vm_machdep.c revision 150647
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 150647 2005-09-27 21:10:10Z peter $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/kse.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/pioctl.h>
61#include <sys/proc.h>
62#include <sys/sf_buf.h>
63#include <sys/smp.h>
64#include <sys/sysctl.h>
65#include <sys/unistd.h>
66#include <sys/vnode.h>
67#include <sys/vmmeter.h>
68
69#include <machine/cpu.h>
70#include <machine/md_var.h>
71#include <machine/pcb.h>
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_page.h>
77#include <vm/vm_map.h>
78#include <vm/vm_param.h>
79
80#include <amd64/isa/isa.h>
81
82static void	cpu_reset_real(void);
83#ifdef SMP
84static void	cpu_reset_proxy(void);
85static u_int	cpu_reset_proxyid;
86static volatile u_int	cpu_reset_proxy_active;
87#endif
88
89/*
90 * Finish a fork operation, with process p2 nearly set up.
91 * Copy and update the pcb, set up the stack so that the child
92 * ready to run and return to user mode.
93 */
94void
95cpu_fork(td1, p2, td2, flags)
96	register struct thread *td1;
97	register struct proc *p2;
98	struct thread *td2;
99	int flags;
100{
101	register struct proc *p1;
102	struct pcb *pcb2;
103	struct mdproc *mdp2;
104
105	p1 = td1->td_proc;
106	if ((flags & RFPROC) == 0)
107		return;
108
109	/* Ensure that p1's pcb is up to date. */
110	fpuexit(td1);
111
112	/* Point the pcb to the top of the stack */
113	pcb2 = (struct pcb *)(td2->td_kstack +
114	    td2->td_kstack_pages * PAGE_SIZE) - 1;
115	td2->td_pcb = pcb2;
116
117	/* Copy p1's pcb */
118	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
119
120	/* Point mdproc and then copy over td1's contents */
121	mdp2 = &p2->p_md;
122	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
123
124	/*
125	 * Create a new fresh stack for the new process.
126	 * Copy the trap frame for the return to user mode as if from a
127	 * syscall.  This copies most of the user mode register values.
128	 */
129	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
130	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
131
132	td2->td_frame->tf_rax = 0;		/* Child returns zero */
133	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
134	td2->td_frame->tf_rdx = 1;
135
136	/*
137	 * If the parent process has the trap bit set (i.e. a debugger had
138	 * single stepped the process to the system call), we need to clear
139	 * the trap flag from the new frame unless the debugger had set PF_FORK
140	 * on the parent.  Otherwise, the child will receive a (likely
141	 * unexpected) SIGTRAP when it executes the first instruction after
142	 * returning  to userland.
143	 */
144	if ((p1->p_pfsflags & PF_FORK) == 0)
145		td2->td_frame->tf_rflags &= ~PSL_T;
146
147	/*
148	 * Set registers for trampoline to user mode.  Leave space for the
149	 * return address on stack.  These are the kernel mode register values.
150	 */
151	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
152	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
153	pcb2->pcb_rbp = 0;
154	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
155	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
156	pcb2->pcb_rip = (register_t)fork_trampoline;
157	/*-
158	 * pcb2->pcb_dr*:	cloned above.
159	 * pcb2->pcb_savefpu:	cloned above.
160	 * pcb2->pcb_flags:	cloned above.
161	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
162	 * pcb2->pcb_[fg]sbase:	cloned above
163	 */
164
165	/* Setup to release sched_lock in fork_exit(). */
166	td2->td_md.md_spinlock_count = 1;
167	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
168
169	/*
170	 * Now, cpu_switch() can schedule the new process.
171	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
172	 * containing the return address when exiting cpu_switch.
173	 * This will normally be to fork_trampoline(), which will have
174	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
175	 * will set up a stack to call fork_return(p, frame); to complete
176	 * the return to user-mode.
177	 */
178}
179
180/*
181 * Intercept the return address from a freshly forked process that has NOT
182 * been scheduled yet.
183 *
184 * This is needed to make kernel threads stay in kernel mode.
185 */
186void
187cpu_set_fork_handler(td, func, arg)
188	struct thread *td;
189	void (*func)(void *);
190	void *arg;
191{
192	/*
193	 * Note that the trap frame follows the args, so the function
194	 * is really called like this:  func(arg, frame);
195	 */
196	td->td_pcb->pcb_r12 = (long) func;	/* function */
197	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
198}
199
200void
201cpu_exit(struct thread *td)
202{
203}
204
205void
206cpu_thread_exit(struct thread *td)
207{
208
209	if (td == PCPU_GET(fpcurthread))
210		fpudrop();
211
212	/* Disable any hardware breakpoints. */
213	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
214		reset_dbregs();
215		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
216	}
217}
218
219void
220cpu_thread_clean(struct thread *td)
221{
222}
223
224void
225cpu_thread_swapin(struct thread *td)
226{
227}
228
229void
230cpu_thread_swapout(struct thread *td)
231{
232}
233
234void
235cpu_thread_setup(struct thread *td)
236{
237
238	td->td_pcb = (struct pcb *)(td->td_kstack +
239	    td->td_kstack_pages * PAGE_SIZE) - 1;
240	td->td_frame = (struct trapframe *)td->td_pcb - 1;
241}
242
243/*
244 * Initialize machine state (pcb and trap frame) for a new thread about to
245 * upcall. Put enough state in the new thread's PCB to get it to go back
246 * userret(), where we can intercept it again to set the return (upcall)
247 * Address and stack, along with those from upcals that are from other sources
248 * such as those generated in thread_userret() itself.
249 */
250void
251cpu_set_upcall(struct thread *td, struct thread *td0)
252{
253	struct pcb *pcb2;
254
255	/* Point the pcb to the top of the stack. */
256	pcb2 = td->td_pcb;
257
258	/*
259	 * Copy the upcall pcb.  This loads kernel regs.
260	 * Those not loaded individually below get their default
261	 * values here.
262	 *
263	 * XXXKSE It might be a good idea to simply skip this as
264	 * the values of the other registers may be unimportant.
265	 * This would remove any requirement for knowing the KSE
266	 * at this time (see the matching comment below for
267	 * more analysis) (need a good safe default).
268	 */
269	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
270	pcb2->pcb_flags &= ~PCB_FPUINITDONE;
271
272	/*
273	 * Create a new fresh stack for the new thread.
274	 * Don't forget to set this stack value into whatever supplies
275	 * the address for the fault handlers.
276	 * The contexts are filled in at the time we actually DO the
277	 * upcall as only then do we know which KSE we got.
278	 */
279	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
280
281	/*
282	 * Set registers for trampoline to user mode.  Leave space for the
283	 * return address on stack.  These are the kernel mode register values.
284	 */
285	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
286	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
287	pcb2->pcb_rbp = 0;
288	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
289	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
290	pcb2->pcb_rip = (register_t)fork_trampoline;
291	/*
292	 * If we didn't copy the pcb, we'd need to do the following registers:
293	 * pcb2->pcb_dr*:	cloned above.
294	 * pcb2->pcb_savefpu:	cloned above.
295	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
296	 * pcb2->pcb_[fg]sbase: cloned above
297	 */
298
299	/* Setup to release sched_lock in fork_exit(). */
300	td->td_md.md_spinlock_count = 1;
301	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
302}
303
304/*
305 * Set that machine state for performing an upcall that has to
306 * be done in thread_userret() so that those upcalls generated
307 * in thread_userret() itself can be done as well.
308 */
309void
310cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
311	stack_t *stack)
312{
313
314	/*
315	 * Do any extra cleaning that needs to be done.
316	 * The thread may have optional components
317	 * that are not present in a fresh thread.
318	 * This may be a recycled thread so make it look
319	 * as though it's newly allocated.
320	 */
321	cpu_thread_clean(td);
322
323	/*
324	 * Set the trap frame to point at the beginning of the uts
325	 * function.
326	 */
327	td->td_frame->tf_rbp = 0;
328	td->td_frame->tf_rsp =
329	    ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
330	td->td_frame->tf_rsp -= 8;
331	td->td_frame->tf_rbp = 0;
332	td->td_frame->tf_rip = (register_t)entry;
333
334	/*
335	 * Pass the address of the mailbox for this kse to the uts
336	 * function as a parameter on the stack.
337	 */
338	td->td_frame->tf_rdi = (register_t)arg;
339}
340
341int
342cpu_set_user_tls(struct thread *td, void *tls_base)
343{
344
345	if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
346		return (EINVAL);
347
348	if (td == curthread) {
349		critical_enter();
350		td->td_pcb->pcb_fsbase = (register_t)tls_base;
351		wrmsr(MSR_FSBASE, td->td_pcb->pcb_fsbase);
352		critical_exit();
353	} else {
354		td->td_pcb->pcb_fsbase = (register_t)tls_base;
355	}
356	return (0);
357}
358
359#ifdef SMP
360static void
361cpu_reset_proxy()
362{
363
364	cpu_reset_proxy_active = 1;
365	while (cpu_reset_proxy_active == 1)
366		;	/* Wait for other cpu to see that we've started */
367	stop_cpus((1<<cpu_reset_proxyid));
368	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
369	DELAY(1000000);
370	cpu_reset_real();
371}
372#endif
373
374void
375cpu_reset()
376{
377#ifdef SMP
378	u_int cnt, map;
379
380	if (smp_active) {
381		map = PCPU_GET(other_cpus) & ~stopped_cpus;
382		if (map != 0) {
383			printf("cpu_reset: Stopping other CPUs\n");
384			stop_cpus(map);
385		}
386
387		if (PCPU_GET(cpuid) != 0) {
388			cpu_reset_proxyid = PCPU_GET(cpuid);
389			cpustop_restartfunc = cpu_reset_proxy;
390			cpu_reset_proxy_active = 0;
391			printf("cpu_reset: Restarting BSP\n");
392			started_cpus = (1<<0);		/* Restart CPU #0 */
393
394			cnt = 0;
395			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
396				cnt++;	/* Wait for BSP to announce restart */
397			if (cpu_reset_proxy_active == 0)
398				printf("cpu_reset: Failed to restart BSP\n");
399			enable_intr();
400			cpu_reset_proxy_active = 2;
401
402			while (1);
403			/* NOTREACHED */
404		}
405
406		DELAY(1000000);
407	}
408#endif
409	cpu_reset_real();
410	/* NOTREACHED */
411}
412
413static void
414cpu_reset_real()
415{
416
417	/*
418	 * Attempt to do a CPU reset via the keyboard controller,
419	 * do not turn off GateA20, as any machine that fails
420	 * to do the reset here would then end up in no man's land.
421	 */
422	outb(IO_KBD + 4, 0xFE);
423	DELAY(500000);	/* wait 0.5 sec to see if that did it */
424	printf("Keyboard reset did not work, attempting CPU shutdown\n");
425	DELAY(1000000);	/* wait 1 sec for printf to complete */
426
427	/* Force a shutdown by unmapping entire address space. */
428	bzero((caddr_t)PML4map, PAGE_SIZE);
429
430	/* "good night, sweet prince .... <THUNK!>" */
431	invltlb();
432	/* NOTREACHED */
433	while(1);
434}
435
436/*
437 * Allocate an sf_buf for the given vm_page.  On this machine, however, there
438 * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
439 * returned.
440 */
441struct sf_buf *
442sf_buf_alloc(struct vm_page *m, int pri)
443{
444
445	return ((struct sf_buf *)m);
446}
447
448/*
449 * Free the sf_buf.  In fact, do nothing because there are no resources
450 * associated with the sf_buf.
451 */
452void
453sf_buf_free(struct sf_buf *sf)
454{
455}
456
457/*
458 * Software interrupt handler for queued VM system processing.
459 */
460void
461swi_vm(void *dummy)
462{
463	if (busdma_swi_pending != 0)
464		busdma_swi();
465}
466
467/*
468 * Tell whether this address is in some physical memory region.
469 * Currently used by the kernel coredump code in order to avoid
470 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
471 * or other unpredictable behaviour.
472 */
473
474int
475is_physical_memory(vm_paddr_t addr)
476{
477
478#ifdef DEV_ISA
479	/* The ISA ``memory hole''. */
480	if (addr >= 0xa0000 && addr < 0x100000)
481		return 0;
482#endif
483
484	/*
485	 * stuff other tests for known memory-mapped devices (PCI?)
486	 * here
487	 */
488
489	return 1;
490}
491