vm_machdep.c revision 128100
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 128100 2004-04-11 04:26:58Z alc $");
45
46#include "opt_isa.h"
47#include "opt_cpu.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/kse.h>
54#include <sys/kernel.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/sf_buf.h>
62#include <sys/smp.h>
63#include <sys/sysctl.h>
64#include <sys/unistd.h>
65#include <sys/user.h>
66#include <sys/vnode.h>
67#include <sys/vmmeter.h>
68
69#include <machine/cpu.h>
70#include <machine/md_var.h>
71#include <machine/pcb.h>
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_page.h>
77#include <vm/vm_map.h>
78#include <vm/vm_param.h>
79
80#include <amd64/isa/isa.h>
81
82static void	cpu_reset_real(void);
83#ifdef SMP
84static void	cpu_reset_proxy(void);
85static u_int	cpu_reset_proxyid;
86static volatile u_int	cpu_reset_proxy_active;
87#endif
88static void	sf_buf_init(void *arg);
89SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
90
91/*
92 * Expanded sf_freelist head. Really an SLIST_HEAD() in disguise, with the
93 * sf_freelist head with the sf_lock mutex.
94 */
95static struct {
96	SLIST_HEAD(, sf_buf) sf_head;
97	struct mtx sf_lock;
98} sf_freelist;
99
100static u_int	sf_buf_alloc_want;
101
102/*
103 * Finish a fork operation, with process p2 nearly set up.
104 * Copy and update the pcb, set up the stack so that the child
105 * ready to run and return to user mode.
106 */
107void
108cpu_fork(td1, p2, td2, flags)
109	register struct thread *td1;
110	register struct proc *p2;
111	struct thread *td2;
112	int flags;
113{
114	register struct proc *p1;
115	struct pcb *pcb2;
116	struct mdproc *mdp2;
117
118	p1 = td1->td_proc;
119	if ((flags & RFPROC) == 0)
120		return;
121
122	/* Ensure that p1's pcb is up to date. */
123	fpuexit(td1);
124
125	/* Point the pcb to the top of the stack */
126	pcb2 = (struct pcb *)(td2->td_kstack +
127	    td2->td_kstack_pages * PAGE_SIZE) - 1;
128	td2->td_pcb = pcb2;
129
130	/* Copy p1's pcb */
131	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
132
133	/* Point mdproc and then copy over td1's contents */
134	mdp2 = &p2->p_md;
135	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
136
137	/*
138	 * Create a new fresh stack for the new process.
139	 * Copy the trap frame for the return to user mode as if from a
140	 * syscall.  This copies most of the user mode register values.
141	 */
142	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
143	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
144
145	td2->td_frame->tf_rax = 0;		/* Child returns zero */
146	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
147	td2->td_frame->tf_rdx = 1;
148
149	/*
150	 * Set registers for trampoline to user mode.  Leave space for the
151	 * return address on stack.  These are the kernel mode register values.
152	 */
153	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
154	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
155	pcb2->pcb_rbp = 0;
156	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
157	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
158	pcb2->pcb_rip = (register_t)fork_trampoline;
159	pcb2->pcb_rflags = td2->td_frame->tf_rflags & ~PSL_I; /* ints disabled */
160	/*-
161	 * pcb2->pcb_dr*:	cloned above.
162	 * pcb2->pcb_savefpu:	cloned above.
163	 * pcb2->pcb_flags:	cloned above.
164	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
165	 * pcb2->pcb_[fg]sbase:	cloned above
166	 */
167
168	/*
169	 * Now, cpu_switch() can schedule the new process.
170	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
171	 * containing the return address when exiting cpu_switch.
172	 * This will normally be to fork_trampoline(), which will have
173	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
174	 * will set up a stack to call fork_return(p, frame); to complete
175	 * the return to user-mode.
176	 */
177}
178
179/*
180 * Intercept the return address from a freshly forked process that has NOT
181 * been scheduled yet.
182 *
183 * This is needed to make kernel threads stay in kernel mode.
184 */
185void
186cpu_set_fork_handler(td, func, arg)
187	struct thread *td;
188	void (*func)(void *);
189	void *arg;
190{
191	/*
192	 * Note that the trap frame follows the args, so the function
193	 * is really called like this:  func(arg, frame);
194	 */
195	td->td_pcb->pcb_r12 = (long) func;	/* function */
196	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
197}
198
199void
200cpu_exit(struct thread *td)
201{
202	struct pcb *pcb = td->td_pcb;
203
204	if (pcb->pcb_flags & PCB_DBREGS) {
205		/* disable all hardware breakpoints */
206		reset_dbregs();
207		pcb->pcb_flags &= ~PCB_DBREGS;
208	}
209}
210
211void
212cpu_thread_exit(struct thread *td)
213{
214	struct pcb *pcb = td->td_pcb;
215
216	if (td == PCPU_GET(fpcurthread))
217		fpudrop();
218	if (pcb->pcb_flags & PCB_DBREGS) {
219		/* disable all hardware breakpoints */
220		reset_dbregs();
221		pcb->pcb_flags &= ~PCB_DBREGS;
222	}
223}
224
225void
226cpu_thread_clean(struct thread *td)
227{
228}
229
230void
231cpu_thread_swapin(struct thread *td)
232{
233}
234
235void
236cpu_thread_swapout(struct thread *td)
237{
238}
239
240void
241cpu_sched_exit(td)
242	register struct thread *td;
243{
244}
245
246void
247cpu_thread_setup(struct thread *td)
248{
249
250	td->td_pcb = (struct pcb *)(td->td_kstack +
251	    td->td_kstack_pages * PAGE_SIZE) - 1;
252	td->td_frame = (struct trapframe *)td->td_pcb - 1;
253}
254
255/*
256 * Initialize machine state (pcb and trap frame) for a new thread about to
257 * upcall. Pu t enough state in the new thread's PCB to get it to go back
258 * userret(), where we can intercept it again to set the return (upcall)
259 * Address and stack, along with those from upcals that are from other sources
260 * such as those generated in thread_userret() itself.
261 */
262void
263cpu_set_upcall(struct thread *td, struct thread *td0)
264{
265	struct pcb *pcb2;
266
267	/* Point the pcb to the top of the stack. */
268	pcb2 = td->td_pcb;
269
270	/*
271	 * Copy the upcall pcb.  This loads kernel regs.
272	 * Those not loaded individually below get their default
273	 * values here.
274	 *
275	 * XXXKSE It might be a good idea to simply skip this as
276	 * the values of the other registers may be unimportant.
277	 * This would remove any requirement for knowing the KSE
278	 * at this time (see the matching comment below for
279	 * more analysis) (need a good safe default).
280	 */
281	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
282	pcb2->pcb_flags &= ~PCB_FPUINITDONE;
283
284	/*
285	 * Create a new fresh stack for the new thread.
286	 * Don't forget to set this stack value into whatever supplies
287	 * the address for the fault handlers.
288	 * The contexts are filled in at the time we actually DO the
289	 * upcall as only then do we know which KSE we got.
290	 */
291	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
292
293	/*
294	 * Set registers for trampoline to user mode.  Leave space for the
295	 * return address on stack.  These are the kernel mode register values.
296	 */
297	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
298	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
299	pcb2->pcb_rbp = 0;
300	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
301	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
302	pcb2->pcb_rip = (register_t)fork_trampoline;
303	pcb2->pcb_rflags = PSL_KERNEL; /* ints disabled */
304	/*
305	 * If we didn't copy the pcb, we'd need to do the following registers:
306	 * pcb2->pcb_dr*:	cloned above.
307	 * pcb2->pcb_savefpu:	cloned above.
308	 * pcb2->pcb_rflags:	cloned above.
309	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
310	 * pcb2->pcb_[fg]sbase: cloned above
311	 */
312}
313
314/*
315 * Set that machine state for performing an upcall that has to
316 * be done in thread_userret() so that those upcalls generated
317 * in thread_userret() itself can be done as well.
318 */
319void
320cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
321{
322
323	/*
324	 * Do any extra cleaning that needs to be done.
325	 * The thread may have optional components
326	 * that are not present in a fresh thread.
327	 * This may be a recycled thread so make it look
328	 * as though it's newly allocated.
329	 */
330	cpu_thread_clean(td);
331
332	/*
333	 * Set the trap frame to point at the beginning of the uts
334	 * function.
335	 */
336	td->td_frame->tf_rsp =
337	    ((register_t)ku->ku_stack.ss_sp + ku->ku_stack.ss_size) & ~0x0f;
338	td->td_frame->tf_rsp -= 8;
339	td->td_frame->tf_rip = (register_t)ku->ku_func;
340
341	/*
342	 * Pass the address of the mailbox for this kse to the uts
343	 * function as a parameter on the stack.
344	 */
345	td->td_frame->tf_rdi = (register_t)ku->ku_mailbox;
346}
347
348
349/*
350 * Force reset the processor by invalidating the entire address space!
351 */
352
353#ifdef SMP
354static void
355cpu_reset_proxy()
356{
357
358	cpu_reset_proxy_active = 1;
359	while (cpu_reset_proxy_active == 1)
360		;	 /* Wait for other cpu to see that we've started */
361	stop_cpus((1<<cpu_reset_proxyid));
362	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
363	DELAY(1000000);
364	cpu_reset_real();
365}
366#endif
367
368void
369cpu_reset()
370{
371#ifdef SMP
372	if (smp_active == 0) {
373		cpu_reset_real();
374		/* NOTREACHED */
375	} else {
376
377		u_int map;
378		int cnt;
379		printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
380
381		map = PCPU_GET(other_cpus) & ~ stopped_cpus;
382
383		if (map != 0) {
384			printf("cpu_reset: Stopping other CPUs\n");
385			stop_cpus(map);		/* Stop all other CPUs */
386		}
387
388		if (PCPU_GET(cpuid) == 0) {
389			DELAY(1000000);
390			cpu_reset_real();
391			/* NOTREACHED */
392		} else {
393			/* We are not BSP (CPU #0) */
394
395			cpu_reset_proxyid = PCPU_GET(cpuid);
396			cpustop_restartfunc = cpu_reset_proxy;
397			cpu_reset_proxy_active = 0;
398			printf("cpu_reset: Restarting BSP\n");
399			started_cpus = (1<<0);		/* Restart CPU #0 */
400
401			cnt = 0;
402			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
403				cnt++;	/* Wait for BSP to announce restart */
404			if (cpu_reset_proxy_active == 0)
405				printf("cpu_reset: Failed to restart BSP\n");
406			enable_intr();
407			cpu_reset_proxy_active = 2;
408
409			while (1);
410			/* NOTREACHED */
411		}
412	}
413#else
414	cpu_reset_real();
415#endif
416}
417
418static void
419cpu_reset_real()
420{
421
422	/*
423	 * Attempt to do a CPU reset via the keyboard controller,
424	 * do not turn of the GateA20, as any machine that fails
425	 * to do the reset here would then end up in no man's land.
426	 */
427
428	outb(IO_KBD + 4, 0xFE);
429	DELAY(500000);	/* wait 0.5 sec to see if that did it */
430	printf("Keyboard reset did not work, attempting CPU shutdown\n");
431	DELAY(1000000);	/* wait 1 sec for printf to complete */
432	/* force a shutdown by unmapping entire address space ! */
433	bzero((caddr_t)PML4map, PAGE_SIZE);
434
435	/* "good night, sweet prince .... <THUNK!>" */
436	invltlb();
437	/* NOTREACHED */
438	while(1);
439}
440
441/*
442 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
443 */
444static void
445sf_buf_init(void *arg)
446{
447	struct sf_buf *sf_bufs;
448	int i;
449
450	mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF);
451	SLIST_INIT(&sf_freelist.sf_head);
452	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
453	    M_NOWAIT | M_ZERO);
454	for (i = 0; i < nsfbufs; i++)
455		SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list);
456	sf_buf_alloc_want = 0;
457}
458
459/*
460 * Get an sf_buf from the freelist. Will block if none are available.
461 */
462struct sf_buf *
463sf_buf_alloc(struct vm_page *m, int pri)
464{
465	struct sf_buf *sf;
466	int error;
467
468	mtx_lock(&sf_freelist.sf_lock);
469	while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) {
470		sf_buf_alloc_want++;
471		mbstat.sf_allocwait++;
472		error = msleep(&sf_freelist, &sf_freelist.sf_lock, PVM | pri,
473		    "sfbufa", 0);
474		sf_buf_alloc_want--;
475
476		/*
477		 * If we got a signal, don't risk going back to sleep.
478		 */
479		if (error)
480			break;
481	}
482	if (sf != NULL) {
483		SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list);
484		sf->m = m;
485		nsfbufsused++;
486		nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
487	}
488	mtx_unlock(&sf_freelist.sf_lock);
489	return (sf);
490}
491
492/*
493 * Release resources back to the system.
494 */
495void
496sf_buf_free(struct sf_buf *sf)
497{
498
499	mtx_lock(&sf_freelist.sf_lock);
500	SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list);
501	nsfbufsused--;
502	if (sf_buf_alloc_want > 0)
503		wakeup_one(&sf_freelist);
504	mtx_unlock(&sf_freelist.sf_lock);
505}
506
507/*
508 * Software interrupt handler for queued VM system processing.
509 */
510void
511swi_vm(void *dummy)
512{
513	if (busdma_swi_pending != 0)
514		busdma_swi();
515}
516
517/*
518 * Tell whether this address is in some physical memory region.
519 * Currently used by the kernel coredump code in order to avoid
520 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
521 * or other unpredictable behaviour.
522 */
523
524int
525is_physical_memory(vm_paddr_t addr)
526{
527
528#ifdef DEV_ISA
529	/* The ISA ``memory hole''. */
530	if (addr >= 0xa0000 && addr < 0x100000)
531		return 0;
532#endif
533
534	/*
535	 * stuff other tests for known memory-mapped devices (PCI?)
536	 * here
537	 */
538
539	return 1;
540}
541