vm_machdep.c revision 302408
1139776Simp/*-
222521Sdyson * Copyright (c) 1982, 1986 The Regents of the University of California.
31541Srgrimes * Copyright (c) 1989, 1990 William Jolitz
41541Srgrimes * Copyright (c) 1994 John Dyson
51541Srgrimes * All rights reserved.
61541Srgrimes *
71541Srgrimes * This code is derived from software contributed to Berkeley by
81541Srgrimes * the Systems Programming Group of the University of Utah Computer
91541Srgrimes * Science Department, and William Jolitz.
101541Srgrimes *
111541Srgrimes * Redistribution and use in source and binary forms, with or without
121541Srgrimes * modification, are permitted provided that the following conditions
131541Srgrimes * are met:
141541Srgrimes * 1. Redistributions of source code must retain the above copyright
151541Srgrimes *    notice, this list of conditions and the following disclaimer.
161541Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
171541Srgrimes *    notice, this list of conditions and the following disclaimer in the
181541Srgrimes *    documentation and/or other materials provided with the distribution.
191541Srgrimes * 3. All advertising materials mentioning features or use of this software
201541Srgrimes *    must display the following acknowledgement:
211541Srgrimes *	This product includes software developed by the University of
221541Srgrimes *	California, Berkeley and its contributors.
231541Srgrimes * 4. Neither the name of the University nor the names of its contributors
241541Srgrimes *    may be used to endorse or promote products derived from this software
251541Srgrimes *    without specific prior written permission.
261541Srgrimes *
271541Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
281541Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
291541Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
301541Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
311541Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
321541Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
331541Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3450477Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
351541Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
361541Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
371541Srgrimes * SUCH DAMAGE.
381541Srgrimes *
391541Srgrimes *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
401541Srgrimes *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
411541Srgrimes */
421541Srgrimes
4376166Smarkm#include <sys/cdefs.h>
442946Swollman__FBSDID("$FreeBSD: stable/11/sys/amd64/amd64/vm_machdep.c 301961 2016-06-16 12:05:44Z kib $");
4576166Smarkm
4689316Salfred#include "opt_isa.h"
4776166Smarkm#include "opt_cpu.h"
4876166Smarkm#include "opt_compat.h"
491541Srgrimes
50220400Strasz#include <sys/param.h>
511541Srgrimes#include <sys/systm.h>
521541Srgrimes#include <sys/bio.h>
5376166Smarkm#include <sys/buf.h>
5477031Sru#include <sys/kernel.h>
551541Srgrimes#include <sys/ktr.h>
56151897Srwatson#include <sys/lock.h>
5730354Sphk#include <sys/malloc.h>
58158611Skbyanc#include <sys/mbuf.h>
59132902Sphk#include <sys/mutex.h>
60116271Sphk#include <sys/pioctl.h>
61116271Sphk#include <sys/proc.h>
62141622Sphk#include <sys/smp.h>
63116271Sphk#include <sys/sysctl.h>
641541Srgrimes#include <sys/sysent.h>
65158611Skbyanc#include <sys/unistd.h>
66158611Skbyanc#include <sys/vnode.h>
67158611Skbyanc#include <sys/vmmeter.h>
68230725Smckusick
69158611Skbyanc#include <machine/cpu.h>
70158611Skbyanc#include <machine/md_var.h>
71158611Skbyanc#include <machine/pcb.h>
72158611Skbyanc#include <machine/smp.h>
73158611Skbyanc#include <machine/specialreg.h>
741541Srgrimes#include <machine/tss.h>
751541Srgrimes
7612143Sphk#include <vm/vm.h>
77191990Sattilio#include <vm/vm_extern.h>
781541Srgrimes#include <vm/vm_kern.h>
791541Srgrimes#include <vm/vm_page.h>
801541Srgrimes#include <vm/vm_map.h>
811541Srgrimes#include <vm/vm_param.h>
821541Srgrimes
831541Srgrimes#include <isa/isareg.h>
841541Srgrimes
851541Srgrimesstatic void	cpu_reset_real(void);
86137478Sphk#ifdef SMP
871541Srgrimesstatic void	cpu_reset_proxy(void);
881541Srgrimesstatic u_int	cpu_reset_proxyid;
89184205Sdesstatic volatile u_int	cpu_reset_proxy_active;
90111119Simp#endif
91179288Slulf
92179288Slulf_Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
93179288Slulf    "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
94179288Slulf_Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
95179288Slulf    "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
96179288Slulf_Static_assert(OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
97179288Slulf    "OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf.");
98191990Sattilio
99179288Slulfstruct savefpu *
100179288Slulfget_pcb_user_save_td(struct thread *td)
101179288Slulf{
102179288Slulf	vm_offset_t p;
103179288Slulf
1041541Srgrimes	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
105101308Sjeff	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
1061541Srgrimes	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
107179288Slulf	return ((struct savefpu *)p);
1081541Srgrimes}
1091541Srgrimes
110179288Slulfstruct savefpu *
111179288Slulfget_pcb_user_save_pcb(struct pcb *pcb)
112179288Slulf{
11322521Sdyson	vm_offset_t p;
1141541Srgrimes
115138483Sphk	p = (vm_offset_t)(pcb + 1);
1161541Srgrimes	return ((struct savefpu *)p);
1171541Srgrimes}
1181541Srgrimes
11912143Sphkstruct pcb *
120191990Sattilioget_pcb_td(struct thread *td)
1211541Srgrimes{
1221541Srgrimes	vm_offset_t p;
1231541Srgrimes
124179288Slulf	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
125179288Slulf	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
1261541Srgrimes	    sizeof(struct pcb);
1271541Srgrimes	return ((struct pcb *)p);
1281541Srgrimes}
129179288Slulf
130179288Slulfvoid *
131179288Slulfalloc_fpusave(int flags)
132179288Slulf{
133179288Slulf	void *res;
134179288Slulf	struct savefpu_ymm *sf;
1351541Srgrimes
136179288Slulf	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
1371541Srgrimes	if (use_xsave) {
1381541Srgrimes		sf = (struct savefpu_ymm *)res;
1391541Srgrimes		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
1401541Srgrimes		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
1411541Srgrimes	}
14276688Siedowse	return (res);
14376688Siedowse}
14476688Siedowse
1451541Srgrimes/*
146191990Sattilio * Finish a fork operation, with process p2 nearly set up.
1471541Srgrimes * Copy and update the pcb, set up the stack so that the child
1481541Srgrimes * ready to run and return to user mode.
1491541Srgrimes */
150179288Slulfvoid
151179288Slulfcpu_fork(td1, p2, td2, flags)
1521541Srgrimes	register struct thread *td1;
153179288Slulf	register struct proc *p2;
154179288Slulf	struct thread *td2;
1551541Srgrimes	int flags;
156179288Slulf{
157179288Slulf	register struct proc *p1;
1581541Srgrimes	struct pcb *pcb2;
1591541Srgrimes	struct mdproc *mdp1, *mdp2;
1601541Srgrimes	struct proc_ldt *pldt;
1611541Srgrimes
162141622Sphk	p1 = td1->td_proc;
163191990Sattilio	if ((flags & RFPROC) == 0) {
1641541Srgrimes		if ((flags & RFMEM) == 0) {
165144058Sjeff			/* unshare user LDT */
1661541Srgrimes			mdp1 = &p1->p_md;
1671541Srgrimes			mtx_lock(&dt_lock);
1681541Srgrimes			if ((pldt = mdp1->md_ldt) != NULL &&
1691541Srgrimes			    pldt->ldt_refcnt > 1 &&
1701541Srgrimes			    user_ldt_alloc(p1, 1) == NULL)
1711541Srgrimes				panic("could not copy LDT");
1721541Srgrimes			mtx_unlock(&dt_lock);
1731541Srgrimes		}
174191990Sattilio		return;
1751541Srgrimes	}
1761541Srgrimes
1771541Srgrimes	/* Ensure that td1's pcb is up to date. */
1781541Srgrimes	fpuexit(td1);
17912143Sphk
180191990Sattilio	/* Point the pcb to the top of the stack */
1811541Srgrimes	pcb2 = get_pcb_td(td2);
1821541Srgrimes	td2->td_pcb = pcb2;
183191990Sattilio
18483366Sjulian	/* Copy td1's pcb */
1851541Srgrimes	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
1861541Srgrimes
1871541Srgrimes	/* Properly initialize pcb_save */
1881541Srgrimes	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
1891541Srgrimes	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
190220400Strasz	    cpu_max_ext_state_size);
1911541Srgrimes
192191990Sattilio	/* Point mdproc and then copy over td1's contents */
193191990Sattilio	mdp2 = &p2->p_md;
1941541Srgrimes	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
1951541Srgrimes
1961541Srgrimes	/*
1971541Srgrimes	 * Create a new fresh stack for the new process.
1981541Srgrimes	 * Copy the trap frame for the return to user mode as if from a
1991541Srgrimes	 * syscall.  This copies most of the user mode register values.
200125454Sjhb	 */
201125454Sjhb	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
202125454Sjhb	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
20383366Sjulian
204168355Srwatson	td2->td_frame->tf_rax = 0;		/* Child returns zero */
205220400Strasz	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
206220400Strasz	td2->td_frame->tf_rdx = 1;
207220400Strasz
2081541Srgrimes	/*
2091541Srgrimes	 * If the parent process has the trap bit set (i.e. a debugger had
2101541Srgrimes	 * single stepped the process to the system call), we need to clear
2111541Srgrimes	 * the trap flag from the new frame unless the debugger had set PF_FORK
2121541Srgrimes	 * on the parent.  Otherwise, the child will receive a (likely
2131541Srgrimes	 * unexpected) SIGTRAP when it executes the first instruction after
2141541Srgrimes	 * returning  to userland.
2151541Srgrimes	 */
2161541Srgrimes	if ((p1->p_pfsflags & PF_FORK) == 0)
2171541Srgrimes		td2->td_frame->tf_rflags &= ~PSL_T;
2181541Srgrimes
2191541Srgrimes	/*
220168355Srwatson	 * Set registers for trampoline to user mode.  Leave space for the
2211541Srgrimes	 * return address on stack.  These are the kernel mode register values.
2221541Srgrimes	 */
2231541Srgrimes	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
2241541Srgrimes	pcb2->pcb_rbp = 0;
2251541Srgrimes	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
2261541Srgrimes	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
2271541Srgrimes	pcb2->pcb_rip = (register_t)fork_trampoline;
2281541Srgrimes	/*-
2291541Srgrimes	 * pcb2->pcb_dr*:	cloned above.
2301541Srgrimes	 * pcb2->pcb_savefpu:	cloned above.
2311541Srgrimes	 * pcb2->pcb_flags:	cloned above.
2321541Srgrimes	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
23312143Sphk	 * pcb2->pcb_[fg]sbase:	cloned above
234158611Skbyanc	 */
235116271Sphk
236132902Sphk	/* Setup to release spin count in fork_exit(). */
237116271Sphk	td2->td_md.md_spinlock_count = 1;
238116271Sphk	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
239179288Slulf	td2->td_md.md_invl_gen.gen = 0;
240116271Sphk
2411541Srgrimes	/* As an i386, do not copy io permission bitmap. */
2422946Swollman	pcb2->pcb_tssp = NULL;
24377133Sru
244	/* New segment registers. */
245	set_pcb_flags(pcb2, PCB_FULL_IRET);
246
247	/* Copy the LDT, if necessary. */
248	mdp1 = &td1->td_proc->p_md;
249	mdp2 = &p2->p_md;
250	mtx_lock(&dt_lock);
251	if (mdp1->md_ldt != NULL) {
252		if (flags & RFMEM) {
253			mdp1->md_ldt->ldt_refcnt++;
254			mdp2->md_ldt = mdp1->md_ldt;
255			bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct
256			    system_segment_descriptor));
257		} else {
258			mdp2->md_ldt = NULL;
259			mdp2->md_ldt = user_ldt_alloc(p2, 0);
260			if (mdp2->md_ldt == NULL)
261				panic("could not copy LDT");
262			amd64_set_ldt_data(td2, 0, max_ldt_segment,
263			    (struct user_segment_descriptor *)
264			    mdp1->md_ldt->ldt_base);
265		}
266	} else
267		mdp2->md_ldt = NULL;
268	mtx_unlock(&dt_lock);
269
270	/*
271	 * Now, cpu_switch() can schedule the new process.
272	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
273	 * containing the return address when exiting cpu_switch.
274	 * This will normally be to fork_trampoline(), which will have
275	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
276	 * will set up a stack to call fork_return(p, frame); to complete
277	 * the return to user-mode.
278	 */
279}
280
281/*
282 * Intercept the return address from a freshly forked process that has NOT
283 * been scheduled yet.
284 *
285 * This is needed to make kernel threads stay in kernel mode.
286 */
287void
288cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
289{
290	/*
291	 * Note that the trap frame follows the args, so the function
292	 * is really called like this:  func(arg, frame);
293	 */
294	td->td_pcb->pcb_r12 = (long) func;	/* function */
295	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
296}
297
298void
299cpu_exit(struct thread *td)
300{
301
302	/*
303	 * If this process has a custom LDT, release it.
304	 */
305	mtx_lock(&dt_lock);
306	if (td->td_proc->p_md.md_ldt != 0)
307		user_ldt_free(td);
308	else
309		mtx_unlock(&dt_lock);
310}
311
312void
313cpu_thread_exit(struct thread *td)
314{
315	struct pcb *pcb;
316
317	critical_enter();
318	if (td == PCPU_GET(fpcurthread))
319		fpudrop();
320	critical_exit();
321
322	pcb = td->td_pcb;
323
324	/* Disable any hardware breakpoints. */
325	if (pcb->pcb_flags & PCB_DBREGS) {
326		reset_dbregs();
327		clear_pcb_flags(pcb, PCB_DBREGS);
328	}
329}
330
331void
332cpu_thread_clean(struct thread *td)
333{
334	struct pcb *pcb;
335
336	pcb = td->td_pcb;
337
338	/*
339	 * Clean TSS/iomap
340	 */
341	if (pcb->pcb_tssp != NULL) {
342		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_tssp,
343		    ctob(IOPAGES + 1));
344		pcb->pcb_tssp = NULL;
345	}
346}
347
348void
349cpu_thread_swapin(struct thread *td)
350{
351}
352
353void
354cpu_thread_swapout(struct thread *td)
355{
356}
357
358void
359cpu_thread_alloc(struct thread *td)
360{
361	struct pcb *pcb;
362	struct xstate_hdr *xhdr;
363
364	td->td_pcb = pcb = get_pcb_td(td);
365	td->td_frame = (struct trapframe *)pcb - 1;
366	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
367	if (use_xsave) {
368		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
369		bzero(xhdr, sizeof(*xhdr));
370		xhdr->xstate_bv = xsave_mask;
371	}
372}
373
374void
375cpu_thread_free(struct thread *td)
376{
377
378	cpu_thread_clean(td);
379}
380
381void
382cpu_set_syscall_retval(struct thread *td, int error)
383{
384
385	switch (error) {
386	case 0:
387		td->td_frame->tf_rax = td->td_retval[0];
388		td->td_frame->tf_rdx = td->td_retval[1];
389		td->td_frame->tf_rflags &= ~PSL_C;
390		break;
391
392	case ERESTART:
393		/*
394		 * Reconstruct pc, we know that 'syscall' is 2 bytes,
395		 * lcall $X,y is 7 bytes, int 0x80 is 2 bytes.
396		 * We saved this in tf_err.
397		 * %r10 (which was holding the value of %rcx) is restored
398		 * for the next iteration.
399		 * %r10 restore is only required for freebsd/amd64 processes,
400		 * but shall be innocent for any ia32 ABI.
401		 *
402		 * Require full context restore to get the arguments
403		 * in the registers reloaded at return to usermode.
404		 */
405		td->td_frame->tf_rip -= td->td_frame->tf_err;
406		td->td_frame->tf_r10 = td->td_frame->tf_rcx;
407		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
408		break;
409
410	case EJUSTRETURN:
411		break;
412
413	default:
414		td->td_frame->tf_rax = SV_ABI_ERRNO(td->td_proc, error);
415		td->td_frame->tf_rflags |= PSL_C;
416		break;
417	}
418}
419
420/*
421 * Initialize machine state, mostly pcb and trap frame for a new
422 * thread, about to return to userspace.  Put enough state in the new
423 * thread's PCB to get it to go back to the fork_return(), which
424 * finalizes the thread state and handles peculiarities of the first
425 * return to userspace for the new thread.
426 */
427void
428cpu_copy_thread(struct thread *td, struct thread *td0)
429{
430	struct pcb *pcb2;
431
432	/* Point the pcb to the top of the stack. */
433	pcb2 = td->td_pcb;
434
435	/*
436	 * Copy the upcall pcb.  This loads kernel regs.
437	 * Those not loaded individually below get their default
438	 * values here.
439	 */
440	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
441	clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE |
442	    PCB_KERNFPU);
443	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
444	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
445	    cpu_max_ext_state_size);
446	set_pcb_flags(pcb2, PCB_FULL_IRET);
447
448	/*
449	 * Create a new fresh stack for the new thread.
450	 */
451	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
452
453	/* If the current thread has the trap bit set (i.e. a debugger had
454	 * single stepped the process to the system call), we need to clear
455	 * the trap flag from the new frame. Otherwise, the new thread will
456	 * receive a (likely unexpected) SIGTRAP when it executes the first
457	 * instruction after returning to userland.
458	 */
459	td->td_frame->tf_rflags &= ~PSL_T;
460
461	/*
462	 * Set registers for trampoline to user mode.  Leave space for the
463	 * return address on stack.  These are the kernel mode register values.
464	 */
465	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
466	pcb2->pcb_rbp = 0;
467	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
468	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
469	pcb2->pcb_rip = (register_t)fork_trampoline;
470	/*
471	 * If we didn't copy the pcb, we'd need to do the following registers:
472	 * pcb2->pcb_dr*:	cloned above.
473	 * pcb2->pcb_savefpu:	cloned above.
474	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
475	 * pcb2->pcb_[fg]sbase: cloned above
476	 */
477
478	/* Setup to release spin count in fork_exit(). */
479	td->td_md.md_spinlock_count = 1;
480	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
481}
482
483/*
484 * Set that machine state for performing an upcall that starts
485 * the entry function with the given argument.
486 */
487void
488cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
489    stack_t *stack)
490{
491
492	/*
493	 * Do any extra cleaning that needs to be done.
494	 * The thread may have optional components
495	 * that are not present in a fresh thread.
496	 * This may be a recycled thread so make it look
497	 * as though it's newly allocated.
498	 */
499	cpu_thread_clean(td);
500
501#ifdef COMPAT_FREEBSD32
502	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
503		/*
504		 * Set the trap frame to point at the beginning of the entry
505		 * function.
506		 */
507		td->td_frame->tf_rbp = 0;
508		td->td_frame->tf_rsp =
509		   (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
510		td->td_frame->tf_rip = (uintptr_t)entry;
511
512		/* Pass the argument to the entry point. */
513		suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)),
514		    (uint32_t)(uintptr_t)arg);
515
516		return;
517	}
518#endif
519
520	/*
521	 * Set the trap frame to point at the beginning of the uts
522	 * function.
523	 */
524	td->td_frame->tf_rbp = 0;
525	td->td_frame->tf_rsp =
526	    ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
527	td->td_frame->tf_rsp -= 8;
528	td->td_frame->tf_rip = (register_t)entry;
529	td->td_frame->tf_ds = _udatasel;
530	td->td_frame->tf_es = _udatasel;
531	td->td_frame->tf_fs = _ufssel;
532	td->td_frame->tf_gs = _ugssel;
533	td->td_frame->tf_flags = TF_HASSEGS;
534
535	/* Pass the argument to the entry point. */
536	td->td_frame->tf_rdi = (register_t)arg;
537}
538
539int
540cpu_set_user_tls(struct thread *td, void *tls_base)
541{
542	struct pcb *pcb;
543
544	if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
545		return (EINVAL);
546
547	pcb = td->td_pcb;
548	set_pcb_flags(pcb, PCB_FULL_IRET);
549#ifdef COMPAT_FREEBSD32
550	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
551		pcb->pcb_gsbase = (register_t)tls_base;
552		return (0);
553	}
554#endif
555	pcb->pcb_fsbase = (register_t)tls_base;
556	return (0);
557}
558
559#ifdef SMP
560static void
561cpu_reset_proxy()
562{
563	cpuset_t tcrp;
564
565	cpu_reset_proxy_active = 1;
566	while (cpu_reset_proxy_active == 1)
567		ia32_pause(); /* Wait for other cpu to see that we've started */
568
569	CPU_SETOF(cpu_reset_proxyid, &tcrp);
570	stop_cpus(tcrp);
571	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
572	DELAY(1000000);
573	cpu_reset_real();
574}
575#endif
576
577void
578cpu_reset()
579{
580#ifdef SMP
581	cpuset_t map;
582	u_int cnt;
583
584	if (smp_started) {
585		map = all_cpus;
586		CPU_CLR(PCPU_GET(cpuid), &map);
587		CPU_NAND(&map, &stopped_cpus);
588		if (!CPU_EMPTY(&map)) {
589			printf("cpu_reset: Stopping other CPUs\n");
590			stop_cpus(map);
591		}
592
593		if (PCPU_GET(cpuid) != 0) {
594			cpu_reset_proxyid = PCPU_GET(cpuid);
595			cpustop_restartfunc = cpu_reset_proxy;
596			cpu_reset_proxy_active = 0;
597			printf("cpu_reset: Restarting BSP\n");
598
599			/* Restart CPU #0. */
600			CPU_SETOF(0, &started_cpus);
601			wmb();
602
603			cnt = 0;
604			while (cpu_reset_proxy_active == 0 && cnt < 10000000) {
605				ia32_pause();
606				cnt++;	/* Wait for BSP to announce restart */
607			}
608			if (cpu_reset_proxy_active == 0)
609				printf("cpu_reset: Failed to restart BSP\n");
610			enable_intr();
611			cpu_reset_proxy_active = 2;
612
613			while (1)
614				ia32_pause();
615			/* NOTREACHED */
616		}
617
618		DELAY(1000000);
619	}
620#endif
621	cpu_reset_real();
622	/* NOTREACHED */
623}
624
625static void
626cpu_reset_real()
627{
628	struct region_descriptor null_idt;
629	int b;
630
631	disable_intr();
632
633	/*
634	 * Attempt to do a CPU reset via the keyboard controller,
635	 * do not turn off GateA20, as any machine that fails
636	 * to do the reset here would then end up in no man's land.
637	 */
638	outb(IO_KBD + 4, 0xFE);
639	DELAY(500000);	/* wait 0.5 sec to see if that did it */
640
641	/*
642	 * Attempt to force a reset via the Reset Control register at
643	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
644	 * transitions from 0 to 1.  Bit 1 selects the type of reset
645	 * to attempt: 0 selects a "soft" reset, and 1 selects a
646	 * "hard" reset.  We try a "hard" reset.  The first write sets
647	 * bit 1 to select a "hard" reset and clears bit 2.  The
648	 * second write forces a 0 -> 1 transition in bit 2 to trigger
649	 * a reset.
650	 */
651	outb(0xcf9, 0x2);
652	outb(0xcf9, 0x6);
653	DELAY(500000);  /* wait 0.5 sec to see if that did it */
654
655	/*
656	 * Attempt to force a reset via the Fast A20 and Init register
657	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
658	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
659	 * preserve bit 1 while setting bit 0.  We also must clear bit
660	 * 0 before setting it if it isn't already clear.
661	 */
662	b = inb(0x92);
663	if (b != 0xff) {
664		if ((b & 0x1) != 0)
665			outb(0x92, b & 0xfe);
666		outb(0x92, b | 0x1);
667		DELAY(500000);  /* wait 0.5 sec to see if that did it */
668	}
669
670	printf("No known reset method worked, attempting CPU shutdown\n");
671	DELAY(1000000);	/* wait 1 sec for printf to complete */
672
673	/* Wipe the IDT. */
674	null_idt.rd_limit = 0;
675	null_idt.rd_base = 0;
676	lidt(&null_idt);
677
678	/* "good night, sweet prince .... <THUNK!>" */
679	breakpoint();
680
681	/* NOTREACHED */
682	while(1);
683}
684
685/*
686 * Software interrupt handler for queued VM system processing.
687 */
688void
689swi_vm(void *dummy)
690{
691	if (busdma_swi_pending != 0)
692		busdma_swi();
693}
694
695/*
696 * Tell whether this address is in some physical memory region.
697 * Currently used by the kernel coredump code in order to avoid
698 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
699 * or other unpredictable behaviour.
700 */
701
702int
703is_physical_memory(vm_paddr_t addr)
704{
705
706#ifdef DEV_ISA
707	/* The ISA ``memory hole''. */
708	if (addr >= 0xa0000 && addr < 0x100000)
709		return 0;
710#endif
711
712	/*
713	 * stuff other tests for known memory-mapped devices (PCI?)
714	 * here
715	 */
716
717	return 1;
718}
719