vm_machdep.c revision 200
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department, and William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
39 *
40 * PATCHES MAGIC                LEVEL   PATCH THAT GOT US HERE
41 * --------------------         -----   ----------------------
42 * CURRENT PATCH LEVEL:         1       00154
43 * --------------------         -----   ----------------------
44 *
45 * 20 Apr 93	Bruce Evans		New npx-0.5 code
46 *
47 */
48
49/*
50 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
51 */
52static char rcsid[] = "$Header: /a/cvs/386BSD/src/sys/i386/i386/vm_machdep.c,v 1.2 1993/07/18 20:56:17 paul Exp $";
53
54#include "param.h"
55#include "systm.h"
56#include "proc.h"
57#include "malloc.h"
58#include "buf.h"
59#include "user.h"
60
61#include "../include/cpu.h"
62
63#include "vm/vm.h"
64#include "vm/vm_kern.h"
65
66/*
67 * Finish a fork operation, with process p2 nearly set up.
68 * Copy and update the kernel stack and pcb, making the child
69 * ready to run, and marking it so that it can return differently
70 * than the parent.  Returns 1 in the child process, 0 in the parent.
71 * We currently double-map the user area so that the stack is at the same
72 * address in each process; in the future we will probably relocate
73 * the frame pointers on the stack after copying.
74 */
75cpu_fork(p1, p2)
76	register struct proc *p1, *p2;
77{
78	register struct user *up = p2->p_addr;
79	int foo, offset, addr, i;
80	extern char kstack[];
81	extern int mvesp();
82
83	/*
84	 * Copy pcb and stack from proc p1 to p2.
85	 * We do this as cheaply as possible, copying only the active
86	 * part of the stack.  The stack and pcb need to agree;
87	 * this is tricky, as the final pcb is constructed by savectx,
88	 * but its frame isn't yet on the stack when the stack is copied.
89	 * swtch compensates for this when the child eventually runs.
90	 * This should be done differently, with a single call
91	 * that copies and updates the pcb+stack,
92	 * replacing the bcopy and savectx.
93	 */
94	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
95	offset = mvesp() - (int)kstack;
96	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
97	    (unsigned) ctob(UPAGES) - offset);
98	p2->p_regs = p1->p_regs;
99
100	/*
101	 * Wire top of address space of child to it's kstack.
102	 * First, fault in a page of pte's to map it.
103	 */
104        addr = trunc_page((u_int)vtopte(kstack));
105	vm_map_pageable(&p2->p_vmspace->vm_map, addr, addr+NBPG, FALSE);
106	for (i=0; i < UPAGES; i++)
107		pmap_enter(&p2->p_vmspace->vm_pmap, kstack+i*NBPG,
108			   pmap_extract(kernel_pmap, ((int)p2->p_addr)+i*NBPG),
109			   /*
110			    * The user area has to be mapped writable because
111			    * it contains the kernel stack (when CR0_WP is on
112			    * on a 486 there is no user-read/kernel-write
113			    * mode).  It is protected from user mode access
114			    * by the segment limits.
115			    */
116			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
117	pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb);
118
119	/*
120	 *
121	 * Arrange for a non-local goto when the new process
122	 * is started, to resume here, returning nonzero from setjmp.
123	 */
124	if (savectx(up, 1)) {
125		/*
126		 * Return 1 in child.
127		 */
128		return (1);
129	}
130	return (0);
131}
132
133#ifdef notyet
134/*
135 * cpu_exit is called as the last action during exit.
136 *
137 * We change to an inactive address space and a "safe" stack,
138 * passing thru an argument to the new stack. Now, safely isolated
139 * from the resources we're shedding, we release the address space
140 * and any remaining machine-dependent resources, including the
141 * memory for the user structure and kernel stack.
142 *
143 * Next, we assign a dummy context to be written over by swtch,
144 * calling it to send this process off to oblivion.
145 * [The nullpcb allows us to minimize cost in swtch() by not having
146 * a special case].
147 */
148struct proc *swtch_to_inactive();
149volatile void
150cpu_exit(p)
151	register struct proc *p;
152{
153	static struct pcb nullpcb;	/* pcb to overwrite on last swtch */
154
155#ifdef NPX
156	npxexit(p);
157#endif
158
159	/* move to inactive space and stack, passing arg accross */
160	p = swtch_to_inactive(p);
161
162	/* drop per-process resources */
163	vmspace_free(p->p_vmspace);
164	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
165
166	p->p_addr = (struct user *) &nullpcb;
167	splclock();
168	swtch();
169	/* NOTREACHED */
170}
171#else
172volatile void
173cpu_exit(p)
174	register struct proc *p;
175{
176
177#ifdef NPX
178	npxexit(p);
179#endif
180	splclock();
181	swtch();
182}
183
184cpu_wait(p) struct proc *p; {
185
186	/* drop per-process resources */
187	vmspace_free(p->p_vmspace);
188	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
189}
190#endif
191
192/*
193 * Set a red zone in the kernel stack after the u. area.
194 */
195setredzone(pte, vaddr)
196	u_short *pte;
197	caddr_t vaddr;
198{
199/* eventually do this by setting up an expand-down stack segment
200   for ss0: selector, allowing stack access down to top of u.
201   this means though that protection violations need to be handled
202   thru a double fault exception that must do an integral task
203   switch to a known good context, within which a dump can be
204   taken. a sensible scheme might be to save the initial context
205   used by sched (that has physical memory mapped 1:1 at bottom)
206   and take the dump while still in mapped mode */
207}
208
209/*
210 * Move pages from one kernel virtual address to another.
211 * Both addresses are assumed to reside in the Sysmap,
212 * and size must be a multiple of CLSIZE.
213 */
214pagemove(from, to, size)
215	register caddr_t from, to;
216	int size;
217{
218	register struct pte *fpte, *tpte;
219
220	if (size % CLBYTES)
221		panic("pagemove");
222	fpte = kvtopte(from);
223	tpte = kvtopte(to);
224	while (size > 0) {
225		*tpte++ = *fpte;
226		*(int *)fpte++ = 0;
227		from += NBPG;
228		to += NBPG;
229		size -= NBPG;
230	}
231	tlbflush();
232}
233
234/*
235 * Convert kernel VA to physical address
236 */
237kvtop(addr)
238	register caddr_t addr;
239{
240	vm_offset_t va;
241
242	va = pmap_extract(kernel_pmap, (vm_offset_t)addr);
243	if (va == 0)
244		panic("kvtop: zero page frame");
245	return((int)va);
246}
247
248#ifdef notdef
249/*
250 * The probe[rw] routines should probably be redone in assembler
251 * for efficiency.
252 */
253prober(addr)
254	register u_int addr;
255{
256	register int page;
257	register struct proc *p;
258
259	if (addr >= USRSTACK)
260		return(0);
261	p = u.u_procp;
262	page = btop(addr);
263	if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
264		return(1);
265	return(0);
266}
267
268probew(addr)
269	register u_int addr;
270{
271	register int page;
272	register struct proc *p;
273
274	if (addr >= USRSTACK)
275		return(0);
276	p = u.u_procp;
277	page = btop(addr);
278	if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
279		return((*(int *)vtopte(p, page) & PG_PROT) == PG_UW);
280	return(0);
281}
282
283/*
284 * NB: assumes a physically contiguous kernel page table
285 *     (makes life a LOT simpler).
286 */
287kernacc(addr, count, rw)
288	register u_int addr;
289	int count, rw;
290{
291	register struct pde *pde;
292	register struct pte *pte;
293	register int ix, cnt;
294	extern long Syssize;
295
296	if (count <= 0)
297		return(0);
298	pde = (struct pde *)((u_int)u.u_procp->p_p0br + u.u_procp->p_szpt * NBPG);
299	ix = (addr & PD_MASK) >> PD_SHIFT;
300	cnt = ((addr + count + (1 << PD_SHIFT) - 1) & PD_MASK) >> PD_SHIFT;
301	cnt -= ix;
302	for (pde += ix; cnt; cnt--, pde++)
303		if (pde->pd_v == 0)
304			return(0);
305	ix = btop(addr-0xfe000000);
306	cnt = btop(addr-0xfe000000+count+NBPG-1);
307	if (cnt > (int)&Syssize)
308		return(0);
309	cnt -= ix;
310	for (pte = &Sysmap[ix]; cnt; cnt--, pte++)
311		if (pte->pg_v == 0 /*|| (rw == B_WRITE && pte->pg_prot == 1)*/)
312			return(0);
313	return(1);
314}
315
316useracc(addr, count, rw)
317	register u_int addr;
318	int count, rw;
319{
320	register int (*func)();
321	register u_int addr2;
322	extern int prober(), probew();
323
324	if (count <= 0)
325		return(0);
326	addr2 = addr;
327	addr += count;
328	func = (rw == B_READ) ? prober : probew;
329	do {
330		if ((*func)(addr2) == 0)
331			return(0);
332		addr2 = (addr2 + NBPG) & ~PGOFSET;
333	} while (addr2 < addr);
334	return(1);
335}
336#endif
337
338extern vm_map_t phys_map;
339
340/*
341 * Map an IO request into kernel virtual address space.  Requests fall into
342 * one of five catagories:
343 *
344 *	B_PHYS|B_UAREA:	User u-area swap.
345 *			Address is relative to start of u-area (p_addr).
346 *	B_PHYS|B_PAGET:	User page table swap.
347 *			Address is a kernel VA in usrpt (Usrptmap).
348 *	B_PHYS|B_DIRTY:	Dirty page push.
349 *			Address is a VA in proc2's address space.
350 *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
351 *			Address is VA in user's address space.
352 *	B_PHYS:		User "raw" IO request.
353 *			Address is VA in user's address space.
354 *
355 * All requests are (re)mapped into kernel VA space via the useriomap
356 * (a name with only slightly more meaning than "kernelmap")
357 */
358vmapbuf(bp)
359	register struct buf *bp;
360{
361	register int npf;
362	register caddr_t addr;
363	register long flags = bp->b_flags;
364	struct proc *p;
365	int off;
366	vm_offset_t kva;
367	register vm_offset_t pa;
368
369	if ((flags & B_PHYS) == 0)
370		panic("vmapbuf");
371	addr = bp->b_saveaddr = bp->b_un.b_addr;
372	off = (int)addr & PGOFSET;
373	p = bp->b_proc;
374	npf = btoc(round_page(bp->b_bcount + off));
375	kva = kmem_alloc_wait(phys_map, ctob(npf));
376	bp->b_un.b_addr = (caddr_t) (kva + off);
377	while (npf--) {
378		pa = pmap_extract(&p->p_vmspace->vm_pmap, (vm_offset_t)addr);
379		if (pa == 0)
380			panic("vmapbuf: null page frame");
381		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
382			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
383		addr += PAGE_SIZE;
384		kva += PAGE_SIZE;
385	}
386}
387
388/*
389 * Free the io map PTEs associated with this IO operation.
390 * We also invalidate the TLB entries and restore the original b_addr.
391 */
392vunmapbuf(bp)
393	register struct buf *bp;
394{
395	register int npf;
396	register caddr_t addr = bp->b_un.b_addr;
397	vm_offset_t kva;
398
399	if ((bp->b_flags & B_PHYS) == 0)
400		panic("vunmapbuf");
401	npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
402	kva = (vm_offset_t)((int)addr & ~PGOFSET);
403	kmem_free_wakeup(phys_map, kva, ctob(npf));
404	bp->b_un.b_addr = bp->b_saveaddr;
405	bp->b_saveaddr = NULL;
406}
407
408/*
409 * Force reset the processor by invalidating the entire address space!
410 */
411cpu_reset() {
412
413	/* force a shutdown by unmapping entire address space ! */
414	bzero((caddr_t) PTD, NBPG);
415
416	/* "good night, sweet prince .... <THUNK!>" */
417	tlbflush();
418	/* NOTREACHED */
419}
420