vm_machdep.c revision 140554
1274016Sngie/*-
2274016Sngie * Copyright (c) 1982, 1986 The Regents of the University of California.
3274016Sngie * Copyright (c) 1989, 1990 William Jolitz
4274016Sngie * Copyright (c) 1994 John Dyson
5274016Sngie * All rights reserved.
6274016Sngie *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 140554 2005-01-21 05:57:45Z peter $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/kse.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/pioctl.h>
61#include <sys/proc.h>
62#include <sys/sf_buf.h>
63#include <sys/smp.h>
64#include <sys/sysctl.h>
65#include <sys/unistd.h>
66#include <sys/vnode.h>
67#include <sys/vmmeter.h>
68
69#include <machine/cpu.h>
70#include <machine/md_var.h>
71#include <machine/pcb.h>
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_page.h>
77#include <vm/vm_map.h>
78#include <vm/vm_param.h>
79
80#include <amd64/isa/isa.h>
81
82static void	cpu_reset_real(void);
83#ifdef SMP
84static void	cpu_reset_proxy(void);
85static u_int	cpu_reset_proxyid;
86static volatile u_int	cpu_reset_proxy_active;
87#endif
88
89/*
90 * Finish a fork operation, with process p2 nearly set up.
91 * Copy and update the pcb, set up the stack so that the child
92 * ready to run and return to user mode.
93 */
94void
95cpu_fork(td1, p2, td2, flags)
96	register struct thread *td1;
97	register struct proc *p2;
98	struct thread *td2;
99	int flags;
100{
101	register struct proc *p1;
102	struct pcb *pcb2;
103	struct mdproc *mdp2;
104
105	p1 = td1->td_proc;
106	if ((flags & RFPROC) == 0)
107		return;
108
109	/* Ensure that p1's pcb is up to date. */
110	fpuexit(td1);
111
112	/* Point the pcb to the top of the stack */
113	pcb2 = (struct pcb *)(td2->td_kstack +
114	    td2->td_kstack_pages * PAGE_SIZE) - 1;
115	td2->td_pcb = pcb2;
116
117	/* Copy p1's pcb */
118	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
119
120	/* Point mdproc and then copy over td1's contents */
121	mdp2 = &p2->p_md;
122	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
123
124	/*
125	 * Create a new fresh stack for the new process.
126	 * Copy the trap frame for the return to user mode as if from a
127	 * syscall.  This copies most of the user mode register values.
128	 */
129	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
130	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
131
132	td2->td_frame->tf_rax = 0;		/* Child returns zero */
133	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
134	td2->td_frame->tf_rdx = 1;
135
136	/*
137	 * If the parent process has the trap bit set (i.e. a debugger had
138	 * single stepped the process to the system call), we need to clear
139	 * the trap flag from the new frame unless the debugger had set PF_FORK
140	 * on the parent.  Otherwise, the child will receive a (likely
141	 * unexpected) SIGTRAP when it executes the first instruction after
142	 * returning  to userland.
143	 */
144	if ((p1->p_pfsflags & PF_FORK) == 0)
145		td2->td_frame->tf_rflags &= ~PSL_T;
146
147	/*
148	 * Set registers for trampoline to user mode.  Leave space for the
149	 * return address on stack.  These are the kernel mode register values.
150	 */
151	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
152	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
153	pcb2->pcb_rbp = 0;
154	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
155	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
156	pcb2->pcb_rip = (register_t)fork_trampoline;
157	pcb2->pcb_rflags = td2->td_frame->tf_rflags & ~PSL_I; /* ints disabled */
158	/*-
159	 * pcb2->pcb_dr*:	cloned above.
160	 * pcb2->pcb_savefpu:	cloned above.
161	 * pcb2->pcb_flags:	cloned above.
162	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
163	 * pcb2->pcb_[fg]sbase:	cloned above
164	 */
165
166	/*
167	 * Now, cpu_switch() can schedule the new process.
168	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
169	 * containing the return address when exiting cpu_switch.
170	 * This will normally be to fork_trampoline(), which will have
171	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
172	 * will set up a stack to call fork_return(p, frame); to complete
173	 * the return to user-mode.
174	 */
175}
176
177/*
178 * Intercept the return address from a freshly forked process that has NOT
179 * been scheduled yet.
180 *
181 * This is needed to make kernel threads stay in kernel mode.
182 */
183void
184cpu_set_fork_handler(td, func, arg)
185	struct thread *td;
186	void (*func)(void *);
187	void *arg;
188{
189	/*
190	 * Note that the trap frame follows the args, so the function
191	 * is really called like this:  func(arg, frame);
192	 */
193	td->td_pcb->pcb_r12 = (long) func;	/* function */
194	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
195}
196
197void
198cpu_exit(struct thread *td)
199{
200}
201
202void
203cpu_thread_exit(struct thread *td)
204{
205	struct pcb *pcb = td->td_pcb;
206
207	if (td == PCPU_GET(fpcurthread))
208		fpudrop();
209	if (pcb->pcb_flags & PCB_DBREGS) {
210		/* disable all hardware breakpoints */
211		reset_dbregs();
212		pcb->pcb_flags &= ~PCB_DBREGS;
213	}
214}
215
216void
217cpu_thread_clean(struct thread *td)
218{
219}
220
221void
222cpu_thread_swapin(struct thread *td)
223{
224}
225
226void
227cpu_thread_swapout(struct thread *td)
228{
229}
230
231void
232cpu_thread_setup(struct thread *td)
233{
234
235	td->td_pcb = (struct pcb *)(td->td_kstack +
236	    td->td_kstack_pages * PAGE_SIZE) - 1;
237	td->td_frame = (struct trapframe *)td->td_pcb - 1;
238}
239
240/*
241 * Initialize machine state (pcb and trap frame) for a new thread about to
242 * upcall. Put enough state in the new thread's PCB to get it to go back
243 * userret(), where we can intercept it again to set the return (upcall)
244 * Address and stack, along with those from upcals that are from other sources
245 * such as those generated in thread_userret() itself.
246 */
247void
248cpu_set_upcall(struct thread *td, struct thread *td0)
249{
250	struct pcb *pcb2;
251
252	/* Point the pcb to the top of the stack. */
253	pcb2 = td->td_pcb;
254
255	/*
256	 * Copy the upcall pcb.  This loads kernel regs.
257	 * Those not loaded individually below get their default
258	 * values here.
259	 *
260	 * XXXKSE It might be a good idea to simply skip this as
261	 * the values of the other registers may be unimportant.
262	 * This would remove any requirement for knowing the KSE
263	 * at this time (see the matching comment below for
264	 * more analysis) (need a good safe default).
265	 */
266	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
267	pcb2->pcb_flags &= ~PCB_FPUINITDONE;
268
269	/*
270	 * Create a new fresh stack for the new thread.
271	 * Don't forget to set this stack value into whatever supplies
272	 * the address for the fault handlers.
273	 * The contexts are filled in at the time we actually DO the
274	 * upcall as only then do we know which KSE we got.
275	 */
276	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
277
278	/*
279	 * Set registers for trampoline to user mode.  Leave space for the
280	 * return address on stack.  These are the kernel mode register values.
281	 */
282	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
283	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
284	pcb2->pcb_rbp = 0;
285	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
286	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
287	pcb2->pcb_rip = (register_t)fork_trampoline;
288	pcb2->pcb_rflags = PSL_KERNEL; /* ints disabled */
289	/*
290	 * If we didn't copy the pcb, we'd need to do the following registers:
291	 * pcb2->pcb_dr*:	cloned above.
292	 * pcb2->pcb_savefpu:	cloned above.
293	 * pcb2->pcb_rflags:	cloned above.
294	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
295	 * pcb2->pcb_[fg]sbase: cloned above
296	 */
297}
298
299/*
300 * Set that machine state for performing an upcall that has to
301 * be done in thread_userret() so that those upcalls generated
302 * in thread_userret() itself can be done as well.
303 */
304void
305cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
306{
307
308	/*
309	 * Do any extra cleaning that needs to be done.
310	 * The thread may have optional components
311	 * that are not present in a fresh thread.
312	 * This may be a recycled thread so make it look
313	 * as though it's newly allocated.
314	 */
315	cpu_thread_clean(td);
316
317	/*
318	 * Set the trap frame to point at the beginning of the uts
319	 * function.
320	 */
321	td->td_frame->tf_rbp = 0;
322	td->td_frame->tf_rsp =
323	    ((register_t)ku->ku_stack.ss_sp + ku->ku_stack.ss_size) & ~0x0f;
324	td->td_frame->tf_rsp -= 8;
325	td->td_frame->tf_rbp = 0;
326	td->td_frame->tf_rip = (register_t)ku->ku_func;
327
328	/*
329	 * Pass the address of the mailbox for this kse to the uts
330	 * function as a parameter on the stack.
331	 */
332	td->td_frame->tf_rdi = (register_t)ku->ku_mailbox;
333}
334
335#ifdef SMP
336static void
337cpu_reset_proxy()
338{
339
340	cpu_reset_proxy_active = 1;
341	while (cpu_reset_proxy_active == 1)
342		;	/* Wait for other cpu to see that we've started */
343	stop_cpus((1<<cpu_reset_proxyid));
344	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
345	DELAY(1000000);
346	cpu_reset_real();
347}
348#endif
349
350void
351cpu_reset()
352{
353#ifdef SMP
354	u_int cnt, map;
355
356	if (smp_active) {
357		map = PCPU_GET(other_cpus) & ~stopped_cpus;
358		if (map != 0) {
359			printf("cpu_reset: Stopping other CPUs\n");
360			stop_cpus(map);
361		}
362
363		if (PCPU_GET(cpuid) != 0) {
364			cpu_reset_proxyid = PCPU_GET(cpuid);
365			cpustop_restartfunc = cpu_reset_proxy;
366			cpu_reset_proxy_active = 0;
367			printf("cpu_reset: Restarting BSP\n");
368			started_cpus = (1<<0);		/* Restart CPU #0 */
369
370			cnt = 0;
371			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
372				cnt++;	/* Wait for BSP to announce restart */
373			if (cpu_reset_proxy_active == 0)
374				printf("cpu_reset: Failed to restart BSP\n");
375			enable_intr();
376			cpu_reset_proxy_active = 2;
377
378			while (1);
379			/* NOTREACHED */
380		}
381
382		DELAY(1000000);
383	}
384#endif
385	cpu_reset_real();
386	/* NOTREACHED */
387}
388
389static void
390cpu_reset_real()
391{
392
393	/*
394	 * Attempt to do a CPU reset via the keyboard controller,
395	 * do not turn off GateA20, as any machine that fails
396	 * to do the reset here would then end up in no man's land.
397	 */
398	outb(IO_KBD + 4, 0xFE);
399	DELAY(500000);	/* wait 0.5 sec to see if that did it */
400	printf("Keyboard reset did not work, attempting CPU shutdown\n");
401	DELAY(1000000);	/* wait 1 sec for printf to complete */
402
403	/* Force a shutdown by unmapping entire address space. */
404	bzero((caddr_t)PML4map, PAGE_SIZE);
405
406	/* "good night, sweet prince .... <THUNK!>" */
407	invltlb();
408	/* NOTREACHED */
409	while(1);
410}
411
412/*
413 * Allocate an sf_buf for the given vm_page.  On this machine, however, there
414 * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
415 * returned.
416 */
417struct sf_buf *
418sf_buf_alloc(struct vm_page *m, int pri)
419{
420
421	return ((struct sf_buf *)m);
422}
423
424/*
425 * Free the sf_buf.  In fact, do nothing because there are no resources
426 * associated with the sf_buf.
427 */
428void
429sf_buf_free(struct sf_buf *sf)
430{
431}
432
433/*
434 * Software interrupt handler for queued VM system processing.
435 */
436void
437swi_vm(void *dummy)
438{
439	if (busdma_swi_pending != 0)
440		busdma_swi();
441}
442
443/*
444 * Tell whether this address is in some physical memory region.
445 * Currently used by the kernel coredump code in order to avoid
446 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
447 * or other unpredictable behaviour.
448 */
449
450int
451is_physical_memory(vm_paddr_t addr)
452{
453
454#ifdef DEV_ISA
455	/* The ISA ``memory hole''. */
456	if (addr >= 0xa0000 && addr < 0x100000)
457		return 0;
458#endif
459
460	/*
461	 * stuff other tests for known memory-mapped devices (PCI?)
462	 * here
463	 */
464
465	return 1;
466}
467