vm_machdep.c revision 255060
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 255060 2013-08-30 07:59:49Z kib $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48#include "opt_compat.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/bio.h>
53#include <sys/buf.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/pioctl.h>
61#include <sys/proc.h>
62#include <sys/sf_buf.h>
63#include <sys/smp.h>
64#include <sys/sysctl.h>
65#include <sys/sysent.h>
66#include <sys/unistd.h>
67#include <sys/vnode.h>
68#include <sys/vmmeter.h>
69
70#include <machine/cpu.h>
71#include <machine/md_var.h>
72#include <machine/pcb.h>
73#include <machine/smp.h>
74#include <machine/specialreg.h>
75#include <machine/tss.h>
76
77#include <vm/vm.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_kern.h>
80#include <vm/vm_page.h>
81#include <vm/vm_map.h>
82#include <vm/vm_param.h>
83
84#include <x86/isa/isa.h>
85
86static void	cpu_reset_real(void);
87#ifdef SMP
88static void	cpu_reset_proxy(void);
89static u_int	cpu_reset_proxyid;
90static volatile u_int	cpu_reset_proxy_active;
91#endif
92
93_Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
94    "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
95_Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
96    "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
97
98struct savefpu *
99get_pcb_user_save_td(struct thread *td)
100{
101	vm_offset_t p;
102
103	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
104	    cpu_max_ext_state_size;
105	KASSERT((p % 64) == 0, ("Unaligned pcb_user_save area"));
106	return ((struct savefpu *)p);
107}
108
109struct savefpu *
110get_pcb_user_save_pcb(struct pcb *pcb)
111{
112	vm_offset_t p;
113
114	p = (vm_offset_t)(pcb + 1);
115	return ((struct savefpu *)p);
116}
117
118struct pcb *
119get_pcb_td(struct thread *td)
120{
121	vm_offset_t p;
122
123	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
124	    cpu_max_ext_state_size - sizeof(struct pcb);
125	return ((struct pcb *)p);
126}
127
128void *
129alloc_fpusave(int flags)
130{
131	struct pcb *res;
132	struct savefpu_ymm *sf;
133
134	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
135	if (use_xsave) {
136		sf = (struct savefpu_ymm *)res;
137		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
138		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
139	}
140	return (res);
141}
142
143/*
144 * Finish a fork operation, with process p2 nearly set up.
145 * Copy and update the pcb, set up the stack so that the child
146 * ready to run and return to user mode.
147 */
148void
149cpu_fork(td1, p2, td2, flags)
150	register struct thread *td1;
151	register struct proc *p2;
152	struct thread *td2;
153	int flags;
154{
155	register struct proc *p1;
156	struct pcb *pcb2;
157	struct mdproc *mdp1, *mdp2;
158	struct proc_ldt *pldt;
159	pmap_t pmap2;
160
161	p1 = td1->td_proc;
162	if ((flags & RFPROC) == 0) {
163		if ((flags & RFMEM) == 0) {
164			/* unshare user LDT */
165			mdp1 = &p1->p_md;
166			mtx_lock(&dt_lock);
167			if ((pldt = mdp1->md_ldt) != NULL &&
168			    pldt->ldt_refcnt > 1 &&
169			    user_ldt_alloc(p1, 1) == NULL)
170				panic("could not copy LDT");
171			mtx_unlock(&dt_lock);
172		}
173		return;
174	}
175
176	/* Ensure that td1's pcb is up to date. */
177	fpuexit(td1);
178
179	/* Point the pcb to the top of the stack */
180	pcb2 = get_pcb_td(td2);
181	td2->td_pcb = pcb2;
182
183	/* Copy td1's pcb */
184	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
185
186	/* Properly initialize pcb_save */
187	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
188	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
189	    cpu_max_ext_state_size);
190
191	/* Point mdproc and then copy over td1's contents */
192	mdp2 = &p2->p_md;
193	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
194
195	/*
196	 * Create a new fresh stack for the new process.
197	 * Copy the trap frame for the return to user mode as if from a
198	 * syscall.  This copies most of the user mode register values.
199	 */
200	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
201	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
202
203	td2->td_frame->tf_rax = 0;		/* Child returns zero */
204	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
205	td2->td_frame->tf_rdx = 1;
206
207	/*
208	 * If the parent process has the trap bit set (i.e. a debugger had
209	 * single stepped the process to the system call), we need to clear
210	 * the trap flag from the new frame unless the debugger had set PF_FORK
211	 * on the parent.  Otherwise, the child will receive a (likely
212	 * unexpected) SIGTRAP when it executes the first instruction after
213	 * returning  to userland.
214	 */
215	if ((p1->p_pfsflags & PF_FORK) == 0)
216		td2->td_frame->tf_rflags &= ~PSL_T;
217
218	/*
219	 * Set registers for trampoline to user mode.  Leave space for the
220	 * return address on stack.  These are the kernel mode register values.
221	 */
222	pmap2 = vmspace_pmap(p2->p_vmspace);
223	pcb2->pcb_cr3 = DMAP_TO_PHYS((vm_offset_t)pmap2->pm_pml4);
224	if (pmap2->pm_pcid != -1)
225		pcb2->pcb_cr3 |= pmap2->pm_pcid;
226	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
227	pcb2->pcb_rbp = 0;
228	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
229	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
230	pcb2->pcb_rip = (register_t)fork_trampoline;
231	/*-
232	 * pcb2->pcb_dr*:	cloned above.
233	 * pcb2->pcb_savefpu:	cloned above.
234	 * pcb2->pcb_flags:	cloned above.
235	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
236	 * pcb2->pcb_[fg]sbase:	cloned above
237	 */
238
239	/* Setup to release spin count in fork_exit(). */
240	td2->td_md.md_spinlock_count = 1;
241	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
242
243	/* As an i386, do not copy io permission bitmap. */
244	pcb2->pcb_tssp = NULL;
245
246	/* New segment registers. */
247	set_pcb_flags(pcb2, PCB_FULL_IRET);
248
249	/* Copy the LDT, if necessary. */
250	mdp1 = &td1->td_proc->p_md;
251	mdp2 = &p2->p_md;
252	mtx_lock(&dt_lock);
253	if (mdp1->md_ldt != NULL) {
254		if (flags & RFMEM) {
255			mdp1->md_ldt->ldt_refcnt++;
256			mdp2->md_ldt = mdp1->md_ldt;
257			bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct
258			    system_segment_descriptor));
259		} else {
260			mdp2->md_ldt = NULL;
261			mdp2->md_ldt = user_ldt_alloc(p2, 0);
262			if (mdp2->md_ldt == NULL)
263				panic("could not copy LDT");
264			amd64_set_ldt_data(td2, 0, max_ldt_segment,
265			    (struct user_segment_descriptor *)
266			    mdp1->md_ldt->ldt_base);
267		}
268	} else
269		mdp2->md_ldt = NULL;
270	mtx_unlock(&dt_lock);
271
272	/*
273	 * Now, cpu_switch() can schedule the new process.
274	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
275	 * containing the return address when exiting cpu_switch.
276	 * This will normally be to fork_trampoline(), which will have
277	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
278	 * will set up a stack to call fork_return(p, frame); to complete
279	 * the return to user-mode.
280	 */
281}
282
283/*
284 * Intercept the return address from a freshly forked process that has NOT
285 * been scheduled yet.
286 *
287 * This is needed to make kernel threads stay in kernel mode.
288 */
289void
290cpu_set_fork_handler(td, func, arg)
291	struct thread *td;
292	void (*func)(void *);
293	void *arg;
294{
295	/*
296	 * Note that the trap frame follows the args, so the function
297	 * is really called like this:  func(arg, frame);
298	 */
299	td->td_pcb->pcb_r12 = (long) func;	/* function */
300	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
301}
302
303void
304cpu_exit(struct thread *td)
305{
306
307	/*
308	 * If this process has a custom LDT, release it.
309	 */
310	mtx_lock(&dt_lock);
311	if (td->td_proc->p_md.md_ldt != 0)
312		user_ldt_free(td);
313	else
314		mtx_unlock(&dt_lock);
315}
316
317void
318cpu_thread_exit(struct thread *td)
319{
320	struct pcb *pcb;
321
322	critical_enter();
323	if (td == PCPU_GET(fpcurthread))
324		fpudrop();
325	critical_exit();
326
327	pcb = td->td_pcb;
328
329	/* Disable any hardware breakpoints. */
330	if (pcb->pcb_flags & PCB_DBREGS) {
331		reset_dbregs();
332		clear_pcb_flags(pcb, PCB_DBREGS);
333	}
334}
335
336void
337cpu_thread_clean(struct thread *td)
338{
339	struct pcb *pcb;
340
341	pcb = td->td_pcb;
342
343	/*
344	 * Clean TSS/iomap
345	 */
346	if (pcb->pcb_tssp != NULL) {
347		kva_free((vm_offset_t)pcb->pcb_tssp,
348		    ctob(IOPAGES + 1));
349		pcb->pcb_tssp = NULL;
350	}
351}
352
353void
354cpu_thread_swapin(struct thread *td)
355{
356}
357
358void
359cpu_thread_swapout(struct thread *td)
360{
361}
362
363void
364cpu_thread_alloc(struct thread *td)
365{
366	struct pcb *pcb;
367	struct xstate_hdr *xhdr;
368
369	td->td_pcb = pcb = get_pcb_td(td);
370	td->td_frame = (struct trapframe *)pcb - 1;
371	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
372	if (use_xsave) {
373		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
374		bzero(xhdr, sizeof(*xhdr));
375		xhdr->xstate_bv = xsave_mask;
376	}
377}
378
379void
380cpu_thread_free(struct thread *td)
381{
382
383	cpu_thread_clean(td);
384}
385
386void
387cpu_set_syscall_retval(struct thread *td, int error)
388{
389
390	switch (error) {
391	case 0:
392		td->td_frame->tf_rax = td->td_retval[0];
393		td->td_frame->tf_rdx = td->td_retval[1];
394		td->td_frame->tf_rflags &= ~PSL_C;
395		break;
396
397	case ERESTART:
398		/*
399		 * Reconstruct pc, we know that 'syscall' is 2 bytes,
400		 * lcall $X,y is 7 bytes, int 0x80 is 2 bytes.
401		 * We saved this in tf_err.
402		 * %r10 (which was holding the value of %rcx) is restored
403		 * for the next iteration.
404		 * %r10 restore is only required for freebsd/amd64 processes,
405		 * but shall be innocent for any ia32 ABI.
406		 */
407		td->td_frame->tf_rip -= td->td_frame->tf_err;
408		td->td_frame->tf_r10 = td->td_frame->tf_rcx;
409		break;
410
411	case EJUSTRETURN:
412		break;
413
414	default:
415		if (td->td_proc->p_sysent->sv_errsize) {
416			if (error >= td->td_proc->p_sysent->sv_errsize)
417				error = -1;	/* XXX */
418			else
419				error = td->td_proc->p_sysent->sv_errtbl[error];
420		}
421		td->td_frame->tf_rax = error;
422		td->td_frame->tf_rflags |= PSL_C;
423		break;
424	}
425}
426
427/*
428 * Initialize machine state (pcb and trap frame) for a new thread about to
429 * upcall. Put enough state in the new thread's PCB to get it to go back
430 * userret(), where we can intercept it again to set the return (upcall)
431 * Address and stack, along with those from upcals that are from other sources
432 * such as those generated in thread_userret() itself.
433 */
434void
435cpu_set_upcall(struct thread *td, struct thread *td0)
436{
437	struct pcb *pcb2;
438
439	/* Point the pcb to the top of the stack. */
440	pcb2 = td->td_pcb;
441
442	/*
443	 * Copy the upcall pcb.  This loads kernel regs.
444	 * Those not loaded individually below get their default
445	 * values here.
446	 */
447	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
448	clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
449	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
450	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
451	    cpu_max_ext_state_size);
452	set_pcb_flags(pcb2, PCB_FULL_IRET);
453
454	/*
455	 * Create a new fresh stack for the new thread.
456	 */
457	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
458
459	/* If the current thread has the trap bit set (i.e. a debugger had
460	 * single stepped the process to the system call), we need to clear
461	 * the trap flag from the new frame. Otherwise, the new thread will
462	 * receive a (likely unexpected) SIGTRAP when it executes the first
463	 * instruction after returning to userland.
464	 */
465	td->td_frame->tf_rflags &= ~PSL_T;
466
467	/*
468	 * Set registers for trampoline to user mode.  Leave space for the
469	 * return address on stack.  These are the kernel mode register values.
470	 */
471	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
472	pcb2->pcb_rbp = 0;
473	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
474	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
475	pcb2->pcb_rip = (register_t)fork_trampoline;
476	/*
477	 * If we didn't copy the pcb, we'd need to do the following registers:
478	 * pcb2->pcb_cr3:	cloned above.
479	 * pcb2->pcb_dr*:	cloned above.
480	 * pcb2->pcb_savefpu:	cloned above.
481	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
482	 * pcb2->pcb_[fg]sbase: cloned above
483	 */
484
485	/* Setup to release spin count in fork_exit(). */
486	td->td_md.md_spinlock_count = 1;
487	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
488}
489
490/*
491 * Set that machine state for performing an upcall that has to
492 * be done in thread_userret() so that those upcalls generated
493 * in thread_userret() itself can be done as well.
494 */
495void
496cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
497	stack_t *stack)
498{
499
500	/*
501	 * Do any extra cleaning that needs to be done.
502	 * The thread may have optional components
503	 * that are not present in a fresh thread.
504	 * This may be a recycled thread so make it look
505	 * as though it's newly allocated.
506	 */
507	cpu_thread_clean(td);
508
509#ifdef COMPAT_FREEBSD32
510	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
511		/*
512	 	 * Set the trap frame to point at the beginning of the uts
513		 * function.
514		 */
515		td->td_frame->tf_rbp = 0;
516		td->td_frame->tf_rsp =
517		   (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
518		td->td_frame->tf_rip = (uintptr_t)entry;
519
520		/*
521		 * Pass the address of the mailbox for this kse to the uts
522		 * function as a parameter on the stack.
523		 */
524		suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)),
525		    (uint32_t)(uintptr_t)arg);
526
527		return;
528	}
529#endif
530
531	/*
532	 * Set the trap frame to point at the beginning of the uts
533	 * function.
534	 */
535	td->td_frame->tf_rbp = 0;
536	td->td_frame->tf_rsp =
537	    ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
538	td->td_frame->tf_rsp -= 8;
539	td->td_frame->tf_rip = (register_t)entry;
540	td->td_frame->tf_ds = _udatasel;
541	td->td_frame->tf_es = _udatasel;
542	td->td_frame->tf_fs = _ufssel;
543	td->td_frame->tf_gs = _ugssel;
544	td->td_frame->tf_flags = TF_HASSEGS;
545
546	/*
547	 * Pass the address of the mailbox for this kse to the uts
548	 * function as a parameter on the stack.
549	 */
550	td->td_frame->tf_rdi = (register_t)arg;
551}
552
553int
554cpu_set_user_tls(struct thread *td, void *tls_base)
555{
556	struct pcb *pcb;
557
558	if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
559		return (EINVAL);
560
561	pcb = td->td_pcb;
562	set_pcb_flags(pcb, PCB_FULL_IRET);
563#ifdef COMPAT_FREEBSD32
564	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
565		pcb->pcb_gsbase = (register_t)tls_base;
566		return (0);
567	}
568#endif
569	pcb->pcb_fsbase = (register_t)tls_base;
570	return (0);
571}
572
573#ifdef SMP
574static void
575cpu_reset_proxy()
576{
577	cpuset_t tcrp;
578
579	cpu_reset_proxy_active = 1;
580	while (cpu_reset_proxy_active == 1)
581		ia32_pause(); /* Wait for other cpu to see that we've started */
582
583	CPU_SETOF(cpu_reset_proxyid, &tcrp);
584	stop_cpus(tcrp);
585	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
586	DELAY(1000000);
587	cpu_reset_real();
588}
589#endif
590
591void
592cpu_reset()
593{
594#ifdef SMP
595	cpuset_t map;
596	u_int cnt;
597
598	if (smp_active) {
599		map = all_cpus;
600		CPU_CLR(PCPU_GET(cpuid), &map);
601		CPU_NAND(&map, &stopped_cpus);
602		if (!CPU_EMPTY(&map)) {
603			printf("cpu_reset: Stopping other CPUs\n");
604			stop_cpus(map);
605		}
606
607		if (PCPU_GET(cpuid) != 0) {
608			cpu_reset_proxyid = PCPU_GET(cpuid);
609			cpustop_restartfunc = cpu_reset_proxy;
610			cpu_reset_proxy_active = 0;
611			printf("cpu_reset: Restarting BSP\n");
612
613			/* Restart CPU #0. */
614			CPU_SETOF(0, &started_cpus);
615			wmb();
616
617			cnt = 0;
618			while (cpu_reset_proxy_active == 0 && cnt < 10000000) {
619				ia32_pause();
620				cnt++;	/* Wait for BSP to announce restart */
621			}
622			if (cpu_reset_proxy_active == 0)
623				printf("cpu_reset: Failed to restart BSP\n");
624			enable_intr();
625			cpu_reset_proxy_active = 2;
626
627			while (1)
628				ia32_pause();
629			/* NOTREACHED */
630		}
631
632		DELAY(1000000);
633	}
634#endif
635	cpu_reset_real();
636	/* NOTREACHED */
637}
638
639static void
640cpu_reset_real()
641{
642	struct region_descriptor null_idt;
643	int b;
644
645	disable_intr();
646
647	/*
648	 * Attempt to do a CPU reset via the keyboard controller,
649	 * do not turn off GateA20, as any machine that fails
650	 * to do the reset here would then end up in no man's land.
651	 */
652	outb(IO_KBD + 4, 0xFE);
653	DELAY(500000);	/* wait 0.5 sec to see if that did it */
654
655	/*
656	 * Attempt to force a reset via the Reset Control register at
657	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
658	 * transitions from 0 to 1.  Bit 1 selects the type of reset
659	 * to attempt: 0 selects a "soft" reset, and 1 selects a
660	 * "hard" reset.  We try a "hard" reset.  The first write sets
661	 * bit 1 to select a "hard" reset and clears bit 2.  The
662	 * second write forces a 0 -> 1 transition in bit 2 to trigger
663	 * a reset.
664	 */
665	outb(0xcf9, 0x2);
666	outb(0xcf9, 0x6);
667	DELAY(500000);  /* wait 0.5 sec to see if that did it */
668
669	/*
670	 * Attempt to force a reset via the Fast A20 and Init register
671	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
672	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
673	 * preserve bit 1 while setting bit 0.  We also must clear bit
674	 * 0 before setting it if it isn't already clear.
675	 */
676	b = inb(0x92);
677	if (b != 0xff) {
678		if ((b & 0x1) != 0)
679			outb(0x92, b & 0xfe);
680		outb(0x92, b | 0x1);
681		DELAY(500000);  /* wait 0.5 sec to see if that did it */
682	}
683
684	printf("No known reset method worked, attempting CPU shutdown\n");
685	DELAY(1000000);	/* wait 1 sec for printf to complete */
686
687	/* Wipe the IDT. */
688	null_idt.rd_limit = 0;
689	null_idt.rd_base = 0;
690	lidt(&null_idt);
691
692	/* "good night, sweet prince .... <THUNK!>" */
693	breakpoint();
694
695	/* NOTREACHED */
696	while(1);
697}
698
699/*
700 * Allocate an sf_buf for the given vm_page.  On this machine, however, there
701 * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
702 * returned.
703 */
704struct sf_buf *
705sf_buf_alloc(struct vm_page *m, int pri)
706{
707
708	return ((struct sf_buf *)m);
709}
710
711/*
712 * Free the sf_buf.  In fact, do nothing because there are no resources
713 * associated with the sf_buf.
714 */
715void
716sf_buf_free(struct sf_buf *sf)
717{
718}
719
720/*
721 * Software interrupt handler for queued VM system processing.
722 */
723void
724swi_vm(void *dummy)
725{
726	if (busdma_swi_pending != 0)
727		busdma_swi();
728}
729
730/*
731 * Tell whether this address is in some physical memory region.
732 * Currently used by the kernel coredump code in order to avoid
733 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
734 * or other unpredictable behaviour.
735 */
736
737int
738is_physical_memory(vm_paddr_t addr)
739{
740
741#ifdef DEV_ISA
742	/* The ISA ``memory hole''. */
743	if (addr >= 0xa0000 && addr < 0x100000)
744		return 0;
745#endif
746
747	/*
748	 * stuff other tests for known memory-mapped devices (PCI?)
749	 * here
750	 */
751
752	return 1;
753}
754