vm_machdep.c revision 230426
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 230426 2012-01-21 17:45:27Z kib $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48#include "opt_compat.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/bio.h>
53#include <sys/buf.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/pioctl.h>
61#include <sys/proc.h>
62#include <sys/sf_buf.h>
63#include <sys/smp.h>
64#include <sys/sysctl.h>
65#include <sys/sysent.h>
66#include <sys/unistd.h>
67#include <sys/vnode.h>
68#include <sys/vmmeter.h>
69
70#include <machine/cpu.h>
71#include <machine/md_var.h>
72#include <machine/pcb.h>
73#include <machine/smp.h>
74#include <machine/specialreg.h>
75#include <machine/tss.h>
76
77#include <vm/vm.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_kern.h>
80#include <vm/vm_page.h>
81#include <vm/vm_map.h>
82#include <vm/vm_param.h>
83
84#include <x86/isa/isa.h>
85
86static void	cpu_reset_real(void);
87#ifdef SMP
88static void	cpu_reset_proxy(void);
89static u_int	cpu_reset_proxyid;
90static volatile u_int	cpu_reset_proxy_active;
91#endif
92
93struct savefpu *
94get_pcb_user_save_td(struct thread *td)
95{
96	vm_offset_t p;
97
98	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
99	    cpu_max_ext_state_size;
100	KASSERT((p % 64) == 0, ("Unaligned pcb_user_save area"));
101	return ((struct savefpu *)p);
102}
103
104struct savefpu *
105get_pcb_user_save_pcb(struct pcb *pcb)
106{
107	vm_offset_t p;
108
109	p = (vm_offset_t)(pcb + 1);
110	return ((struct savefpu *)p);
111}
112
113struct pcb *
114get_pcb_td(struct thread *td)
115{
116	vm_offset_t p;
117
118	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
119	    cpu_max_ext_state_size - sizeof(struct pcb);
120	return ((struct pcb *)p);
121}
122
123void *
124alloc_fpusave(int flags)
125{
126	struct pcb *res;
127	struct savefpu_ymm *sf;
128
129	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
130	if (use_xsave) {
131		sf = (struct savefpu_ymm *)res;
132		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
133		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
134	}
135	return (res);
136}
137
138/*
139 * Finish a fork operation, with process p2 nearly set up.
140 * Copy and update the pcb, set up the stack so that the child
141 * ready to run and return to user mode.
142 */
143void
144cpu_fork(td1, p2, td2, flags)
145	register struct thread *td1;
146	register struct proc *p2;
147	struct thread *td2;
148	int flags;
149{
150	register struct proc *p1;
151	struct pcb *pcb2;
152	struct mdproc *mdp1, *mdp2;
153	struct proc_ldt *pldt;
154	pmap_t pmap2;
155
156	p1 = td1->td_proc;
157	if ((flags & RFPROC) == 0) {
158		if ((flags & RFMEM) == 0) {
159			/* unshare user LDT */
160			mdp1 = &p1->p_md;
161			mtx_lock(&dt_lock);
162			if ((pldt = mdp1->md_ldt) != NULL &&
163			    pldt->ldt_refcnt > 1 &&
164			    user_ldt_alloc(p1, 1) == NULL)
165				panic("could not copy LDT");
166			mtx_unlock(&dt_lock);
167		}
168		return;
169	}
170
171	/* Ensure that td1's pcb is up to date. */
172	fpuexit(td1);
173
174	/* Point the pcb to the top of the stack */
175	pcb2 = get_pcb_td(td2);
176	td2->td_pcb = pcb2;
177
178	/* Copy td1's pcb */
179	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
180
181	/* Properly initialize pcb_save */
182	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
183	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
184	    cpu_max_ext_state_size);
185
186	/* Point mdproc and then copy over td1's contents */
187	mdp2 = &p2->p_md;
188	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
189
190	/*
191	 * Create a new fresh stack for the new process.
192	 * Copy the trap frame for the return to user mode as if from a
193	 * syscall.  This copies most of the user mode register values.
194	 */
195	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
196	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
197
198	td2->td_frame->tf_rax = 0;		/* Child returns zero */
199	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
200	td2->td_frame->tf_rdx = 1;
201
202	/*
203	 * If the parent process has the trap bit set (i.e. a debugger had
204	 * single stepped the process to the system call), we need to clear
205	 * the trap flag from the new frame unless the debugger had set PF_FORK
206	 * on the parent.  Otherwise, the child will receive a (likely
207	 * unexpected) SIGTRAP when it executes the first instruction after
208	 * returning  to userland.
209	 */
210	if ((p1->p_pfsflags & PF_FORK) == 0)
211		td2->td_frame->tf_rflags &= ~PSL_T;
212
213	/*
214	 * Set registers for trampoline to user mode.  Leave space for the
215	 * return address on stack.  These are the kernel mode register values.
216	 */
217	pmap2 = vmspace_pmap(p2->p_vmspace);
218	pcb2->pcb_cr3 = DMAP_TO_PHYS((vm_offset_t)pmap2->pm_pml4);
219	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
220	pcb2->pcb_rbp = 0;
221	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
222	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
223	pcb2->pcb_rip = (register_t)fork_trampoline;
224	/*-
225	 * pcb2->pcb_dr*:	cloned above.
226	 * pcb2->pcb_savefpu:	cloned above.
227	 * pcb2->pcb_flags:	cloned above.
228	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
229	 * pcb2->pcb_[fg]sbase:	cloned above
230	 */
231
232	/* Setup to release spin count in fork_exit(). */
233	td2->td_md.md_spinlock_count = 1;
234	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
235
236	/* As an i386, do not copy io permission bitmap. */
237	pcb2->pcb_tssp = NULL;
238
239	/* New segment registers. */
240	set_pcb_flags(pcb2, PCB_FULL_IRET);
241
242	/* Copy the LDT, if necessary. */
243	mdp1 = &td1->td_proc->p_md;
244	mdp2 = &p2->p_md;
245	mtx_lock(&dt_lock);
246	if (mdp1->md_ldt != NULL) {
247		if (flags & RFMEM) {
248			mdp1->md_ldt->ldt_refcnt++;
249			mdp2->md_ldt = mdp1->md_ldt;
250			bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct
251			    system_segment_descriptor));
252		} else {
253			mdp2->md_ldt = NULL;
254			mdp2->md_ldt = user_ldt_alloc(p2, 0);
255			if (mdp2->md_ldt == NULL)
256				panic("could not copy LDT");
257			amd64_set_ldt_data(td2, 0, max_ldt_segment,
258			    (struct user_segment_descriptor *)
259			    mdp1->md_ldt->ldt_base);
260		}
261	} else
262		mdp2->md_ldt = NULL;
263	mtx_unlock(&dt_lock);
264
265	/*
266	 * Now, cpu_switch() can schedule the new process.
267	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
268	 * containing the return address when exiting cpu_switch.
269	 * This will normally be to fork_trampoline(), which will have
270	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
271	 * will set up a stack to call fork_return(p, frame); to complete
272	 * the return to user-mode.
273	 */
274}
275
276/*
277 * Intercept the return address from a freshly forked process that has NOT
278 * been scheduled yet.
279 *
280 * This is needed to make kernel threads stay in kernel mode.
281 */
282void
283cpu_set_fork_handler(td, func, arg)
284	struct thread *td;
285	void (*func)(void *);
286	void *arg;
287{
288	/*
289	 * Note that the trap frame follows the args, so the function
290	 * is really called like this:  func(arg, frame);
291	 */
292	td->td_pcb->pcb_r12 = (long) func;	/* function */
293	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
294}
295
296void
297cpu_exit(struct thread *td)
298{
299
300	/*
301	 * If this process has a custom LDT, release it.
302	 */
303	mtx_lock(&dt_lock);
304	if (td->td_proc->p_md.md_ldt != 0)
305		user_ldt_free(td);
306	else
307		mtx_unlock(&dt_lock);
308}
309
310void
311cpu_thread_exit(struct thread *td)
312{
313	struct pcb *pcb;
314
315	critical_enter();
316	if (td == PCPU_GET(fpcurthread))
317		fpudrop();
318	critical_exit();
319
320	pcb = td->td_pcb;
321
322	/* Disable any hardware breakpoints. */
323	if (pcb->pcb_flags & PCB_DBREGS) {
324		reset_dbregs();
325		clear_pcb_flags(pcb, PCB_DBREGS);
326	}
327}
328
329void
330cpu_thread_clean(struct thread *td)
331{
332	struct pcb *pcb;
333
334	pcb = td->td_pcb;
335
336	/*
337	 * Clean TSS/iomap
338	 */
339	if (pcb->pcb_tssp != NULL) {
340		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_tssp,
341		    ctob(IOPAGES + 1));
342		pcb->pcb_tssp = NULL;
343	}
344}
345
346void
347cpu_thread_swapin(struct thread *td)
348{
349}
350
351void
352cpu_thread_swapout(struct thread *td)
353{
354}
355
356void
357cpu_thread_alloc(struct thread *td)
358{
359	struct pcb *pcb;
360	struct xstate_hdr *xhdr;
361
362	td->td_pcb = pcb = get_pcb_td(td);
363	td->td_frame = (struct trapframe *)pcb - 1;
364	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
365	if (use_xsave) {
366		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
367		bzero(xhdr, sizeof(*xhdr));
368		xhdr->xstate_bv = xsave_mask;
369	}
370}
371
372void
373cpu_thread_free(struct thread *td)
374{
375
376	cpu_thread_clean(td);
377}
378
379void
380cpu_set_syscall_retval(struct thread *td, int error)
381{
382
383	switch (error) {
384	case 0:
385		td->td_frame->tf_rax = td->td_retval[0];
386		td->td_frame->tf_rdx = td->td_retval[1];
387		td->td_frame->tf_rflags &= ~PSL_C;
388		break;
389
390	case ERESTART:
391		/*
392		 * Reconstruct pc, we know that 'syscall' is 2 bytes,
393		 * lcall $X,y is 7 bytes, int 0x80 is 2 bytes.
394		 * We saved this in tf_err.
395		 * %r10 (which was holding the value of %rcx) is restored
396		 * for the next iteration.
397		 * %r10 restore is only required for freebsd/amd64 processes,
398		 * but shall be innocent for any ia32 ABI.
399		 */
400		td->td_frame->tf_rip -= td->td_frame->tf_err;
401		td->td_frame->tf_r10 = td->td_frame->tf_rcx;
402		break;
403
404	case EJUSTRETURN:
405		break;
406
407	default:
408		if (td->td_proc->p_sysent->sv_errsize) {
409			if (error >= td->td_proc->p_sysent->sv_errsize)
410				error = -1;	/* XXX */
411			else
412				error = td->td_proc->p_sysent->sv_errtbl[error];
413		}
414		td->td_frame->tf_rax = error;
415		td->td_frame->tf_rflags |= PSL_C;
416		break;
417	}
418}
419
420/*
421 * Initialize machine state (pcb and trap frame) for a new thread about to
422 * upcall. Put enough state in the new thread's PCB to get it to go back
423 * userret(), where we can intercept it again to set the return (upcall)
424 * Address and stack, along with those from upcals that are from other sources
425 * such as those generated in thread_userret() itself.
426 */
427void
428cpu_set_upcall(struct thread *td, struct thread *td0)
429{
430	struct pcb *pcb2;
431
432	/* Point the pcb to the top of the stack. */
433	pcb2 = td->td_pcb;
434
435	/*
436	 * Copy the upcall pcb.  This loads kernel regs.
437	 * Those not loaded individually below get their default
438	 * values here.
439	 */
440	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
441	clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
442	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
443	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
444	    cpu_max_ext_state_size);
445	set_pcb_flags(pcb2, PCB_FULL_IRET);
446
447	/*
448	 * Create a new fresh stack for the new thread.
449	 */
450	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
451
452	/* If the current thread has the trap bit set (i.e. a debugger had
453	 * single stepped the process to the system call), we need to clear
454	 * the trap flag from the new frame. Otherwise, the new thread will
455	 * receive a (likely unexpected) SIGTRAP when it executes the first
456	 * instruction after returning to userland.
457	 */
458	td->td_frame->tf_rflags &= ~PSL_T;
459
460	/*
461	 * Set registers for trampoline to user mode.  Leave space for the
462	 * return address on stack.  These are the kernel mode register values.
463	 */
464	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
465	pcb2->pcb_rbp = 0;
466	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
467	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
468	pcb2->pcb_rip = (register_t)fork_trampoline;
469	/*
470	 * If we didn't copy the pcb, we'd need to do the following registers:
471	 * pcb2->pcb_cr3:	cloned above.
472	 * pcb2->pcb_dr*:	cloned above.
473	 * pcb2->pcb_savefpu:	cloned above.
474	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
475	 * pcb2->pcb_[fg]sbase: cloned above
476	 */
477
478	/* Setup to release spin count in fork_exit(). */
479	td->td_md.md_spinlock_count = 1;
480	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
481}
482
483/*
484 * Set that machine state for performing an upcall that has to
485 * be done in thread_userret() so that those upcalls generated
486 * in thread_userret() itself can be done as well.
487 */
488void
489cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
490	stack_t *stack)
491{
492
493	/*
494	 * Do any extra cleaning that needs to be done.
495	 * The thread may have optional components
496	 * that are not present in a fresh thread.
497	 * This may be a recycled thread so make it look
498	 * as though it's newly allocated.
499	 */
500	cpu_thread_clean(td);
501
502#ifdef COMPAT_FREEBSD32
503	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
504		/*
505	 	 * Set the trap frame to point at the beginning of the uts
506		 * function.
507		 */
508		td->td_frame->tf_rbp = 0;
509		td->td_frame->tf_rsp =
510		   (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
511		td->td_frame->tf_rip = (uintptr_t)entry;
512
513		/*
514		 * Pass the address of the mailbox for this kse to the uts
515		 * function as a parameter on the stack.
516		 */
517		suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)),
518		    (uint32_t)(uintptr_t)arg);
519
520		return;
521	}
522#endif
523
524	/*
525	 * Set the trap frame to point at the beginning of the uts
526	 * function.
527	 */
528	td->td_frame->tf_rbp = 0;
529	td->td_frame->tf_rsp =
530	    ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
531	td->td_frame->tf_rsp -= 8;
532	td->td_frame->tf_rip = (register_t)entry;
533	td->td_frame->tf_ds = _udatasel;
534	td->td_frame->tf_es = _udatasel;
535	td->td_frame->tf_fs = _ufssel;
536	td->td_frame->tf_gs = _ugssel;
537	td->td_frame->tf_flags = TF_HASSEGS;
538
539	/*
540	 * Pass the address of the mailbox for this kse to the uts
541	 * function as a parameter on the stack.
542	 */
543	td->td_frame->tf_rdi = (register_t)arg;
544}
545
546int
547cpu_set_user_tls(struct thread *td, void *tls_base)
548{
549	struct pcb *pcb;
550
551	if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
552		return (EINVAL);
553
554	pcb = td->td_pcb;
555#ifdef COMPAT_FREEBSD32
556	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
557		pcb->pcb_gsbase = (register_t)tls_base;
558		return (0);
559	}
560#endif
561	pcb->pcb_fsbase = (register_t)tls_base;
562	set_pcb_flags(pcb, PCB_FULL_IRET);
563	return (0);
564}
565
566#ifdef SMP
567static void
568cpu_reset_proxy()
569{
570	cpuset_t tcrp;
571
572	cpu_reset_proxy_active = 1;
573	while (cpu_reset_proxy_active == 1)
574		;	/* Wait for other cpu to see that we've started */
575	CPU_SETOF(cpu_reset_proxyid, &tcrp);
576	stop_cpus(tcrp);
577	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
578	DELAY(1000000);
579	cpu_reset_real();
580}
581#endif
582
583void
584cpu_reset()
585{
586#ifdef SMP
587	cpuset_t map;
588	u_int cnt;
589
590	if (smp_active) {
591		map = all_cpus;
592		CPU_CLR(PCPU_GET(cpuid), &map);
593		CPU_NAND(&map, &stopped_cpus);
594		if (!CPU_EMPTY(&map)) {
595			printf("cpu_reset: Stopping other CPUs\n");
596			stop_cpus(map);
597		}
598
599		if (PCPU_GET(cpuid) != 0) {
600			cpu_reset_proxyid = PCPU_GET(cpuid);
601			cpustop_restartfunc = cpu_reset_proxy;
602			cpu_reset_proxy_active = 0;
603			printf("cpu_reset: Restarting BSP\n");
604
605			/* Restart CPU #0. */
606			CPU_SETOF(0, &started_cpus);
607			wmb();
608
609			cnt = 0;
610			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
611				cnt++;	/* Wait for BSP to announce restart */
612			if (cpu_reset_proxy_active == 0)
613				printf("cpu_reset: Failed to restart BSP\n");
614			enable_intr();
615			cpu_reset_proxy_active = 2;
616
617			while (1);
618			/* NOTREACHED */
619		}
620
621		DELAY(1000000);
622	}
623#endif
624	cpu_reset_real();
625	/* NOTREACHED */
626}
627
628static void
629cpu_reset_real()
630{
631	struct region_descriptor null_idt;
632	int b;
633
634	disable_intr();
635
636	/*
637	 * Attempt to do a CPU reset via the keyboard controller,
638	 * do not turn off GateA20, as any machine that fails
639	 * to do the reset here would then end up in no man's land.
640	 */
641	outb(IO_KBD + 4, 0xFE);
642	DELAY(500000);	/* wait 0.5 sec to see if that did it */
643
644	/*
645	 * Attempt to force a reset via the Reset Control register at
646	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
647	 * transitions from 0 to 1.  Bit 1 selects the type of reset
648	 * to attempt: 0 selects a "soft" reset, and 1 selects a
649	 * "hard" reset.  We try a "hard" reset.  The first write sets
650	 * bit 1 to select a "hard" reset and clears bit 2.  The
651	 * second write forces a 0 -> 1 transition in bit 2 to trigger
652	 * a reset.
653	 */
654	outb(0xcf9, 0x2);
655	outb(0xcf9, 0x6);
656	DELAY(500000);  /* wait 0.5 sec to see if that did it */
657
658	/*
659	 * Attempt to force a reset via the Fast A20 and Init register
660	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
661	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
662	 * preserve bit 1 while setting bit 0.  We also must clear bit
663	 * 0 before setting it if it isn't already clear.
664	 */
665	b = inb(0x92);
666	if (b != 0xff) {
667		if ((b & 0x1) != 0)
668			outb(0x92, b & 0xfe);
669		outb(0x92, b | 0x1);
670		DELAY(500000);  /* wait 0.5 sec to see if that did it */
671	}
672
673	printf("No known reset method worked, attempting CPU shutdown\n");
674	DELAY(1000000);	/* wait 1 sec for printf to complete */
675
676	/* Wipe the IDT. */
677	null_idt.rd_limit = 0;
678	null_idt.rd_base = 0;
679	lidt(&null_idt);
680
681	/* "good night, sweet prince .... <THUNK!>" */
682	breakpoint();
683
684	/* NOTREACHED */
685	while(1);
686}
687
688/*
689 * Allocate an sf_buf for the given vm_page.  On this machine, however, there
690 * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
691 * returned.
692 */
693struct sf_buf *
694sf_buf_alloc(struct vm_page *m, int pri)
695{
696
697	return ((struct sf_buf *)m);
698}
699
700/*
701 * Free the sf_buf.  In fact, do nothing because there are no resources
702 * associated with the sf_buf.
703 */
704void
705sf_buf_free(struct sf_buf *sf)
706{
707}
708
709/*
710 * Software interrupt handler for queued VM system processing.
711 */
712void
713swi_vm(void *dummy)
714{
715	if (busdma_swi_pending != 0)
716		busdma_swi();
717}
718
719/*
720 * Tell whether this address is in some physical memory region.
721 * Currently used by the kernel coredump code in order to avoid
722 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
723 * or other unpredictable behaviour.
724 */
725
726int
727is_physical_memory(vm_paddr_t addr)
728{
729
730#ifdef DEV_ISA
731	/* The ISA ``memory hole''. */
732	if (addr >= 0xa0000 && addr < 0x100000)
733		return 0;
734#endif
735
736	/*
737	 * stuff other tests for known memory-mapped devices (PCI?)
738	 * here
739	 */
740
741	return 1;
742}
743