vm_machdep.c revision 119563
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	@(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/amd64/amd64/vm_machdep.c 119563 2003-08-29 20:04:10Z alc $");
45
46#include "opt_isa.h"
47#include "opt_kstack_pages.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/malloc.h>
52#include <sys/proc.h>
53#include <sys/kse.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/vnode.h>
57#include <sys/vmmeter.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/mbuf.h>
61#include <sys/mutex.h>
62#include <sys/socketvar.h>
63#include <sys/sysctl.h>
64#include <sys/unistd.h>
65
66#include <machine/cpu.h>
67#include <machine/md_var.h>
68#include <machine/pcb.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <sys/lock.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_page.h>
75#include <vm/vm_map.h>
76#include <vm/vm_extern.h>
77
78#include <sys/user.h>
79
80#include <amd64/isa/isa.h>
81
82static void	cpu_reset_real(void);
83static void	sf_buf_init(void *arg);
84SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
85
86/*
87 * Expanded sf_freelist head. Really an SLIST_HEAD() in disguise, with the
88 * sf_freelist head with the sf_lock mutex.
89 */
90static struct {
91	SLIST_HEAD(, sf_buf) sf_head;
92	struct mtx sf_lock;
93} sf_freelist;
94
95static u_int	sf_buf_alloc_want;
96
97/*
98 * Finish a fork operation, with process p2 nearly set up.
99 * Copy and update the pcb, set up the stack so that the child
100 * ready to run and return to user mode.
101 */
102void
103cpu_fork(td1, p2, td2, flags)
104	register struct thread *td1;
105	register struct proc *p2;
106	struct thread *td2;
107	int flags;
108{
109	register struct proc *p1;
110	struct pcb *pcb2;
111	struct mdproc *mdp2;
112	register_t savecrit;
113
114	p1 = td1->td_proc;
115	if ((flags & RFPROC) == 0)
116		return;
117
118	/* Ensure that p1's pcb is up to date. */
119	savecrit = intr_disable();
120	if (PCPU_GET(fpcurthread) == td1)
121		npxsave(&td1->td_pcb->pcb_save);
122	intr_restore(savecrit);
123
124	/* Point the pcb to the top of the stack */
125	pcb2 = (struct pcb *)(td2->td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
126	td2->td_pcb = pcb2;
127
128	/* Copy p1's pcb */
129	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
130
131	/* Point mdproc and then copy over td1's contents */
132	mdp2 = &p2->p_md;
133	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
134
135	/*
136	 * Create a new fresh stack for the new process.
137	 * Copy the trap frame for the return to user mode as if from a
138	 * syscall.  This copies most of the user mode register values.
139	 */
140	td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
141	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
142
143	td2->td_frame->tf_rax = 0;		/* Child returns zero */
144	td2->td_frame->tf_rflags &= ~PSL_C;	/* success */
145	td2->td_frame->tf_rdx = 1;
146
147	/*
148	 * Set registers for trampoline to user mode.  Leave space for the
149	 * return address on stack.  These are the kernel mode register values.
150	 */
151	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
152	pcb2->pcb_r12 = (register_t)fork_return;	/* fork_trampoline argument */
153	pcb2->pcb_rbp = 0;
154	pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
155	pcb2->pcb_rbx = (register_t)td2;		/* fork_trampoline argument */
156	pcb2->pcb_rip = (register_t)fork_trampoline;
157	pcb2->pcb_rflags = td2->td_frame->tf_rflags & ~PSL_I; /* ints disabled */
158	/*-
159	 * pcb2->pcb_savefpu:	cloned above.
160	 * pcb2->pcb_flags:	cloned above.
161	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
162	 * pcb2->pcb_[fg]sbase:	cloned above
163	 */
164
165	/*
166	 * Now, cpu_switch() can schedule the new process.
167	 * pcb_rsp is loaded pointing to the cpu_switch() stack frame
168	 * containing the return address when exiting cpu_switch.
169	 * This will normally be to fork_trampoline(), which will have
170	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
171	 * will set up a stack to call fork_return(p, frame); to complete
172	 * the return to user-mode.
173	 */
174}
175
176/*
177 * Intercept the return address from a freshly forked process that has NOT
178 * been scheduled yet.
179 *
180 * This is needed to make kernel threads stay in kernel mode.
181 */
182void
183cpu_set_fork_handler(td, func, arg)
184	struct thread *td;
185	void (*func)(void *);
186	void *arg;
187{
188	/*
189	 * Note that the trap frame follows the args, so the function
190	 * is really called like this:  func(arg, frame);
191	 */
192	td->td_pcb->pcb_r12 = (long) func;	/* function */
193	td->td_pcb->pcb_rbx = (long) arg;	/* first arg */
194}
195
196void
197cpu_exit(struct thread *td)
198{
199	struct mdproc *mdp;
200
201	mdp = &td->td_proc->p_md;
202}
203
204void
205cpu_thread_exit(struct thread *td)
206{
207
208	npxexit(td);
209}
210
211void
212cpu_thread_clean(struct thread *td)
213{
214}
215
216void
217cpu_thread_swapin(struct thread *td)
218{
219}
220
221void
222cpu_thread_swapout(struct thread *td)
223{
224}
225
226void
227cpu_sched_exit(td)
228	register struct thread *td;
229{
230}
231
232void
233cpu_thread_setup(struct thread *td)
234{
235
236	td->td_pcb =
237	     (struct pcb *)(td->td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
238	td->td_frame = (struct trapframe *)td->td_pcb - 1;
239}
240
241/*
242 * Initialize machine state (pcb and trap frame) for a new thread about to
243 * upcall. Pu t enough state in the new thread's PCB to get it to go back
244 * userret(), where we can intercept it again to set the return (upcall)
245 * Address and stack, along with those from upcals that are from other sources
246 * such as those generated in thread_userret() itself.
247 */
248void
249cpu_set_upcall(struct thread *td, struct thread *td0)
250{
251	struct pcb *pcb2;
252
253	/* Point the pcb to the top of the stack. */
254	pcb2 = td->td_pcb;
255
256	/*
257	 * Copy the upcall pcb.  This loads kernel regs.
258	 * Those not loaded individually below get their default
259	 * values here.
260	 *
261	 * XXXKSE It might be a good idea to simply skip this as
262	 * the values of the other registers may be unimportant.
263	 * This would remove any requirement for knowing the KSE
264	 * at this time (see the matching comment below for
265	 * more analysis) (need a good safe default).
266	 */
267	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
268
269	/*
270	 * Create a new fresh stack for the new thread.
271	 * Don't forget to set this stack value into whatever supplies
272	 * the address for the fault handlers.
273	 * The contexts are filled in at the time we actually DO the
274	 * upcall as only then do we know which KSE we got.
275	 */
276	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
277
278	/*
279	 * Set registers for trampoline to user mode.  Leave space for the
280	 * return address on stack.  These are the kernel mode register values.
281	 */
282	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
283	pcb2->pcb_r12 = (register_t)fork_return;	    /* trampoline arg */
284	pcb2->pcb_rbp = 0;
285	pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);	/* trampoline arg */
286	pcb2->pcb_rbx = (register_t)td;			    /* trampoline arg */
287	pcb2->pcb_rip = (register_t)fork_trampoline;
288	pcb2->pcb_rflags = PSL_KERNEL; /* ints disabled */
289	/*
290	 * If we didn't copy the pcb, we'd need to do the following registers:
291	 * pcb2->pcb_savefpu:	cloned above.
292	 * pcb2->pcb_rflags:	cloned above.
293	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
294	 * pcb2->pcb_[fg]sbase: cloned above
295	 */
296}
297
298/*
299 * Set that machine state for performing an upcall that has to
300 * be done in thread_userret() so that those upcalls generated
301 * in thread_userret() itself can be done as well.
302 */
303void
304cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
305{
306
307	/*
308	 * Do any extra cleaning that needs to be done.
309	 * The thread may have optional components
310	 * that are not present in a fresh thread.
311	 * This may be a recycled thread so make it look
312	 * as though it's newly allocated.
313	 */
314	cpu_thread_clean(td);
315
316	/*
317	 * Set the trap frame to point at the beginning of the uts
318	 * function.
319	 */
320	td->td_frame->tf_rsp =
321	    ((register_t)ku->ku_stack.ss_sp + ku->ku_stack.ss_size) & ~0x0f;
322	td->td_frame->tf_rsp -= 8;
323	td->td_frame->tf_rip = (register_t)ku->ku_func;
324
325	/*
326	 * Pass the address of the mailbox for this kse to the uts
327	 * function as a parameter on the stack.
328	 */
329	td->td_frame->tf_rdi = (register_t)ku->ku_mailbox;
330}
331
332
333/*
334 * Force reset the processor by invalidating the entire address space!
335 */
336
337void
338cpu_reset()
339{
340	cpu_reset_real();
341}
342
343static void
344cpu_reset_real()
345{
346
347	/*
348	 * Attempt to do a CPU reset via the keyboard controller,
349	 * do not turn of the GateA20, as any machine that fails
350	 * to do the reset here would then end up in no man's land.
351	 */
352
353	outb(IO_KBD + 4, 0xFE);
354	DELAY(500000);	/* wait 0.5 sec to see if that did it */
355	printf("Keyboard reset did not work, attempting CPU shutdown\n");
356	DELAY(1000000);	/* wait 1 sec for printf to complete */
357	/* force a shutdown by unmapping entire address space ! */
358	bzero((caddr_t)PML4map, PAGE_SIZE);
359
360	/* "good night, sweet prince .... <THUNK!>" */
361	invltlb();
362	/* NOTREACHED */
363	while(1);
364}
365
366/*
367 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
368 */
369static void
370sf_buf_init(void *arg)
371{
372	struct sf_buf *sf_bufs;
373	int i;
374
375	mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF);
376	mtx_lock(&sf_freelist.sf_lock);
377	SLIST_INIT(&sf_freelist.sf_head);
378	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
379	    M_NOWAIT | M_ZERO);
380	for (i = 0; i < nsfbufs; i++)
381		SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list);
382	sf_buf_alloc_want = 0;
383	mtx_unlock(&sf_freelist.sf_lock);
384}
385
386/*
387 * Get an sf_buf from the freelist. Will block if none are available.
388 */
389struct sf_buf *
390sf_buf_alloc(struct vm_page *m)
391{
392	struct sf_buf *sf;
393	int error;
394
395	mtx_lock(&sf_freelist.sf_lock);
396	while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) {
397		sf_buf_alloc_want++;
398		error = msleep(&sf_freelist, &sf_freelist.sf_lock, PVM|PCATCH,
399		    "sfbufa", 0);
400		sf_buf_alloc_want--;
401
402		/*
403		 * If we got a signal, don't risk going back to sleep.
404		 */
405		if (error)
406			break;
407	}
408	if (sf != NULL) {
409		SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list);
410		sf->m = m;
411		sf->kva = PHYS_TO_DMAP(m->phys_addr);
412	}
413	mtx_unlock(&sf_freelist.sf_lock);
414	return (sf);
415}
416
417/*
418 * Detatch mapped page and release resources back to the system.
419 */
420void
421sf_buf_free(void *addr, void *args)
422{
423	struct sf_buf *sf;
424	struct vm_page *m;
425
426	sf = args;
427	m = sf->m;
428	vm_page_lock_queues();
429	vm_page_unwire(m, 0);
430	/*
431	 * Check for the object going away on us. This can
432	 * happen since we don't hold a reference to it.
433	 * If so, we're responsible for freeing the page.
434	 */
435	if (m->wire_count == 0 && m->object == NULL)
436		vm_page_free(m);
437	vm_page_unlock_queues();
438	sf->m = NULL;
439	mtx_lock(&sf_freelist.sf_lock);
440	SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list);
441	if (sf_buf_alloc_want > 0)
442		wakeup_one(&sf_freelist);
443	mtx_unlock(&sf_freelist.sf_lock);
444}
445
446/*
447 * Software interrupt handler for queued VM system processing.
448 */
449void
450swi_vm(void *dummy)
451{
452	if (busdma_swi_pending != 0)
453		busdma_swi();
454}
455
456/*
457 * Tell whether this address is in some physical memory region.
458 * Currently used by the kernel coredump code in order to avoid
459 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
460 * or other unpredictable behaviour.
461 */
462
463int
464is_physical_memory(addr)
465	vm_offset_t addr;
466{
467
468#ifdef DEV_ISA
469	/* The ISA ``memory hole''. */
470	if (addr >= 0xa0000 && addr < 0x100000)
471		return 0;
472#endif
473
474	/*
475	 * stuff other tests for known memory-mapped devices (PCI?)
476	 * here
477	 */
478
479	return 1;
480}
481