vm_machdep.c revision 52121
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 * $FreeBSD: head/sys/amd64/amd64/vm_machdep.c 52121 1999-10-11 14:50:03Z peter $
42 */
43
44#include "npx.h"
45#include "opt_user_ldt.h"
46#ifdef PC98
47#include "opt_pc98.h"
48#endif
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/malloc.h>
54#include <sys/buf.h>
55#include <sys/vnode.h>
56#include <sys/vmmeter.h>
57#include <sys/kernel.h>
58#include <sys/sysctl.h>
59
60#include <machine/clock.h>
61#include <machine/cpu.h>
62#include <machine/md_var.h>
63#ifdef SMP
64#include <machine/smp.h>
65#endif
66
67#include <vm/vm.h>
68#include <vm/vm_param.h>
69#include <vm/vm_prot.h>
70#include <sys/lock.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_page.h>
73#include <vm/vm_map.h>
74#include <vm/vm_extern.h>
75
76#include <sys/user.h>
77
78#ifdef PC98
79#include <pc98/pc98/pc98.h>
80#else
81#include <i386/isa/isa.h>
82#endif
83
84static void	cpu_reset_real __P((void));
85#ifdef SMP
86static void	cpu_reset_proxy __P((void));
87static u_int	cpu_reset_proxyid;
88static volatile u_int	cpu_reset_proxy_active;
89#endif
90
91/*
92 * quick version of vm_fault
93 */
94int
95vm_fault_quick(v, prot)
96	caddr_t v;
97	int prot;
98{
99	int r;
100
101	if (prot & VM_PROT_WRITE)
102		r = subyte(v, fubyte(v));
103	else
104		r = fubyte(v);
105	return(r);
106}
107
108/*
109 * Finish a fork operation, with process p2 nearly set up.
110 * Copy and update the pcb, set up the stack so that the child
111 * ready to run and return to user mode.
112 */
113void
114cpu_fork(p1, p2)
115	register struct proc *p1, *p2;
116{
117	struct pcb *pcb2 = &p2->p_addr->u_pcb;
118
119#if NNPX > 0
120	/* Ensure that p1's pcb is up to date. */
121	if (npxproc == p1)
122		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
123#endif
124
125	/* Copy p1's pcb. */
126	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
127
128	/*
129	 * Create a new fresh stack for the new process.
130	 * Copy the trap frame for the return to user mode as if from a
131	 * syscall.  This copies the user mode register values.
132	 */
133	p2->p_md.md_regs = (struct trapframe *)
134			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
135	*p2->p_md.md_regs = *p1->p_md.md_regs;
136
137	/*
138	 * Set registers for trampoline to user mode.  Leave space for the
139	 * return address on stack.  These are the kernel mode register values.
140	 */
141	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
142	pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
143	pcb2->pcb_esi = (int)fork_return;
144	pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
145	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
146	pcb2->pcb_ebx = (int)p2;
147	pcb2->pcb_eip = (int)fork_trampoline;
148	/*
149	 * pcb2->pcb_ldt:	duplicated below, if necessary.
150	 * pcb2->pcb_ldt_len:	cloned above.
151	 * pcb2->pcb_savefpu:	cloned above.
152	 * pcb2->pcb_flags:	cloned above (always 0 here?).
153	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
154	 */
155
156#ifdef SMP
157	pcb2->pcb_mpnest = 1;
158#endif
159	/*
160	 * XXX don't copy the i/o pages.  this should probably be fixed.
161	 */
162	pcb2->pcb_ext = 0;
163
164#ifdef USER_LDT
165        /* Copy the LDT, if necessary. */
166        if (pcb2->pcb_ldt != 0) {
167                union descriptor *new_ldt;
168                size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor);
169
170                new_ldt = (union descriptor *)kmem_alloc(kernel_map, len);
171                bcopy(pcb2->pcb_ldt, new_ldt, len);
172                pcb2->pcb_ldt = (caddr_t)new_ldt;
173        }
174#endif
175
176	/*
177	 * Now, cpu_switch() can schedule the new process.
178	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
179	 * containing the return address when exiting cpu_switch.
180	 * This will normally be to proc_trampoline(), which will have
181	 * %ebx loaded with the new proc's pointer.  proc_trampoline()
182	 * will set up a stack to call fork_return(p, frame); to complete
183	 * the return to user-mode.
184	 */
185}
186
187/*
188 * Intercept the return address from a freshly forked process that has NOT
189 * been scheduled yet.
190 *
191 * This is needed to make kernel threads stay in kernel mode.
192 */
193void
194cpu_set_fork_handler(p, func, arg)
195	struct proc *p;
196	void (*func) __P((void *));
197	void *arg;
198{
199	/*
200	 * Note that the trap frame follows the args, so the function
201	 * is really called like this:  func(arg, frame);
202	 */
203	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
204	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
205}
206
207void
208cpu_exit(p)
209	register struct proc *p;
210{
211	struct pcb *pcb = &p->p_addr->u_pcb;
212
213#if NNPX > 0
214	npxexit(p);
215#endif	/* NNPX */
216	if (pcb->pcb_ext != 0) {
217	        /*
218		 * XXX do we need to move the TSS off the allocated pages
219		 * before freeing them?  (not done here)
220		 */
221		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
222		    ctob(IOPAGES + 1));
223		pcb->pcb_ext = 0;
224	}
225#ifdef USER_LDT
226	if (pcb->pcb_ldt != 0) {
227		if (pcb == curpcb) {
228			lldt(_default_ldt);
229			currentldt = _default_ldt;
230		}
231		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
232			pcb->pcb_ldt_len * sizeof(union descriptor));
233		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
234	}
235#endif
236	cnt.v_swtch++;
237	cpu_switch(p);
238	panic("cpu_exit");
239}
240
241void
242cpu_wait(p)
243	struct proc *p;
244{
245	/* drop per-process resources */
246	pmap_dispose_proc(p);
247
248	/* and clean-out the vmspace */
249	vmspace_free(p->p_vmspace);
250}
251
252/*
253 * Dump the machine specific header information at the start of a core dump.
254 */
255int
256cpu_coredump(p, vp, cred)
257	struct proc *p;
258	struct vnode *vp;
259	struct ucred *cred;
260{
261	int error;
262	caddr_t tempuser;
263
264	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
265	if (!tempuser)
266		return EINVAL;
267
268	bzero(tempuser, ctob(UPAGES));
269	bcopy(p->p_addr, tempuser, sizeof(struct user));
270	bcopy(p->p_md.md_regs,
271	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
272	      sizeof(struct trapframe));
273
274	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser,
275			ctob(UPAGES),
276			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT,
277			cred, (int *)NULL, p);
278
279	free(tempuser, M_TEMP);
280
281	return error;
282}
283
284#ifdef notyet
285static void
286setredzone(pte, vaddr)
287	u_short *pte;
288	caddr_t vaddr;
289{
290/* eventually do this by setting up an expand-down stack segment
291   for ss0: selector, allowing stack access down to top of u.
292   this means though that protection violations need to be handled
293   thru a double fault exception that must do an integral task
294   switch to a known good context, within which a dump can be
295   taken. a sensible scheme might be to save the initial context
296   used by sched (that has physical memory mapped 1:1 at bottom)
297   and take the dump while still in mapped mode */
298}
299#endif
300
301/*
302 * Convert kernel VA to physical address
303 */
304u_long
305kvtop(void *addr)
306{
307	vm_offset_t va;
308
309	va = pmap_kextract((vm_offset_t)addr);
310	if (va == 0)
311		panic("kvtop: zero page frame");
312	return((int)va);
313}
314
315/*
316 * Map an IO request into kernel virtual address space.
317 *
318 * All requests are (re)mapped into kernel VA space.
319 * Notice that we use b_bufsize for the size of the buffer
320 * to be mapped.  b_bcount might be modified by the driver.
321 */
322void
323vmapbuf(bp)
324	register struct buf *bp;
325{
326	register caddr_t addr, v, kva;
327	vm_offset_t pa;
328
329	if ((bp->b_flags & B_PHYS) == 0)
330		panic("vmapbuf");
331
332	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
333	    addr < bp->b_data + bp->b_bufsize;
334	    addr += PAGE_SIZE, v += PAGE_SIZE) {
335		/*
336		 * Do the vm_fault if needed; do the copy-on-write thing
337		 * when reading stuff off device into memory.
338		 */
339		vm_fault_quick(addr,
340			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
341		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
342		if (pa == 0)
343			panic("vmapbuf: page not present");
344		vm_page_hold(PHYS_TO_VM_PAGE(pa));
345		pmap_kenter((vm_offset_t) v, pa);
346	}
347
348	kva = bp->b_saveaddr;
349	bp->b_saveaddr = bp->b_data;
350	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
351}
352
353/*
354 * Free the io map PTEs associated with this IO operation.
355 * We also invalidate the TLB entries and restore the original b_addr.
356 */
357void
358vunmapbuf(bp)
359	register struct buf *bp;
360{
361	register caddr_t addr;
362	vm_offset_t pa;
363
364	if ((bp->b_flags & B_PHYS) == 0)
365		panic("vunmapbuf");
366
367	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
368	    addr < bp->b_data + bp->b_bufsize;
369	    addr += PAGE_SIZE) {
370		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
371		pmap_kremove((vm_offset_t) addr);
372		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
373	}
374
375	bp->b_data = bp->b_saveaddr;
376}
377
378/*
379 * Force reset the processor by invalidating the entire address space!
380 */
381
382#ifdef SMP
383static void
384cpu_reset_proxy()
385{
386	u_int saved_mp_lock;
387
388	cpu_reset_proxy_active = 1;
389	while (cpu_reset_proxy_active == 1)
390		;	 /* Wait for other cpu to disable interupts */
391	saved_mp_lock = mp_lock;
392	mp_lock = 1;
393	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
394	cpu_reset_proxy_active = 3;
395	while (cpu_reset_proxy_active == 3)
396		;	/* Wait for other cpu to enable interrupts */
397	stop_cpus((1<<cpu_reset_proxyid));
398	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
399	DELAY(1000000);
400	cpu_reset_real();
401}
402#endif
403
404void
405cpu_reset()
406{
407#ifdef SMP
408	if (smp_active == 0) {
409		cpu_reset_real();
410		/* NOTREACHED */
411	} else {
412
413		u_int map;
414		int cnt;
415		printf("cpu_reset called on cpu#%d\n",cpuid);
416
417		map = other_cpus & ~ stopped_cpus;
418
419		if (map != 0) {
420			printf("cpu_reset: Stopping other CPUs\n");
421			stop_cpus(map);		/* Stop all other CPUs */
422		}
423
424		if (cpuid == 0) {
425			DELAY(1000000);
426			cpu_reset_real();
427			/* NOTREACHED */
428		} else {
429			/* We are not BSP (CPU #0) */
430
431			cpu_reset_proxyid = cpuid;
432			cpustop_restartfunc = cpu_reset_proxy;
433			printf("cpu_reset: Restarting BSP\n");
434			started_cpus = (1<<0);		/* Restart CPU #0 */
435
436			cnt = 0;
437			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
438				cnt++;	/* Wait for BSP to announce restart */
439			if (cpu_reset_proxy_active == 0)
440				printf("cpu_reset: Failed to restart BSP\n");
441			__asm __volatile("cli" : : : "memory");
442			cpu_reset_proxy_active = 2;
443			cnt = 0;
444			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
445				cnt++;	/* Do nothing */
446			if (cpu_reset_proxy_active == 2) {
447				printf("cpu_reset: BSP did not grab mp lock\n");
448				cpu_reset_real();	/* XXX: Bogus ? */
449			}
450			cpu_reset_proxy_active = 4;
451			__asm __volatile("sti" : : : "memory");
452			while (1);
453			/* NOTREACHED */
454		}
455	}
456#else
457	cpu_reset_real();
458#endif
459}
460
461static void
462cpu_reset_real()
463{
464
465#ifdef PC98
466	/*
467	 * Attempt to do a CPU reset via CPU reset port.
468	 */
469	disable_intr();
470	if ((inb(0x35) & 0xa0) != 0xa0) {
471		outb(0x37, 0x0f);		/* SHUT0 = 0. */
472		outb(0x37, 0x0b);		/* SHUT1 = 0. */
473	}
474	outb(0xf0, 0x00);		/* Reset. */
475#else
476	/*
477	 * Attempt to do a CPU reset via the keyboard controller,
478	 * do not turn of the GateA20, as any machine that fails
479	 * to do the reset here would then end up in no man's land.
480	 */
481
482#if !defined(BROKEN_KEYBOARD_RESET)
483	outb(IO_KBD + 4, 0xFE);
484	DELAY(500000);	/* wait 0.5 sec to see if that did it */
485	printf("Keyboard reset did not work, attempting CPU shutdown\n");
486	DELAY(1000000);	/* wait 1 sec for printf to complete */
487#endif
488#endif /* PC98 */
489	/* force a shutdown by unmapping entire address space ! */
490	bzero((caddr_t) PTD, PAGE_SIZE);
491
492	/* "good night, sweet prince .... <THUNK!>" */
493	invltlb();
494	/* NOTREACHED */
495	while(1);
496}
497
498int
499grow_stack(p, sp)
500	struct proc *p;
501	u_int sp;
502{
503	int rv;
504
505	rv = vm_map_growstack (p, sp);
506	if (rv != KERN_SUCCESS)
507		return (0);
508
509	return (1);
510}
511
512SYSCTL_DECL(_vm_stats_misc);
513
514static int cnt_prezero;
515
516SYSCTL_INT(_vm_stats_misc, OID_AUTO,
517	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
518
519/*
520 * Implement the pre-zeroed page mechanism.
521 * This routine is called from the idle loop.
522 */
523
524#define ZIDLE_LO(v)	((v) * 2 / 3)
525#define ZIDLE_HI(v)	((v) * 4 / 5)
526
527int
528vm_page_zero_idle()
529{
530	static int free_rover;
531	static int zero_state;
532	vm_page_t m;
533	int s;
534
535	/*
536	 * Attempt to maintain approximately 1/2 of our free pages in a
537	 * PG_ZERO'd state.   Add some hysteresis to (attempt to) avoid
538	 * generally zeroing a page when the system is near steady-state.
539	 * Otherwise we might get 'flutter' during disk I/O / IPC or
540	 * fast sleeps.  We also do not want to be continuously zeroing
541	 * pages because doing so may flush our L1 and L2 caches too much.
542	 */
543
544	if (zero_state && vm_page_zero_count >= ZIDLE_LO(cnt.v_free_count))
545		return(0);
546	if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
547		return(0);
548
549#ifdef SMP
550	if (try_mplock()) {
551#endif
552		s = splvm();
553		__asm __volatile("sti" : : : "memory");
554		zero_state = 0;
555		m = vm_page_list_find(PQ_FREE, free_rover, FALSE);
556		if (m != NULL && (m->flags & PG_ZERO) == 0) {
557			vm_page_queues[m->queue].lcnt--;
558			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
559			m->queue = PQ_NONE;
560			splx(s);
561#if 0
562			rel_mplock();
563#endif
564			pmap_zero_page(VM_PAGE_TO_PHYS(m));
565#if 0
566			get_mplock();
567#endif
568			(void)splvm();
569			vm_page_flag_set(m, PG_ZERO);
570			m->queue = PQ_FREE + m->pc;
571			vm_page_queues[m->queue].lcnt++;
572			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m,
573			    pageq);
574			++vm_page_zero_count;
575			++cnt_prezero;
576			if (vm_page_zero_count >= ZIDLE_HI(cnt.v_free_count))
577				zero_state = 1;
578		}
579		free_rover = (free_rover + PQ_PRIME2) & PQ_L2_MASK;
580		splx(s);
581		__asm __volatile("cli" : : : "memory");
582#ifdef SMP
583		rel_mplock();
584#endif
585		return (1);
586#ifdef SMP
587	}
588#endif
589	return (0);
590}
591
592/*
593 * Software interrupt handler for queued VM system processing.
594 */
595void
596swi_vm()
597{
598	if (busdma_swi_pending != 0)
599		busdma_swi();
600}
601
602/*
603 * Tell whether this address is in some physical memory region.
604 * Currently used by the kernel coredump code in order to avoid
605 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
606 * or other unpredictable behaviour.
607 */
608
609#include "isa.h"
610
611int
612is_physical_memory(addr)
613	vm_offset_t addr;
614{
615
616#if NISA > 0
617	/* The ISA ``memory hole''. */
618	if (addr >= 0xa0000 && addr < 0x100000)
619		return 0;
620#endif
621
622	/*
623	 * stuff other tests for known memory-mapped devices (PCI?)
624	 * here
625	 */
626
627	return 1;
628}
629