine specific header information at the start of a core dump.
267 */
268int
269cpu_coredump(p, vp, cred)
270	struct proc *p;
271	struct vnode *vp;
272	struct ucred *cred;
273{
274	int error;
275	caddr_t tempuser;
276
277	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
278	if (!tempuser)
279		return EINVAL;
280
281	bzero(tempuser, ctob(UPAGES));
282	bcopy(p->p_addr, tempuser, sizeof(struct user));
283	bcopy(p->p_md.md_regs,
284	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
285	      sizeof(struct trapframe));
286
287	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
288			ctob(UPAGES),
289			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
290			cred, (int *)NULL, p);
291
292	free(tempuser, M_TEMP);
293
294	return error;
295}
296
297#ifdef notyet
298static void
299setredzone(pte, vaddr)
300	u_short *pte;
301	caddr_t vaddr;
302{
303/* eventually do this by setting up an expand-down stack segment
304   for ss0: selector, allowing stack access down to top of u.
305   this means though that protection violations need to be handled
306   thru a double fault exception that must do an integral task
307   switch to a known good context, within which a dump can be
308   taken. a sensible scheme might be to save the initial context
309   used by sched (that has physical memory mapped 1:1 at bottom)
310   and take the dump while still in mapped mode */
311}
312#endif
313
314/*
315 * Convert kernel VA to physical address
316 */
317u_long
318kvtop(void *addr)
319{
320	vm_offset_t va;
321
322	va = pmap_kextract((vm_offset_t)addr);
323	if (va == 0)
324		panic("kvtop: zero page frame");
325	return((int)va);
326}
327
328/*
329 * Map an IO request into kernel virtual address space.
330 *
331 * All requests are (re)mapped into kernel VA space.
332 * Notice that we use b_bufsize for the size of the buffer
333 * to be mapped.  b_bcount might be modified by the driver.
334 */
335void
336vmapbuf(bp)
337	register struct buf *bp;
338{
339	register caddr_t addr, v, kva;
340	vm_offset_t pa;
341
342	if ((bp->b_flags & B_PHYS) == 0)
343		panic("vmapbuf");
344
345	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
346	    addr < bp->b_data + bp->b_bufsize;
347	    addr += PAGE_SIZE, v += PAGE_SIZE) {
348		/*
349		 * Do the vm_fault if needed; do the copy-on-write thing
350		 * when reading stuff off device into memory.
351		 */
352		vm_fault_quick(addr,
353			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
354		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
355		if (pa == 0)
356			panic("vmapbuf: page not present");
357		vm_page_hold(PHYS_TO_VM_PAGE(pa));
358		pmap_kenter((vm_offset_t) v, pa);
359	}
360
361	kva = bp->b_saveaddr;
362	bp->b_saveaddr = bp->b_data;
363	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
364}
365
366/*
367 * Free the io map PTEs associated with this IO operation.
368 * We also invalidate the TLB entries and restore the original b_addr.
369 */
370void
371vunmapbuf(bp)
372	register struct buf *bp;
373{
374	register caddr_t addr;
375	vm_offset_t pa;
376
377	if ((bp->b_flags & B_PHYS) == 0)
378		panic("vunmapbuf");
379
380	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
381	    addr < bp->b_data + bp->b_bufsize;
382	    addr += PAGE_SIZE) {
383		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
384		pmap_kremove((vm_offset_t) addr);
385		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
386	}
387
388	bp->b_data = bp->b_saveaddr;
389}
390
391/*
392 * Force reset the processor by invalidating the entire address space!
393 */
394
395#ifdef SMP
396static void
397cpu_reset_proxy()
398{
399	u_int saved_mp_lock;
400
401	cpu_reset_proxy_active = 1;
402	while (cpu_reset_proxy_active == 1)
403		;	 /* Wait for other cpu to disable interupts */
404	saved_mp_lock = mp_lock;
405	mp_lock = 1;
406	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
407	cpu_reset_proxy_active = 3;
408	while (cpu_reset_proxy_active == 3)
409		;	/* Wait for other cpu to enable interrupts */
410	stop_cpus((1<<cpu_reset_proxyid));
411	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
412	DELAY(1000000);
413	cpu_reset_real();
414}
415#endif
416
417void
418cpu_reset()
419{
420#ifdef SMP
421	if (smp_active == 0) {
422		cpu_reset_real();
423		/* NOTREACHED */
424	} else {
425
426		u_int map;
427		int cnt;
428		printf("cpu_reset called on cpu#%d\n",cpuid);
429
430		map = other_cpus & ~ stopped_cpus;
431
432		if (map != 0) {
433			printf("cpu_reset: Stopping other CPUs\n");
434			stop_cpus(map);		/* Stop all other CPUs */
435		}
436
437		if (cpuid == 0) {
438			DELAY(1000000);
439			cpu_reset_real();
440			/* NOTREACHED */
441		} else {
442			/* We are not BSP (CPU #0) */
443
444			cpu_reset_proxyid = cpuid;
445			cpustop_restartfunc = cpu_reset_proxy;
446			printf("cpu_reset: Restarting BSP\n");
447			started_cpus = (1<<0);		/* Restart CPU #0 */
448
449			cnt = 0;
450			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
451				cnt++;	/* Wait for BSP to announce restart */
452			if (cpu_reset_proxy_active == 0)
453				printf("cpu_reset: Failed to restart BSP\n");
454			__asm __volatile("cli" : : : "memory");
455			cpu_reset_proxy_active = 2;
456			cnt = 0;
457			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
458				cnt++;	/* Do nothing */
459			if (cpu_reset_proxy_active == 2) {
460				printf("cpu_reset: BSP did not grab mp lock\n");
461				cpu_reset_real();	/* XXX: Bogus ? */
462			}
463			cpu_reset_proxy_active = 4;
464			__asm __volatile("sti" : : : "memory");
465			while (1);
466			/* NOTREACHED */
467		}
468	}
469#else
470	cpu_reset_real();
471#endif
472}
473
474static void
475cpu_reset_real()
476{
477
478#ifdef PC98
479	/*
480	 * Attempt to do a CPU reset via CPU reset port.
481	 */
482	disable_intr();
483	if ((inb(0x35) & 0xa0) != 0xa0) {
484		outb(0x37, 0x0f);		/* SHUT0 = 0. */
485		outb(0x37, 0x0b);		/* SHUT1 = 0. */
486	}
487	outb(0xf0, 0x00);		/* Reset. */
488#else
489	/*
490	 * Attempt to do a CPU reset via the keyboard controller,
491	 * do not turn of the GateA20, as any machine that fails
492	 * to do the reset here would then end up in no man's land.
493	 */
494
495#if !defined(BROKEN_KEYBOARD_RESET)
496	outb(IO_KBD + 4, 0xFE);
497	DELAY(500000);	/* wait 0.5 sec to see if that did it */
498	printf("Keyboard reset did not work, attempting CPU shutdown\n");
499	DELAY(1000000);	/* wait 1 sec for printf to complete */
500#endif
501#endif /* PC98 */
502	/* force a shutdown by unmapping entire address space ! */
503	bzero((caddr_t) PTD, PAGE_SIZE);
504
505	/* "good night, sweet prince .... <THUNK!>" */
506	invltlb();
507	/* NOTREACHED */
508	while(1);
509}
510
511int
512grow_stack(p, sp)
513	struct proc *p;
514	u_int sp;
515{
516	int rv;
517
518	rv = vm_map_growstack (p, sp);
519	if (rv != KERN_SUCCESS)
520		return (0);
521
522	return (1);
523}
524
525SYSCTL_DECL(_vm_stats_misc);
526
527static int cnt_prezero;
528
529SYSCTL_INT(_vm_stats_misc, OID_AUTO,
530	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
531
532/*
533 * Implement the pre-zeroed page mechanism.
534 * This routine is called from the idle loop.
535 */
536
537#define ZIDLE_LO(v)	((v) * 2 / 3)
538#define ZIDLE_HI(v)	((v) * 4 / 5)
539
540int
541vm_page_zero_idle()
542{
543	static int free_rover;
544	static int zero_state;
545	vm_page_t m;
546	int s;
547
548	/*
549	 * Attempt to maintain approximately 1/2 of our free pages in a
550	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
551	 * generally zeroing a page when the system is near steady-state.
552	 * Otherwise we might get 'flutter' during disk I/O / IPC or
553	 * fast sleeps.  We also do not want to be continuously zeroing
554	 * pages because doing so may flush our L1 and L2 caches too much.
555	 */
556
557	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
558		return(0);
559	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
560		return(0);
561
562#ifdef SMP
563	if (try_mplock()) {
564#endif
565		s = splvm();
566		__asm __volatile("sti" : : : "memory");
567		zero_state = 0;
568		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
569		if (m != NULL && (m->flags & PG_ZERO) == 0) {
570			vm_page_queues[m->queue].lcnt--;
571			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
572			m->queue = PQ_NONE;
573			splx(s);
574#if 0
575			rel_mplock();
576#endif
577			pmap_zero_page(VM_PAGE_TO_PHYS(m));
578#if 0
579			get_mplock();
580#endif
581			(void)splvm();
582			vm_page_flag_set(m, PG_ZERO);
583			m->queue = PQ_FREE + m->pc;
584			vm_page_queues[m->queue].lcnt++;
585			TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m,
586			    pageq);
587			++vm_page_zero_count;
588			++cnt_prezero;
589			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
590				zero_state = 1;
591		}
592		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
593		splx(s);
594		__asm __volatile("cli" : : : "memory");
595#ifdef SMP
596		rel_mplock();
597#endif
598		return (1);
599#ifdef SMP
600	}
601#endif
602	return (0);
603}
604
605/*
606 * Software interrupt handler for queued VM system processing.
607 */
608void
609swi_vm()
610{
611	if (busdma_swi_pending != 0)
612		busdma_swi();
613}
614
615/*
616 * Tell whether this address is in some physical memory region.
617 * Currently used by the kernel coredump code in order to avoid
618 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
619 * or other unpredictable behaviour.
620 */
621
622#include "isa.h"
623
624int
625is_physical_memory(addr)
626	vm_offset_t addr;
627{
628
629#if NISA > 0
630	/* The ISA ``memory hole''. */
631	if (addr >= 0xa0000 && addr < 0x100000)
632		return 0;
633#endif
634
635	/*
636	 * stuff other tests for known memory-mapped devices (PCI?)
637	 * here
638	 */
639
640	return 1;
641}
642