vm_machdep.c revision 128384
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 128384 2004-04-18 05:36:37Z alc $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/kse.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/sf_buf.h>
62#include <sys/smp.h>
63#include <sys/sysctl.h>
64#include <sys/unistd.h>
65#include <sys/user.h>
66#include <sys/vnode.h>
67#include <sys/vmmeter.h>
68
69#include <machine/cpu.h>
70#include <machine/md_var.h>
71#include <machine/pcb.h>
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_page.h>
77#include <vm/vm_map.h>
78#include <vm/vm_param.h>
79
80#include <amd64/isa/isa.h>
81
82static void	cpu_reset_real(void);
83#ifdef SMP
84static void	cpu_reset_proxy(void);
85static u_int	cpu_reset_proxyid;
86static volatile u_int	cpu_reset_proxy_active;
87#endif
88
89/*
90 * Finish a fork operation, with process p2 nearly set up.
91 * Copy and update the pcb, set up the stack so that the child
92 * ready to run and return to user mode.
93 */
94void
95cpu_fork(td1, p2, td2, flags)
96	register struct thread *td1;
97	register struct proc *p2;
98	struct thread *td2;
99	int flags;
100{
101	register struct proc *p1;
102	struct pcb *pcb2;
103	struct mdproc *mdp2;
104
105	p1 = td1->td_proc;
106	if ((flags & RFPROC) == 0)
107		return;
108
109	/* Ensure that p1's pcb is up to date. */
110	fpuexit(td1);
111
112	/* Point the pcb to the top of the stack */
113	pcb2 = (struct pcb *)(td2->td_kstack +
114	    td2->td_kstack_pages * PAGE_SIZE) - 1;
115	td2->td_pcb = pcb2;
116
117	/* Copy p1's pcb */
118	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
119
120	/* Point mdproc and then copy over td1's contents */
121	mdp2 = &p2->p_md;
122	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
123
124	/*
125	 * Create a new fresh stack for the new process.
126	 * Copy the trap frame for the return to user mode as if from a
127	 * syscall.  This copies most of the user mode register values.
128	 */
129	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
130	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
131
132	td2->td_frame->tf_rax = 0;		/* Child returns zero */
133	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
134	td2->td_frame->tf_rdx = 1;
135
136	/*
137	 * Set registers for trampoline to user mode.  Leave space for the
138	 * return address on stack.  These are the kernel mode register values.
139	 */
140	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
141	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
142	pcb2->pcb_rbp = 0;
143	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
144	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
145	pcb2->pcb_rip = (register_t)fork_trampoline;
146	pcb2->pcb_rflags = td2->td_frame->tf_rflags & ~PSL_I; /* ints disabled */
147	/*-
148	 * pcb2->pcb_dr*:	cloned above.
149	 * pcb2->pcb_savefpu:	cloned above.
150	 * pcb2->pcb_flags:	cloned above.
151	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
152	 * pcb2->pcb_[fg]sbase:	cloned above
153	 */
154
155	/*
156	 * Now, cpu_switch() can schedule the new process.
157	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
158	 * containing the return address when exiting cpu_switch.
159	 * This will normally be to fork_trampoline(), which will have
160	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
161	 * will set up a stack to call fork_return(p, frame); to complete
162	 * the return to user-mode.
163	 */
164}
165
166/*
167 * Intercept the return address from a freshly forked process that has NOT
168 * been scheduled yet.
169 *
170 * This is needed to make kernel threads stay in kernel mode.
171 */
172void
173cpu_set_fork_handler(td, func, arg)
174	struct thread *td;
175	void (*func)(void *);
176	void *arg;
177{
178	/*
179	 * Note that the trap frame follows the args, so the function
180	 * is really called like this:  func(arg, frame);
181	 */
182	td->td_pcb->pcb_r12 = (long) func;	/* function */
183	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
184}
185
186void
187cpu_exit(struct thread *td)
188{
189	struct pcb *pcb = td->td_pcb;
190
191	if (pcb->pcb_flags & PCB_DBREGS) {
192		/* disable all hardware breakpoints */
193		reset_dbregs();
194		pcb->pcb_flags &= ~PCB_DBREGS;
195	}
196}
197
198void
199cpu_thread_exit(struct thread *td)
200{
201	struct pcb *pcb = td->td_pcb;
202
203	if (td == PCPU_GET(fpcurthread))
204		fpudrop();
205	if (pcb->pcb_flags & PCB_DBREGS) {
206		/* disable all hardware breakpoints */
207		reset_dbregs();
208		pcb->pcb_flags &= ~PCB_DBREGS;
209	}
210}
211
212void
213cpu_thread_clean(struct thread *td)
214{
215}
216
217void
218cpu_thread_swapin(struct thread *td)
219{
220}
221
222void
223cpu_thread_swapout(struct thread *td)
224{
225}
226
227void
228cpu_sched_exit(td)
229	register struct thread *td;
230{
231}
232
233void
234cpu_thread_setup(struct thread *td)
235{
236
237	td->td_pcb = (struct pcb *)(td->td_kstack +
238	    td->td_kstack_pages * PAGE_SIZE) - 1;
239	td->td_frame = (struct trapframe *)td->td_pcb - 1;
240}
241
242/*
243 * Initialize machine state (pcb and trap frame) for a new thread about to
244 * upcall. Pu t enough state in the new thread's PCB to get it to go back
245 * userret(), where we can intercept it again to set the return (upcall)
246 * Address and stack, along with those from upcals that are from other sources
247 * such as those generated in thread_userret() itself.
248 */
249void
250cpu_set_upcall(struct thread *td, struct thread *td0)
251{
252	struct pcb *pcb2;
253
254	/* Point the pcb to the top of the stack. */
255	pcb2 = td->td_pcb;
256
257	/*
258	 * Copy the upcall pcb.  This loads kernel regs.
259	 * Those not loaded individually below get their default
260	 * values here.
261	 *
262	 * XXXKSE It might be a good idea to simply skip this as
263	 * the values of the other registers may be unimportant.
264	 * This would remove any requirement for knowing the KSE
265	 * at this time (see the matching comment below for
266	 * more analysis) (need a good safe default).
267	 */
268	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
269	pcb2->pcb_flags &= ~PCB_FPUINITDONE;
270
271	/*
272	 * Create a new fresh stack for the new thread.
273	 * Don't forget to set this stack value into whatever supplies
274	 * the address for the fault handlers.
275	 * The contexts are filled in at the time we actually DO the
276	 * upcall as only then do we know which KSE we got.
277	 */
278	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
279
280	/*
281	 * Set registers for trampoline to user mode.  Leave space for the
282	 * return address on stack.  These are the kernel mode register values.
283	 */
284	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
285	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
286	pcb2->pcb_rbp = 0;
287	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
288	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
289	pcb2->pcb_rip = (register_t)fork_trampoline;
290	pcb2->pcb_rflags = PSL_KERNEL; /* ints disabled */
291	/*
292	 * If we didn't copy the pcb, we'd need to do the following registers:
293	 * pcb2->pcb_dr*:	cloned above.
294	 * pcb2->pcb_savefpu:	cloned above.
295	 * pcb2->pcb_rflags:	cloned above.
296	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
297	 * pcb2->pcb_[fg]sbase: cloned above
298	 */
299}
300
301/*
302 * Set that machine state for performing an upcall that has to
303 * be done in thread_userret() so that those upcalls generated
304 * in thread_userret() itself can be done as well.
305 */
306void
307cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
308{
309
310	/*
311	 * Do any extra cleaning that needs to be done.
312	 * The thread may have optional components
313	 * that are not present in a fresh thread.
314	 * This may be a recycled thread so make it look
315	 * as though it's newly allocated.
316	 */
317	cpu_thread_clean(td);
318
319	/*
320	 * Set the trap frame to point at the beginning of the uts
321	 * function.
322	 */
323	td->td_frame->tf_rsp =
324	    ((register_t)ku->ku_stack.ss_sp + ku->ku_stack.ss_size) & ~0x0f;
325	td->td_frame->tf_rsp -= 8;
326	td->td_frame->tf_rip = (register_t)ku->ku_func;
327
328	/*
329	 * Pass the address of the mailbox for this kse to the uts
330	 * function as a parameter on the stack.
331	 */
332	td->td_frame->tf_rdi = (register_t)ku->ku_mailbox;
333}
334
335
336/*
337 * Force reset the processor by invalidating the entire address space!
338 */
339
340#ifdef SMP
341static void
342cpu_reset_proxy()
343{
344
345	cpu_reset_proxy_active = 1;
346	while (cpu_reset_proxy_active == 1)
347		;	 /* Wait for other cpu to see that we've started */
348	stop_cpus((1<<cpu_reset_proxyid));
349	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
350	DELAY(1000000);
351	cpu_reset_real();
352}
353#endif
354
355void
356cpu_reset()
357{
358#ifdef SMP
359	if (smp_active == 0) {
360		cpu_reset_real();
361		/* NOTREACHED */
362	} else {
363
364		u_int map;
365		int cnt;
366		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
367
368		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
369
370		if (map != 0) {
371			printf("cpu_reset: Stopping other CPUs\n");
372			stop_cpus(map);		/* Stop all other CPUs */
373		}
374
375		if (PCPU_GET(cpuid) == 0) {
376			DELAY(1000000);
377			cpu_reset_real();
378			/* NOTREACHED */
379		} else {
380			/* We are not BSP (CPU #0) */
381
382			cpu_reset_proxyid = PCPU_GET(cpuid);
383			cpustop_restartfunc = cpu_reset_proxy;
384			cpu_reset_proxy_active = 0;
385			printf("cpu_reset: Restarting BSP\n");
386			started_cpus = (1<<0);		/* Restart CPU #0 */
387
388			cnt = 0;
389			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
390				cnt++;	/* Wait for BSP to announce restart */
391			if (cpu_reset_proxy_active == 0)
392				printf("cpu_reset: Failed to restart BSP\n");
393			enable_intr();
394			cpu_reset_proxy_active = 2;
395
396			while (1);
397			/* NOTREACHED */
398		}
399	}
400#else
401	cpu_reset_real();
402#endif
403}
404
405static void
406cpu_reset_real()
407{
408
409	/*
410	 * Attempt to do a CPU reset via the keyboard controller,
411	 * do not turn of the GateA20, as any machine that fails
412	 * to do the reset here would then end up in no man's land.
413	 */
414
415	outb(IO_KBD + 4, 0xFE);
416	DELAY(500000);	/* wait 0.5 sec to see if that did it */
417	printf("Keyboard reset did not work, attempting CPU shutdown\n");
418	DELAY(1000000);	/* wait 1 sec for printf to complete */
419	/* force a shutdown by unmapping entire address space ! */
420	bzero((caddr_t)PML4map, PAGE_SIZE);
421
422	/* "good night, sweet prince .... <THUNK!>" */
423	invltlb();
424	/* NOTREACHED */
425	while(1);
426}
427
428/*
429 * Allocate an sf_buf for the given vm_page.  On this machine, however, there
430 * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
431 * returned.
432 */
433struct sf_buf *
434sf_buf_alloc(struct vm_page *m, int pri)
435{
436
437	return ((struct sf_buf *)m);
438}
439
440/*
441 * Free the sf_buf.  In fact, do nothing because there are no resources
442 * associated with the sf_buf.
443 */
444void
445sf_buf_free(struct sf_buf *sf)
446{
447}
448
449/*
450 * Software interrupt handler for queued VM system processing.
451 */
452void
453swi_vm(void *dummy)
454{
455	if (busdma_swi_pending != 0)
456		busdma_swi();
457}
458
459/*
460 * Tell whether this address is in some physical memory region.
461 * Currently used by the kernel coredump code in order to avoid
462 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
463 * or other unpredictable behaviour.
464 */
465
466int
467is_physical_memory(vm_paddr_t addr)
468{
469
470#ifdef DEV_ISA
471	/* The ISA ``memory hole''. */
472	if (addr >= 0xa0000 && addr < 0x100000)
473		return 0;
474#endif
475
476	/*
477	 * stuff other tests for known memory-mapped devices (PCI?)
478	 * here
479	 */
480
481	return 1;
482}
483