mp_machdep.c revision 78908
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/amd64/amd64/mp_machdep.c 78908 2001-06-28 04:03:29Z jhb $
26 */
27
28#include "opt_cpu.h"
29
30#ifdef SMP
31#include <machine/smptests.h>
32#else
33#error
34#endif
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/cons.h>	/* cngetc() */
40#include <sys/dkstat.h>
41#ifdef GPROF
42#include <sys/gmon.h>
43#endif
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/memrange.h>
48#include <sys/mutex.h>
49#include <sys/pcpu.h>
50#include <sys/proc.h>
51#include <sys/smp.h>
52#include <sys/sysctl.h>
53#include <sys/user.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/pmap.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_extern.h>
60#include <vm/vm_map.h>
61
62#include <machine/apic.h>
63#include <machine/atomic.h>
64#include <machine/cpu.h>
65#include <machine/cpufunc.h>
66#include <machine/mpapic.h>
67#include <machine/psl.h>
68#include <machine/segments.h>
69#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
70#include <machine/tss.h>
71#include <machine/specialreg.h>
72#include <machine/globaldata.h>
73
74#if defined(APIC_IO)
75#include <machine/md_var.h>		/* setidt() */
76#include <i386/isa/icu.h>		/* IPIs */
77#include <i386/isa/intr_machdep.h>	/* IPIs */
78#endif	/* APIC_IO */
79
80#if defined(TEST_DEFAULT_CONFIG)
81#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
82#else
83#define MPFPS_MPFB1	mpfps->mpfb1
84#endif  /* TEST_DEFAULT_CONFIG */
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#ifdef PC98
91#define BIOS_BASE		(0xe8000)
92#define BIOS_SIZE		(0x18000)
93#else
94#define BIOS_BASE		(0xf0000)
95#define BIOS_SIZE		(0x10000)
96#endif
97#define BIOS_COUNT		(BIOS_SIZE/4)
98
99#define CMOS_REG		(0x70)
100#define CMOS_DATA		(0x71)
101#define BIOS_RESET		(0x0f)
102#define BIOS_WARM		(0x0a)
103
104#define PROCENTRY_FLAG_EN	0x01
105#define PROCENTRY_FLAG_BP	0x02
106#define IOAPICENTRY_FLAG_EN	0x01
107
108
109/* MP Floating Pointer Structure */
110typedef struct MPFPS {
111	char    signature[4];
112	void   *pap;
113	u_char  length;
114	u_char  spec_rev;
115	u_char  checksum;
116	u_char  mpfb1;
117	u_char  mpfb2;
118	u_char  mpfb3;
119	u_char  mpfb4;
120	u_char  mpfb5;
121}      *mpfps_t;
122
123/* MP Configuration Table Header */
124typedef struct MPCTH {
125	char    signature[4];
126	u_short base_table_length;
127	u_char  spec_rev;
128	u_char  checksum;
129	u_char  oem_id[8];
130	u_char  product_id[12];
131	void   *oem_table_pointer;
132	u_short oem_table_size;
133	u_short entry_count;
134	void   *apic_address;
135	u_short extended_table_length;
136	u_char  extended_table_checksum;
137	u_char  reserved;
138}      *mpcth_t;
139
140
141typedef struct PROCENTRY {
142	u_char  type;
143	u_char  apic_id;
144	u_char  apic_version;
145	u_char  cpu_flags;
146	u_long  cpu_signature;
147	u_long  feature_flags;
148	u_long  reserved1;
149	u_long  reserved2;
150}      *proc_entry_ptr;
151
152typedef struct BUSENTRY {
153	u_char  type;
154	u_char  bus_id;
155	char    bus_type[6];
156}      *bus_entry_ptr;
157
158typedef struct IOAPICENTRY {
159	u_char  type;
160	u_char  apic_id;
161	u_char  apic_version;
162	u_char  apic_flags;
163	void   *apic_address;
164}      *io_apic_entry_ptr;
165
166typedef struct INTENTRY {
167	u_char  type;
168	u_char  int_type;
169	u_short int_flags;
170	u_char  src_bus_id;
171	u_char  src_bus_irq;
172	u_char  dst_apic_id;
173	u_char  dst_apic_int;
174}      *int_entry_ptr;
175
176/* descriptions of MP basetable entries */
177typedef struct BASETABLE_ENTRY {
178	u_char  type;
179	u_char  length;
180	char    name[16];
181}       basetable_entry;
182
183/*
184 * this code MUST be enabled here and in mpboot.s.
185 * it follows the very early stages of AP boot by placing values in CMOS ram.
186 * it NORMALLY will never be needed and thus the primitive method for enabling.
187 *
188#define CHECK_POINTS
189 */
190
191#if defined(CHECK_POINTS) && !defined(PC98)
192#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
193#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
194
195#define CHECK_INIT(D);				\
196	CHECK_WRITE(0x34, (D));			\
197	CHECK_WRITE(0x35, (D));			\
198	CHECK_WRITE(0x36, (D));			\
199	CHECK_WRITE(0x37, (D));			\
200	CHECK_WRITE(0x38, (D));			\
201	CHECK_WRITE(0x39, (D));
202
203#define CHECK_PRINT(S);				\
204	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
205	   (S),					\
206	   CHECK_READ(0x34),			\
207	   CHECK_READ(0x35),			\
208	   CHECK_READ(0x36),			\
209	   CHECK_READ(0x37),			\
210	   CHECK_READ(0x38),			\
211	   CHECK_READ(0x39));
212
213#else				/* CHECK_POINTS */
214
215#define CHECK_INIT(D)
216#define CHECK_PRINT(S)
217
218#endif				/* CHECK_POINTS */
219
220/*
221 * Values to send to the POST hardware.
222 */
223#define MP_BOOTADDRESS_POST	0x10
224#define MP_PROBE_POST		0x11
225#define MPTABLE_PASS1_POST	0x12
226
227#define MP_START_POST		0x13
228#define MP_ENABLE_POST		0x14
229#define MPTABLE_PASS2_POST	0x15
230
231#define START_ALL_APS_POST	0x16
232#define INSTALL_AP_TRAMP_POST	0x17
233#define START_AP_POST		0x18
234
235#define MP_ANNOUNCE_POST	0x19
236
237/* used to hold the AP's until we are ready to release them */
238static struct mtx ap_boot_mtx;
239
240/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
241int	current_postcode;
242
243/** XXX FIXME: what system files declare these??? */
244extern struct region_descriptor r_gdt, r_idt;
245
246int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
247int	mp_naps;		/* # of Applications processors */
248int	mp_nbusses;		/* # of busses */
249int	mp_napics;		/* # of IO APICs */
250int	boot_cpu_id;		/* designated BSP */
251vm_offset_t cpu_apic_address;
252vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
253extern	int nkpt;
254
255u_int32_t cpu_apic_versions[MAXCPU];
256u_int32_t *io_apic_versions;
257
258#ifdef APIC_INTR_REORDER
259struct {
260	volatile int *location;
261	int bit;
262} apic_isrbit_location[32];
263#endif
264
265struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
266
267/*
268 * APIC ID logical/physical mapping structures.
269 * We oversize these to simplify boot-time config.
270 */
271int     cpu_num_to_apic_id[NAPICID];
272int     io_num_to_apic_id[NAPICID];
273int     apic_id_to_logical[NAPICID];
274
275
276/* AP uses this during bootstrap.  Do not staticize.  */
277char *bootSTK;
278static int bootAP;
279
280/* Hotwire a 0->4MB V==P mapping */
281extern pt_entry_t *KPTphys;
282
283/* SMP page table page */
284extern pt_entry_t *SMPpt;
285
286struct pcb stoppcbs[MAXCPU];
287
288int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
289SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
290
291/*
292 * Local data and functions.
293 */
294
295/* Set to 1 once we're ready to let the APs out of the pen. */
296static volatile int aps_ready = 0;
297
298static int	mp_capable;
299static u_int	boot_address;
300static u_int	base_memory;
301
302static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
303static mpfps_t	mpfps;
304static int	search_for_sig(u_int32_t target, int count);
305static void	mp_enable(u_int boot_addr);
306
307static void	mptable_pass1(void);
308static int	mptable_pass2(void);
309static void	default_mp_table(int type);
310static void	fix_mp_table(void);
311static void	setup_apic_irq_mapping(void);
312static void	init_locks(void);
313static int	start_all_aps(u_int boot_addr);
314static void	install_ap_tramp(u_int boot_addr);
315static int	start_ap(int logicalCpu, u_int boot_addr);
316void		ap_init(void);
317static int	apic_int_is_bus_type(int intr, int bus_type);
318static void	release_aps(void *dummy);
319
320/*
321 * initialize all the SMP locks
322 */
323
324/* critical region around IO APIC, apic_imen */
325struct mtx		imen_mtx;
326
327/* lock region used by kernel profiling */
328int	mcount_lock;
329
330#ifdef USE_COMLOCK
331/* locks com (tty) data/hardware accesses: a FASTINTR() */
332struct mtx		com_mtx;
333#endif /* USE_COMLOCK */
334
335static void
336init_locks(void)
337{
338
339#ifdef USE_COMLOCK
340	mtx_init(&com_mtx, "com", MTX_SPIN);
341#endif /* USE_COMLOCK */
342}
343
344/*
345 * Calculate usable address in base memory for AP trampoline code.
346 */
347u_int
348mp_bootaddress(u_int basemem)
349{
350	POSTCODE(MP_BOOTADDRESS_POST);
351
352	base_memory = basemem * 1024;	/* convert to bytes */
353
354	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
355	if ((base_memory - boot_address) < bootMP_size)
356		boot_address -= 4096;	/* not enough, lower by 4k */
357
358	return boot_address;
359}
360
361
362/*
363 * Look for an Intel MP spec table (ie, SMP capable hardware).
364 */
365void
366i386_mp_probe(void)
367{
368	int     x;
369	u_long  segment;
370	u_int32_t target;
371
372	POSTCODE(MP_PROBE_POST);
373
374	/* see if EBDA exists */
375	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
376		/* search first 1K of EBDA */
377		target = (u_int32_t) (segment << 4);
378		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
379			goto found;
380	} else {
381		/* last 1K of base memory, effective 'top of base' passed in */
382		target = (u_int32_t) (base_memory - 0x400);
383		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
384			goto found;
385	}
386
387	/* search the BIOS */
388	target = (u_int32_t) BIOS_BASE;
389	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
390		goto found;
391
392	/* nothing found */
393	mpfps = (mpfps_t)0;
394	mp_capable = 0;
395	return;
396
397found:
398	/* calculate needed resources */
399	mpfps = (mpfps_t)x;
400	mptable_pass1();
401
402	/* flag fact that we are running multiple processors */
403	mp_capable = 1;
404}
405
406int
407cpu_mp_probe(void)
408{
409	return (mp_capable);
410}
411
412/*
413 * Initialize the SMP hardware and the APIC and start up the AP's.
414 */
415void
416cpu_mp_start(void)
417{
418	POSTCODE(MP_START_POST);
419
420	/* look for MP capable motherboard */
421	if (mp_capable)
422		mp_enable(boot_address);
423	else
424		panic("MP hardware not found!");
425
426	cpu_setregs();
427}
428
429
430/*
431 * Print various information about the SMP system hardware and setup.
432 */
433void
434cpu_mp_announce(void)
435{
436	int     x;
437
438	POSTCODE(MP_ANNOUNCE_POST);
439
440	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
441	printf(", version: 0x%08x", cpu_apic_versions[0]);
442	printf(", at 0x%08x\n", cpu_apic_address);
443	for (x = 1; x <= mp_naps; ++x) {
444		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
445		printf(", version: 0x%08x", cpu_apic_versions[x]);
446		printf(", at 0x%08x\n", cpu_apic_address);
447	}
448
449#if defined(APIC_IO)
450	for (x = 0; x < mp_napics; ++x) {
451		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
452		printf(", version: 0x%08x", io_apic_versions[x]);
453		printf(", at 0x%08x\n", io_apic_address[x]);
454	}
455#else
456	printf(" Warning: APIC I/O disabled\n");
457#endif	/* APIC_IO */
458}
459
460/*
461 * AP cpu's call this to sync up protected mode.
462 */
463void
464init_secondary(void)
465{
466	int	gsel_tss;
467	int	x, myid = bootAP;
468
469	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
470	gdt_segs[GPROC0_SEL].ssd_base =
471		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
472	SMP_prvspace[myid].globaldata.gd_prvspace =
473		&SMP_prvspace[myid].globaldata;
474
475	for (x = 0; x < NGDT; x++) {
476		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
477	}
478
479	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
480	r_gdt.rd_base = (int) &gdt[myid * NGDT];
481	lgdt(&r_gdt);			/* does magic intra-segment return */
482
483	lidt(&r_idt);
484
485	lldt(_default_ldt);
486	PCPU_SET(currentldt, _default_ldt);
487
488	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
489	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
490	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
491	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
492	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
493	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
494	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
495	ltr(gsel_tss);
496
497	pmap_set_opt();
498}
499
500
501#if defined(APIC_IO)
502/*
503 * Final configuration of the BSP's local APIC:
504 *  - disable 'pic mode'.
505 *  - disable 'virtual wire mode'.
506 *  - enable NMI.
507 */
508void
509bsp_apic_configure(void)
510{
511	u_char		byte;
512	u_int32_t	temp;
513
514	/* leave 'pic mode' if necessary */
515	if (picmode) {
516		outb(0x22, 0x70);	/* select IMCR */
517		byte = inb(0x23);	/* current contents */
518		byte |= 0x01;		/* mask external INTR */
519		outb(0x23, byte);	/* disconnect 8259s/NMI */
520	}
521
522	/* mask lint0 (the 8259 'virtual wire' connection) */
523	temp = lapic.lvt_lint0;
524	temp |= APIC_LVT_M;		/* set the mask */
525	lapic.lvt_lint0 = temp;
526
527        /* setup lint1 to handle NMI */
528        temp = lapic.lvt_lint1;
529        temp &= ~APIC_LVT_M;		/* clear the mask */
530        lapic.lvt_lint1 = temp;
531
532	if (bootverbose)
533		apic_dump("bsp_apic_configure()");
534}
535#endif  /* APIC_IO */
536
537
538/*******************************************************************
539 * local functions and data
540 */
541
542/*
543 * start the SMP system
544 */
545static void
546mp_enable(u_int boot_addr)
547{
548	int     x;
549#if defined(APIC_IO)
550	int     apic;
551	u_int   ux;
552#endif	/* APIC_IO */
553
554	POSTCODE(MP_ENABLE_POST);
555
556	/* turn on 4MB of V == P addressing so we can get to MP table */
557	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
558	invltlb();
559
560	/* examine the MP table for needed info, uses physical addresses */
561	x = mptable_pass2();
562
563	*(int *)PTD = 0;
564	invltlb();
565
566	/* can't process default configs till the CPU APIC is pmapped */
567	if (x)
568		default_mp_table(x);
569
570	/* post scan cleanup */
571	fix_mp_table();
572	setup_apic_irq_mapping();
573
574#if defined(APIC_IO)
575
576	/* fill the LOGICAL io_apic_versions table */
577	for (apic = 0; apic < mp_napics; ++apic) {
578		ux = io_apic_read(apic, IOAPIC_VER);
579		io_apic_versions[apic] = ux;
580		io_apic_set_id(apic, IO_TO_ID(apic));
581	}
582
583	/* program each IO APIC in the system */
584	for (apic = 0; apic < mp_napics; ++apic)
585		if (io_apic_setup(apic) < 0)
586			panic("IO APIC setup failure");
587
588	/* install a 'Spurious INTerrupt' vector */
589	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
590	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
591
592	/* install an inter-CPU IPI for TLB invalidation */
593	setidt(XINVLTLB_OFFSET, Xinvltlb,
594	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
595
596	/* install an inter-CPU IPI for forwarding hardclock() */
597	setidt(XHARDCLOCK_OFFSET, Xhardclock,
598	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
599
600	/* install an inter-CPU IPI for forwarding statclock() */
601	setidt(XSTATCLOCK_OFFSET, Xstatclock,
602	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
603
604	/* install an inter-CPU IPI for all-CPU rendezvous */
605	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
606	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607
608	/* install an inter-CPU IPI for forcing an additional software trap */
609	setidt(XCPUAST_OFFSET, Xcpuast,
610	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
611
612	/* install an inter-CPU IPI for CPU stop/restart */
613	setidt(XCPUSTOP_OFFSET, Xcpustop,
614	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
615
616#if defined(TEST_TEST1)
617	/* install a "fake hardware INTerrupt" vector */
618	setidt(XTEST1_OFFSET, Xtest1,
619	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
620#endif  /** TEST_TEST1 */
621
622#endif	/* APIC_IO */
623
624	/* initialize all SMP locks */
625	init_locks();
626
627	/* start each Application Processor */
628	start_all_aps(boot_addr);
629}
630
631
632/*
633 * look for the MP spec signature
634 */
635
636/* string defined by the Intel MP Spec as identifying the MP table */
637#define MP_SIG		0x5f504d5f	/* _MP_ */
638#define NEXT(X)		((X) += 4)
639static int
640search_for_sig(u_int32_t target, int count)
641{
642	int     x;
643	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
644
645	for (x = 0; x < count; NEXT(x))
646		if (addr[x] == MP_SIG)
647			/* make array index a byte index */
648			return (target + (x * sizeof(u_int32_t)));
649
650	return -1;
651}
652
653
654static basetable_entry basetable_entry_types[] =
655{
656	{0, 20, "Processor"},
657	{1, 8, "Bus"},
658	{2, 8, "I/O APIC"},
659	{3, 8, "I/O INT"},
660	{4, 8, "Local INT"}
661};
662
663typedef struct BUSDATA {
664	u_char  bus_id;
665	enum busTypes bus_type;
666}       bus_datum;
667
668typedef struct INTDATA {
669	u_char  int_type;
670	u_short int_flags;
671	u_char  src_bus_id;
672	u_char  src_bus_irq;
673	u_char  dst_apic_id;
674	u_char  dst_apic_int;
675	u_char	int_vector;
676}       io_int, local_int;
677
678typedef struct BUSTYPENAME {
679	u_char  type;
680	char    name[7];
681}       bus_type_name;
682
683static bus_type_name bus_type_table[] =
684{
685	{CBUS, "CBUS"},
686	{CBUSII, "CBUSII"},
687	{EISA, "EISA"},
688	{MCA, "MCA"},
689	{UNKNOWN_BUSTYPE, "---"},
690	{ISA, "ISA"},
691	{MCA, "MCA"},
692	{UNKNOWN_BUSTYPE, "---"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{UNKNOWN_BUSTYPE, "---"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{PCI, "PCI"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{UNKNOWN_BUSTYPE, "---"},
702	{XPRESS, "XPRESS"},
703	{UNKNOWN_BUSTYPE, "---"}
704};
705/* from MP spec v1.4, table 5-1 */
706static int default_data[7][5] =
707{
708/*   nbus, id0, type0, id1, type1 */
709	{1, 0, ISA, 255, 255},
710	{1, 0, EISA, 255, 255},
711	{1, 0, EISA, 255, 255},
712	{1, 0, MCA, 255, 255},
713	{2, 0, ISA, 1, PCI},
714	{2, 0, EISA, 1, PCI},
715	{2, 0, MCA, 1, PCI}
716};
717
718
719/* the bus data */
720static bus_datum *bus_data;
721
722/* the IO INT data, one entry per possible APIC INTerrupt */
723static io_int  *io_apic_ints;
724
725static int nintrs;
726
727static int processor_entry	__P((proc_entry_ptr entry, int cpu));
728static int bus_entry		__P((bus_entry_ptr entry, int bus));
729static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
730static int int_entry		__P((int_entry_ptr entry, int intr));
731static int lookup_bus_type	__P((char *name));
732
733
734/*
735 * 1st pass on motherboard's Intel MP specification table.
736 *
737 * initializes:
738 *	mp_ncpus = 1
739 *
740 * determines:
741 *	cpu_apic_address (common to all CPUs)
742 *	io_apic_address[N]
743 *	mp_naps
744 *	mp_nbusses
745 *	mp_napics
746 *	nintrs
747 */
748static void
749mptable_pass1(void)
750{
751	int	x;
752	mpcth_t	cth;
753	int	totalSize;
754	void*	position;
755	int	count;
756	int	type;
757
758	POSTCODE(MPTABLE_PASS1_POST);
759
760	/* clear various tables */
761	for (x = 0; x < NAPICID; ++x) {
762		io_apic_address[x] = ~0;	/* IO APIC address table */
763	}
764
765	/* init everything to empty */
766	mp_naps = 0;
767	mp_nbusses = 0;
768	mp_napics = 0;
769	nintrs = 0;
770
771	/* check for use of 'default' configuration */
772	if (MPFPS_MPFB1 != 0) {
773		/* use default addresses */
774		cpu_apic_address = DEFAULT_APIC_BASE;
775		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
776
777		/* fill in with defaults */
778		mp_naps = 2;		/* includes BSP */
779		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
780#if defined(APIC_IO)
781		mp_napics = 1;
782		nintrs = 16;
783#endif	/* APIC_IO */
784	}
785	else {
786		if ((cth = mpfps->pap) == 0)
787			panic("MP Configuration Table Header MISSING!");
788
789		cpu_apic_address = (vm_offset_t) cth->apic_address;
790
791		/* walk the table, recording info of interest */
792		totalSize = cth->base_table_length - sizeof(struct MPCTH);
793		position = (u_char *) cth + sizeof(struct MPCTH);
794		count = cth->entry_count;
795
796		while (count--) {
797			switch (type = *(u_char *) position) {
798			case 0: /* processor_entry */
799				if (((proc_entry_ptr)position)->cpu_flags
800					& PROCENTRY_FLAG_EN)
801					++mp_naps;
802				break;
803			case 1: /* bus_entry */
804				++mp_nbusses;
805				break;
806			case 2: /* io_apic_entry */
807				if (((io_apic_entry_ptr)position)->apic_flags
808					& IOAPICENTRY_FLAG_EN)
809					io_apic_address[mp_napics++] =
810					    (vm_offset_t)((io_apic_entry_ptr)
811						position)->apic_address;
812				break;
813			case 3: /* int_entry */
814				++nintrs;
815				break;
816			case 4:	/* int_entry */
817				break;
818			default:
819				panic("mpfps Base Table HOSED!");
820				/* NOTREACHED */
821			}
822
823			totalSize -= basetable_entry_types[type].length;
824			(u_char*)position += basetable_entry_types[type].length;
825		}
826	}
827
828	/* qualify the numbers */
829	if (mp_naps > MAXCPU) {
830		printf("Warning: only using %d of %d available CPUs!\n",
831			MAXCPU, mp_naps);
832		mp_naps = MAXCPU;
833	}
834
835	/*
836	 * Count the BSP.
837	 * This is also used as a counter while starting the APs.
838	 */
839	mp_ncpus = 1;
840
841	--mp_naps;	/* subtract the BSP */
842}
843
844
845/*
846 * 2nd pass on motherboard's Intel MP specification table.
847 *
848 * sets:
849 *	boot_cpu_id
850 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
851 *	CPU_TO_ID(N), logical CPU to APIC ID table
852 *	IO_TO_ID(N), logical IO to APIC ID table
853 *	bus_data[N]
854 *	io_apic_ints[N]
855 */
856static int
857mptable_pass2(void)
858{
859	int     x;
860	mpcth_t cth;
861	int     totalSize;
862	void*   position;
863	int     count;
864	int     type;
865	int     apic, bus, cpu, intr;
866	int	i, j;
867	int	pgeflag;
868
869	POSTCODE(MPTABLE_PASS2_POST);
870
871	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
872
873	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
874	    M_DEVBUF, M_WAITOK);
875	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
876	    M_DEVBUF, M_WAITOK);
877	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
878	    M_DEVBUF, M_WAITOK);
879	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
880	    M_DEVBUF, M_WAITOK);
881
882	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
883
884	for (i = 0; i < mp_napics; i++) {
885		for (j = 0; j < mp_napics; j++) {
886			/* same page frame as a previous IO apic? */
887			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
888			    (io_apic_address[i] & PG_FRAME)) {
889				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
890					+ (NPTEPG-2-j) * PAGE_SIZE
891					+ (io_apic_address[i] & PAGE_MASK));
892				break;
893			}
894			/* use this slot if available */
895			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
896				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
897				    pgeflag | (io_apic_address[i] & PG_FRAME));
898				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
899					+ (NPTEPG-2-j) * PAGE_SIZE
900					+ (io_apic_address[i] & PAGE_MASK));
901				break;
902			}
903		}
904	}
905
906	/* clear various tables */
907	for (x = 0; x < NAPICID; ++x) {
908		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
909		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
910		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
911	}
912
913	/* clear bus data table */
914	for (x = 0; x < mp_nbusses; ++x)
915		bus_data[x].bus_id = 0xff;
916
917	/* clear IO APIC INT table */
918	for (x = 0; x < (nintrs + 1); ++x) {
919		io_apic_ints[x].int_type = 0xff;
920		io_apic_ints[x].int_vector = 0xff;
921	}
922
923	/* setup the cpu/apic mapping arrays */
924	boot_cpu_id = -1;
925
926	/* record whether PIC or virtual-wire mode */
927	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
928
929	/* check for use of 'default' configuration */
930	if (MPFPS_MPFB1 != 0)
931		return MPFPS_MPFB1;	/* return default configuration type */
932
933	if ((cth = mpfps->pap) == 0)
934		panic("MP Configuration Table Header MISSING!");
935
936	/* walk the table, recording info of interest */
937	totalSize = cth->base_table_length - sizeof(struct MPCTH);
938	position = (u_char *) cth + sizeof(struct MPCTH);
939	count = cth->entry_count;
940	apic = bus = intr = 0;
941	cpu = 1;				/* pre-count the BSP */
942
943	while (count--) {
944		switch (type = *(u_char *) position) {
945		case 0:
946			if (processor_entry(position, cpu))
947				++cpu;
948			break;
949		case 1:
950			if (bus_entry(position, bus))
951				++bus;
952			break;
953		case 2:
954			if (io_apic_entry(position, apic))
955				++apic;
956			break;
957		case 3:
958			if (int_entry(position, intr))
959				++intr;
960			break;
961		case 4:
962			/* int_entry(position); */
963			break;
964		default:
965			panic("mpfps Base Table HOSED!");
966			/* NOTREACHED */
967		}
968
969		totalSize -= basetable_entry_types[type].length;
970		(u_char *) position += basetable_entry_types[type].length;
971	}
972
973	if (boot_cpu_id == -1)
974		panic("NO BSP found!");
975
976	/* report fact that its NOT a default configuration */
977	return 0;
978}
979
980
981void
982assign_apic_irq(int apic, int intpin, int irq)
983{
984	int x;
985
986	if (int_to_apicintpin[irq].ioapic != -1)
987		panic("assign_apic_irq: inconsistent table");
988
989	int_to_apicintpin[irq].ioapic = apic;
990	int_to_apicintpin[irq].int_pin = intpin;
991	int_to_apicintpin[irq].apic_address = ioapic[apic];
992	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
993
994	for (x = 0; x < nintrs; x++) {
995		if ((io_apic_ints[x].int_type == 0 ||
996		     io_apic_ints[x].int_type == 3) &&
997		    io_apic_ints[x].int_vector == 0xff &&
998		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
999		    io_apic_ints[x].dst_apic_int == intpin)
1000			io_apic_ints[x].int_vector = irq;
1001	}
1002}
1003
1004void
1005revoke_apic_irq(int irq)
1006{
1007	int x;
1008	int oldapic;
1009	int oldintpin;
1010
1011	if (int_to_apicintpin[irq].ioapic == -1)
1012		panic("assign_apic_irq: inconsistent table");
1013
1014	oldapic = int_to_apicintpin[irq].ioapic;
1015	oldintpin = int_to_apicintpin[irq].int_pin;
1016
1017	int_to_apicintpin[irq].ioapic = -1;
1018	int_to_apicintpin[irq].int_pin = 0;
1019	int_to_apicintpin[irq].apic_address = NULL;
1020	int_to_apicintpin[irq].redirindex = 0;
1021
1022	for (x = 0; x < nintrs; x++) {
1023		if ((io_apic_ints[x].int_type == 0 ||
1024		     io_apic_ints[x].int_type == 3) &&
1025		    io_apic_ints[x].int_vector == 0xff &&
1026		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1027		    io_apic_ints[x].dst_apic_int == oldintpin)
1028			io_apic_ints[x].int_vector = 0xff;
1029	}
1030}
1031
1032
1033static void
1034allocate_apic_irq(int intr)
1035{
1036	int apic;
1037	int intpin;
1038	int irq;
1039
1040	if (io_apic_ints[intr].int_vector != 0xff)
1041		return;		/* Interrupt handler already assigned */
1042
1043	if (io_apic_ints[intr].int_type != 0 &&
1044	    (io_apic_ints[intr].int_type != 3 ||
1045	     (io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
1046	      io_apic_ints[intr].dst_apic_int == 0)))
1047		return;		/* Not INT or ExtInt on != (0, 0) */
1048
1049	irq = 0;
1050	while (irq < APIC_INTMAPSIZE &&
1051	       int_to_apicintpin[irq].ioapic != -1)
1052		irq++;
1053
1054	if (irq >= APIC_INTMAPSIZE)
1055		return;		/* No free interrupt handlers */
1056
1057	apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
1058	intpin = io_apic_ints[intr].dst_apic_int;
1059
1060	assign_apic_irq(apic, intpin, irq);
1061	io_apic_setup_intpin(apic, intpin);
1062}
1063
1064
1065static void
1066swap_apic_id(int apic, int oldid, int newid)
1067{
1068	int x;
1069	int oapic;
1070
1071
1072	if (oldid == newid)
1073		return;			/* Nothing to do */
1074
1075	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1076	       apic, oldid, newid);
1077
1078	/* Swap physical APIC IDs in interrupt entries */
1079	for (x = 0; x < nintrs; x++) {
1080		if (io_apic_ints[x].dst_apic_id == oldid)
1081			io_apic_ints[x].dst_apic_id = newid;
1082		else if (io_apic_ints[x].dst_apic_id == newid)
1083			io_apic_ints[x].dst_apic_id = oldid;
1084	}
1085
1086	/* Swap physical APIC IDs in IO_TO_ID mappings */
1087	for (oapic = 0; oapic < mp_napics; oapic++)
1088		if (IO_TO_ID(oapic) == newid)
1089			break;
1090
1091	if (oapic < mp_napics) {
1092		printf("Changing APIC ID for IO APIC #%d from "
1093		       "%d to %d in MP table\n",
1094		       oapic, newid, oldid);
1095		IO_TO_ID(oapic) = oldid;
1096	}
1097	IO_TO_ID(apic) = newid;
1098}
1099
1100
1101static void
1102fix_id_to_io_mapping(void)
1103{
1104	int x;
1105
1106	for (x = 0; x < NAPICID; x++)
1107		ID_TO_IO(x) = -1;
1108
1109	for (x = 0; x <= mp_naps; x++)
1110		if (CPU_TO_ID(x) < NAPICID)
1111			ID_TO_IO(CPU_TO_ID(x)) = x;
1112
1113	for (x = 0; x < mp_napics; x++)
1114		if (IO_TO_ID(x) < NAPICID)
1115			ID_TO_IO(IO_TO_ID(x)) = x;
1116}
1117
1118
1119static int
1120first_free_apic_id(void)
1121{
1122	int freeid, x;
1123
1124	for (freeid = 0; freeid < NAPICID; freeid++) {
1125		for (x = 0; x <= mp_naps; x++)
1126			if (CPU_TO_ID(x) == freeid)
1127				break;
1128		if (x <= mp_naps)
1129			continue;
1130		for (x = 0; x < mp_napics; x++)
1131			if (IO_TO_ID(x) == freeid)
1132				break;
1133		if (x < mp_napics)
1134			continue;
1135		return freeid;
1136	}
1137	return freeid;
1138}
1139
1140
1141static int
1142io_apic_id_acceptable(int apic, int id)
1143{
1144	int cpu;		/* Logical CPU number */
1145	int oapic;		/* Logical IO APIC number for other IO APIC */
1146
1147	if (id >= NAPICID)
1148		return 0;	/* Out of range */
1149
1150	for (cpu = 0; cpu <= mp_naps; cpu++)
1151		if (CPU_TO_ID(cpu) == id)
1152			return 0;	/* Conflict with CPU */
1153
1154	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1155		if (IO_TO_ID(oapic) == id)
1156			return 0;	/* Conflict with other APIC */
1157
1158	return 1;		/* ID is acceptable for IO APIC */
1159}
1160
1161
1162/*
1163 * parse an Intel MP specification table
1164 */
1165static void
1166fix_mp_table(void)
1167{
1168	int	x;
1169	int	id;
1170	int	bus_0 = 0;	/* Stop GCC warning */
1171	int	bus_pci = 0;	/* Stop GCC warning */
1172	int	num_pci_bus;
1173	int	apic;		/* IO APIC unit number */
1174	int     freeid;		/* Free physical APIC ID */
1175	int	physid;		/* Current physical IO APIC ID */
1176
1177	/*
1178	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1179	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1180	 * exists the BIOS must begin with bus entries for the PCI bus and use
1181	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1182	 * exists the BIOS can choose to ignore this ordering, and indeed many
1183	 * MP motherboards do ignore it.  This causes a problem when the PCI
1184	 * sub-system makes requests of the MP sub-system based on PCI bus
1185	 * numbers.	So here we look for the situation and renumber the
1186	 * busses and associated INTs in an effort to "make it right".
1187	 */
1188
1189	/* find bus 0, PCI bus, count the number of PCI busses */
1190	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1191		if (bus_data[x].bus_id == 0) {
1192			bus_0 = x;
1193		}
1194		if (bus_data[x].bus_type == PCI) {
1195			++num_pci_bus;
1196			bus_pci = x;
1197		}
1198	}
1199	/*
1200	 * bus_0 == slot of bus with ID of 0
1201	 * bus_pci == slot of last PCI bus encountered
1202	 */
1203
1204	/* check the 1 PCI bus case for sanity */
1205	/* if it is number 0 all is well */
1206	if (num_pci_bus == 1 &&
1207	    bus_data[bus_pci].bus_id != 0) {
1208
1209		/* mis-numbered, swap with whichever bus uses slot 0 */
1210
1211		/* swap the bus entry types */
1212		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1213		bus_data[bus_0].bus_type = PCI;
1214
1215		/* swap each relavant INTerrupt entry */
1216		id = bus_data[bus_pci].bus_id;
1217		for (x = 0; x < nintrs; ++x) {
1218			if (io_apic_ints[x].src_bus_id == id) {
1219				io_apic_ints[x].src_bus_id = 0;
1220			}
1221			else if (io_apic_ints[x].src_bus_id == 0) {
1222				io_apic_ints[x].src_bus_id = id;
1223			}
1224		}
1225	}
1226
1227	/* Assign IO APIC IDs.
1228	 *
1229	 * First try the existing ID. If a conflict is detected, try
1230	 * the ID in the MP table.  If a conflict is still detected, find
1231	 * a free id.
1232	 *
1233	 * We cannot use the ID_TO_IO table before all conflicts has been
1234	 * resolved and the table has been corrected.
1235	 */
1236	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1237
1238		/* First try to use the value set by the BIOS */
1239		physid = io_apic_get_id(apic);
1240		if (io_apic_id_acceptable(apic, physid)) {
1241			if (IO_TO_ID(apic) != physid)
1242				swap_apic_id(apic, IO_TO_ID(apic), physid);
1243			continue;
1244		}
1245
1246		/* Then check if the value in the MP table is acceptable */
1247		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1248			continue;
1249
1250		/* Last resort, find a free APIC ID and use it */
1251		freeid = first_free_apic_id();
1252		if (freeid >= NAPICID)
1253			panic("No free physical APIC IDs found");
1254
1255		if (io_apic_id_acceptable(apic, freeid)) {
1256			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1257			continue;
1258		}
1259		panic("Free physical APIC ID not usable");
1260	}
1261	fix_id_to_io_mapping();
1262
1263	/* detect and fix broken Compaq MP table */
1264	if (apic_int_type(0, 0) == -1) {
1265		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1266		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1267		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1268		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1269		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1270		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1271		nintrs++;
1272	}
1273}
1274
1275
1276/* Assign low level interrupt handlers */
1277static void
1278setup_apic_irq_mapping(void)
1279{
1280	int	x;
1281	int	int_vector;
1282
1283	/* Clear array */
1284	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1285		int_to_apicintpin[x].ioapic = -1;
1286		int_to_apicintpin[x].int_pin = 0;
1287		int_to_apicintpin[x].apic_address = NULL;
1288		int_to_apicintpin[x].redirindex = 0;
1289	}
1290
1291	/* First assign ISA/EISA interrupts */
1292	for (x = 0; x < nintrs; x++) {
1293		int_vector = io_apic_ints[x].src_bus_irq;
1294		if (int_vector < APIC_INTMAPSIZE &&
1295		    io_apic_ints[x].int_vector == 0xff &&
1296		    int_to_apicintpin[int_vector].ioapic == -1 &&
1297		    (apic_int_is_bus_type(x, ISA) ||
1298		     apic_int_is_bus_type(x, EISA)) &&
1299		    io_apic_ints[x].int_type == 0) {
1300			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1301					io_apic_ints[x].dst_apic_int,
1302					int_vector);
1303		}
1304	}
1305
1306	/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
1307	for (x = 0; x < nintrs; x++) {
1308		if (io_apic_ints[x].dst_apic_int == 0 &&
1309		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1310		    io_apic_ints[x].int_vector == 0xff &&
1311		    int_to_apicintpin[0].ioapic == -1 &&
1312		    io_apic_ints[x].int_type == 3) {
1313			assign_apic_irq(0, 0, 0);
1314			break;
1315		}
1316	}
1317	/* PCI interrupt assignment is deferred */
1318}
1319
1320
1321static int
1322processor_entry(proc_entry_ptr entry, int cpu)
1323{
1324	/* check for usability */
1325	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1326		return 0;
1327
1328	if(entry->apic_id >= NAPICID)
1329		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1330	/* check for BSP flag */
1331	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1332		boot_cpu_id = entry->apic_id;
1333		CPU_TO_ID(0) = entry->apic_id;
1334		ID_TO_CPU(entry->apic_id) = 0;
1335		return 0;	/* its already been counted */
1336	}
1337
1338	/* add another AP to list, if less than max number of CPUs */
1339	else if (cpu < MAXCPU) {
1340		CPU_TO_ID(cpu) = entry->apic_id;
1341		ID_TO_CPU(entry->apic_id) = cpu;
1342		return 1;
1343	}
1344
1345	return 0;
1346}
1347
1348
1349static int
1350bus_entry(bus_entry_ptr entry, int bus)
1351{
1352	int     x;
1353	char    c, name[8];
1354
1355	/* encode the name into an index */
1356	for (x = 0; x < 6; ++x) {
1357		if ((c = entry->bus_type[x]) == ' ')
1358			break;
1359		name[x] = c;
1360	}
1361	name[x] = '\0';
1362
1363	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1364		panic("unknown bus type: '%s'", name);
1365
1366	bus_data[bus].bus_id = entry->bus_id;
1367	bus_data[bus].bus_type = x;
1368
1369	return 1;
1370}
1371
1372
1373static int
1374io_apic_entry(io_apic_entry_ptr entry, int apic)
1375{
1376	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1377		return 0;
1378
1379	IO_TO_ID(apic) = entry->apic_id;
1380	if (entry->apic_id < NAPICID)
1381		ID_TO_IO(entry->apic_id) = apic;
1382
1383	return 1;
1384}
1385
1386
1387static int
1388lookup_bus_type(char *name)
1389{
1390	int     x;
1391
1392	for (x = 0; x < MAX_BUSTYPE; ++x)
1393		if (strcmp(bus_type_table[x].name, name) == 0)
1394			return bus_type_table[x].type;
1395
1396	return UNKNOWN_BUSTYPE;
1397}
1398
1399
1400static int
1401int_entry(int_entry_ptr entry, int intr)
1402{
1403	int apic;
1404
1405	io_apic_ints[intr].int_type = entry->int_type;
1406	io_apic_ints[intr].int_flags = entry->int_flags;
1407	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1408	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1409	if (entry->dst_apic_id == 255) {
1410		/* This signal goes to all IO APICS.  Select an IO APIC
1411		   with sufficient number of interrupt pins */
1412		for (apic = 0; apic < mp_napics; apic++)
1413			if (((io_apic_read(apic, IOAPIC_VER) &
1414			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1415			    entry->dst_apic_int)
1416				break;
1417		if (apic < mp_napics)
1418			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1419		else
1420			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1421	} else
1422		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1423	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1424
1425	return 1;
1426}
1427
1428
1429static int
1430apic_int_is_bus_type(int intr, int bus_type)
1431{
1432	int     bus;
1433
1434	for (bus = 0; bus < mp_nbusses; ++bus)
1435		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1436		    && ((int) bus_data[bus].bus_type == bus_type))
1437			return 1;
1438
1439	return 0;
1440}
1441
1442
1443/*
1444 * Given a traditional ISA INT mask, return an APIC mask.
1445 */
1446u_int
1447isa_apic_mask(u_int isa_mask)
1448{
1449	int isa_irq;
1450	int apic_pin;
1451
1452#if defined(SKIP_IRQ15_REDIRECT)
1453	if (isa_mask == (1 << 15)) {
1454		printf("skipping ISA IRQ15 redirect\n");
1455		return isa_mask;
1456	}
1457#endif  /* SKIP_IRQ15_REDIRECT */
1458
1459	isa_irq = ffs(isa_mask);		/* find its bit position */
1460	if (isa_irq == 0)			/* doesn't exist */
1461		return 0;
1462	--isa_irq;				/* make it zero based */
1463
1464	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1465	if (apic_pin == -1)
1466		return 0;
1467
1468	return (1 << apic_pin);			/* convert pin# to a mask */
1469}
1470
1471
1472/*
1473 * Determine which APIC pin an ISA/EISA INT is attached to.
1474 */
1475#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1476#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1477#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1478#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1479
1480#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1481int
1482isa_apic_irq(int isa_irq)
1483{
1484	int     intr;
1485
1486	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1487		if (INTTYPE(intr) == 0) {		/* standard INT */
1488			if (SRCBUSIRQ(intr) == isa_irq) {
1489				if (apic_int_is_bus_type(intr, ISA) ||
1490			            apic_int_is_bus_type(intr, EISA)) {
1491					if (INTIRQ(intr) == 0xff)
1492						return -1; /* unassigned */
1493					return INTIRQ(intr);	/* found */
1494				}
1495			}
1496		}
1497	}
1498	return -1;					/* NOT found */
1499}
1500
1501
1502/*
1503 * Determine which APIC pin a PCI INT is attached to.
1504 */
1505#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1506#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1507#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1508int
1509pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1510{
1511	int     intr;
1512
1513	--pciInt;					/* zero based */
1514
1515	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1516		if ((INTTYPE(intr) == 0)		/* standard INT */
1517		    && (SRCBUSID(intr) == pciBus)
1518		    && (SRCBUSDEVICE(intr) == pciDevice)
1519		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1520			if (apic_int_is_bus_type(intr, PCI)) {
1521				if (INTIRQ(intr) == 0xff)
1522					allocate_apic_irq(intr);
1523				if (INTIRQ(intr) == 0xff)
1524					return -1;	/* unassigned */
1525				return INTIRQ(intr);	/* exact match */
1526			}
1527
1528	return -1;					/* NOT found */
1529}
1530
1531int
1532next_apic_irq(int irq)
1533{
1534	int intr, ointr;
1535	int bus, bustype;
1536
1537	bus = 0;
1538	bustype = 0;
1539	for (intr = 0; intr < nintrs; intr++) {
1540		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1541			continue;
1542		bus = SRCBUSID(intr);
1543		bustype = apic_bus_type(bus);
1544		if (bustype != ISA &&
1545		    bustype != EISA &&
1546		    bustype != PCI)
1547			continue;
1548		break;
1549	}
1550	if (intr >= nintrs) {
1551		return -1;
1552	}
1553	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1554		if (INTTYPE(ointr) != 0)
1555			continue;
1556		if (bus != SRCBUSID(ointr))
1557			continue;
1558		if (bustype == PCI) {
1559			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1560				continue;
1561			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1562				continue;
1563		}
1564		if (bustype == ISA || bustype == EISA) {
1565			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1566				continue;
1567		}
1568		if (INTPIN(intr) == INTPIN(ointr))
1569			continue;
1570		break;
1571	}
1572	if (ointr >= nintrs) {
1573		return -1;
1574	}
1575	return INTIRQ(ointr);
1576}
1577#undef SRCBUSLINE
1578#undef SRCBUSDEVICE
1579#undef SRCBUSID
1580#undef SRCBUSIRQ
1581
1582#undef INTPIN
1583#undef INTIRQ
1584#undef INTAPIC
1585#undef INTTYPE
1586
1587
1588/*
1589 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1590 *
1591 * XXX FIXME:
1592 *  Exactly what this means is unclear at this point.  It is a solution
1593 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1594 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1595 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1596 *  option.
1597 */
1598int
1599undirect_isa_irq(int rirq)
1600{
1601#if defined(READY)
1602	if (bootverbose)
1603	    printf("Freeing redirected ISA irq %d.\n", rirq);
1604	/** FIXME: tickle the MB redirector chip */
1605	return -1;
1606#else
1607	if (bootverbose)
1608	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1609	return 0;
1610#endif  /* READY */
1611}
1612
1613
1614/*
1615 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1616 */
1617int
1618undirect_pci_irq(int rirq)
1619{
1620#if defined(READY)
1621	if (bootverbose)
1622		printf("Freeing redirected PCI irq %d.\n", rirq);
1623
1624	/** FIXME: tickle the MB redirector chip */
1625	return -1;
1626#else
1627	if (bootverbose)
1628		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1629		       rirq);
1630	return 0;
1631#endif  /* READY */
1632}
1633
1634
1635/*
1636 * given a bus ID, return:
1637 *  the bus type if found
1638 *  -1 if NOT found
1639 */
1640int
1641apic_bus_type(int id)
1642{
1643	int     x;
1644
1645	for (x = 0; x < mp_nbusses; ++x)
1646		if (bus_data[x].bus_id == id)
1647			return bus_data[x].bus_type;
1648
1649	return -1;
1650}
1651
1652
1653/*
1654 * given a LOGICAL APIC# and pin#, return:
1655 *  the associated src bus ID if found
1656 *  -1 if NOT found
1657 */
1658int
1659apic_src_bus_id(int apic, int pin)
1660{
1661	int     x;
1662
1663	/* search each of the possible INTerrupt sources */
1664	for (x = 0; x < nintrs; ++x)
1665		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1666		    (pin == io_apic_ints[x].dst_apic_int))
1667			return (io_apic_ints[x].src_bus_id);
1668
1669	return -1;		/* NOT found */
1670}
1671
1672
1673/*
1674 * given a LOGICAL APIC# and pin#, return:
1675 *  the associated src bus IRQ if found
1676 *  -1 if NOT found
1677 */
1678int
1679apic_src_bus_irq(int apic, int pin)
1680{
1681	int     x;
1682
1683	for (x = 0; x < nintrs; x++)
1684		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1685		    (pin == io_apic_ints[x].dst_apic_int))
1686			return (io_apic_ints[x].src_bus_irq);
1687
1688	return -1;		/* NOT found */
1689}
1690
1691
1692/*
1693 * given a LOGICAL APIC# and pin#, return:
1694 *  the associated INTerrupt type if found
1695 *  -1 if NOT found
1696 */
1697int
1698apic_int_type(int apic, int pin)
1699{
1700	int     x;
1701
1702	/* search each of the possible INTerrupt sources */
1703	for (x = 0; x < nintrs; ++x)
1704		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1705		    (pin == io_apic_ints[x].dst_apic_int))
1706			return (io_apic_ints[x].int_type);
1707
1708	return -1;		/* NOT found */
1709}
1710
1711int
1712apic_irq(int apic, int pin)
1713{
1714	int x;
1715	int res;
1716
1717	for (x = 0; x < nintrs; ++x)
1718		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1719		    (pin == io_apic_ints[x].dst_apic_int)) {
1720			res = io_apic_ints[x].int_vector;
1721			if (res == 0xff)
1722				return -1;
1723			if (apic != int_to_apicintpin[res].ioapic)
1724				panic("apic_irq: inconsistent table");
1725			if (pin != int_to_apicintpin[res].int_pin)
1726				panic("apic_irq inconsistent table (2)");
1727			return res;
1728		}
1729	return -1;
1730}
1731
1732
1733/*
1734 * given a LOGICAL APIC# and pin#, return:
1735 *  the associated trigger mode if found
1736 *  -1 if NOT found
1737 */
1738int
1739apic_trigger(int apic, int pin)
1740{
1741	int     x;
1742
1743	/* search each of the possible INTerrupt sources */
1744	for (x = 0; x < nintrs; ++x)
1745		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1746		    (pin == io_apic_ints[x].dst_apic_int))
1747			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1748
1749	return -1;		/* NOT found */
1750}
1751
1752
1753/*
1754 * given a LOGICAL APIC# and pin#, return:
1755 *  the associated 'active' level if found
1756 *  -1 if NOT found
1757 */
1758int
1759apic_polarity(int apic, int pin)
1760{
1761	int     x;
1762
1763	/* search each of the possible INTerrupt sources */
1764	for (x = 0; x < nintrs; ++x)
1765		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1766		    (pin == io_apic_ints[x].dst_apic_int))
1767			return (io_apic_ints[x].int_flags & 0x03);
1768
1769	return -1;		/* NOT found */
1770}
1771
1772
1773/*
1774 * set data according to MP defaults
1775 * FIXME: probably not complete yet...
1776 */
1777static void
1778default_mp_table(int type)
1779{
1780	int     ap_cpu_id;
1781#if defined(APIC_IO)
1782	int     io_apic_id;
1783	int     pin;
1784#endif	/* APIC_IO */
1785
1786#if 0
1787	printf("  MP default config type: %d\n", type);
1788	switch (type) {
1789	case 1:
1790		printf("   bus: ISA, APIC: 82489DX\n");
1791		break;
1792	case 2:
1793		printf("   bus: EISA, APIC: 82489DX\n");
1794		break;
1795	case 3:
1796		printf("   bus: EISA, APIC: 82489DX\n");
1797		break;
1798	case 4:
1799		printf("   bus: MCA, APIC: 82489DX\n");
1800		break;
1801	case 5:
1802		printf("   bus: ISA+PCI, APIC: Integrated\n");
1803		break;
1804	case 6:
1805		printf("   bus: EISA+PCI, APIC: Integrated\n");
1806		break;
1807	case 7:
1808		printf("   bus: MCA+PCI, APIC: Integrated\n");
1809		break;
1810	default:
1811		printf("   future type\n");
1812		break;
1813		/* NOTREACHED */
1814	}
1815#endif	/* 0 */
1816
1817	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1818	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1819
1820	/* BSP */
1821	CPU_TO_ID(0) = boot_cpu_id;
1822	ID_TO_CPU(boot_cpu_id) = 0;
1823
1824	/* one and only AP */
1825	CPU_TO_ID(1) = ap_cpu_id;
1826	ID_TO_CPU(ap_cpu_id) = 1;
1827
1828#if defined(APIC_IO)
1829	/* one and only IO APIC */
1830	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1831
1832	/*
1833	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1834	 * necessary as some hardware isn't properly setting up the IO APIC
1835	 */
1836#if defined(REALLY_ANAL_IOAPICID_VALUE)
1837	if (io_apic_id != 2) {
1838#else
1839	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1840#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1841		io_apic_set_id(0, 2);
1842		io_apic_id = 2;
1843	}
1844	IO_TO_ID(0) = io_apic_id;
1845	ID_TO_IO(io_apic_id) = 0;
1846#endif	/* APIC_IO */
1847
1848	/* fill out bus entries */
1849	switch (type) {
1850	case 1:
1851	case 2:
1852	case 3:
1853	case 4:
1854	case 5:
1855	case 6:
1856	case 7:
1857		bus_data[0].bus_id = default_data[type - 1][1];
1858		bus_data[0].bus_type = default_data[type - 1][2];
1859		bus_data[1].bus_id = default_data[type - 1][3];
1860		bus_data[1].bus_type = default_data[type - 1][4];
1861		break;
1862
1863	/* case 4: case 7:		   MCA NOT supported */
1864	default:		/* illegal/reserved */
1865		panic("BAD default MP config: %d", type);
1866		/* NOTREACHED */
1867	}
1868
1869#if defined(APIC_IO)
1870	/* general cases from MP v1.4, table 5-2 */
1871	for (pin = 0; pin < 16; ++pin) {
1872		io_apic_ints[pin].int_type = 0;
1873		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1874		io_apic_ints[pin].src_bus_id = 0;
1875		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1876		io_apic_ints[pin].dst_apic_id = io_apic_id;
1877		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1878	}
1879
1880	/* special cases from MP v1.4, table 5-2 */
1881	if (type == 2) {
1882		io_apic_ints[2].int_type = 0xff;	/* N/C */
1883		io_apic_ints[13].int_type = 0xff;	/* N/C */
1884#if !defined(APIC_MIXED_MODE)
1885		/** FIXME: ??? */
1886		panic("sorry, can't support type 2 default yet");
1887#endif	/* APIC_MIXED_MODE */
1888	}
1889	else
1890		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1891
1892	if (type == 7)
1893		io_apic_ints[0].int_type = 0xff;	/* N/C */
1894	else
1895		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1896#endif	/* APIC_IO */
1897}
1898
1899
1900/*
1901 * start each AP in our list
1902 */
1903static int
1904start_all_aps(u_int boot_addr)
1905{
1906	int     x, i, pg;
1907	u_char  mpbiosreason;
1908	u_long  mpbioswarmvec;
1909	struct globaldata *gd;
1910	char *stack;
1911	uintptr_t kptbase;
1912
1913	POSTCODE(START_ALL_APS_POST);
1914
1915	mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
1916
1917	/* initialize BSP's local APIC */
1918	apic_initialize();
1919	bsp_apic_ready = 1;
1920
1921	/* install the AP 1st level boot code */
1922	install_ap_tramp(boot_addr);
1923
1924
1925	/* save the current value of the warm-start vector */
1926	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1927#ifndef PC98
1928	outb(CMOS_REG, BIOS_RESET);
1929	mpbiosreason = inb(CMOS_DATA);
1930#endif
1931
1932	/* record BSP in CPU map */
1933	all_cpus = 1;
1934
1935	/* set up temporary P==V mapping for AP boot */
1936	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
1937	kptbase = (uintptr_t)(void *)KPTphys;
1938	for (x = 0; x < NKPT; x++)
1939		PTD[x] = (pd_entry_t)(PG_V | PG_RW |
1940		    ((kptbase + x * PAGE_SIZE) & PG_FRAME));
1941	invltlb();
1942
1943	/* start each AP */
1944	for (x = 1; x <= mp_naps; ++x) {
1945
1946		/* This is a bit verbose, it will go away soon.  */
1947
1948		/* first page of AP's private space */
1949		pg = x * i386_btop(sizeof(struct privatespace));
1950
1951		/* allocate a new private data page */
1952		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1953
1954		/* wire it into the private page table page */
1955		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1956
1957		/* allocate and set up an idle stack data page */
1958		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1959		for (i = 0; i < UPAGES; i++)
1960			SMPpt[pg + 1 + i] = (pt_entry_t)
1961			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1962
1963		/* prime data page for it to use */
1964		gd->gd_cpuid = x;
1965		globaldata_register(gd);
1966
1967		/* setup a vector to our boot code */
1968		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1969		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1970#ifndef PC98
1971		outb(CMOS_REG, BIOS_RESET);
1972		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1973#endif
1974
1975		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1976		bootAP = x;
1977
1978		/* attempt to start the Application Processor */
1979		CHECK_INIT(99);	/* setup checkpoints */
1980		if (!start_ap(x, boot_addr)) {
1981			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1982			CHECK_PRINT("trace");	/* show checkpoints */
1983			/* better panic as the AP may be running loose */
1984			printf("panic y/n? [y] ");
1985			if (cngetc() != 'n')
1986				panic("bye-bye");
1987		}
1988		CHECK_PRINT("trace");		/* show checkpoints */
1989
1990		/* record its version info */
1991		cpu_apic_versions[x] = cpu_apic_versions[0];
1992
1993		all_cpus |= (1 << x);		/* record AP in CPU map */
1994	}
1995
1996	/* build our map of 'other' CPUs */
1997	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
1998
1999	/* fill in our (BSP) APIC version */
2000	cpu_apic_versions[0] = lapic.version;
2001
2002	/* restore the warmstart vector */
2003	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2004#ifndef PC98
2005	outb(CMOS_REG, BIOS_RESET);
2006	outb(CMOS_DATA, mpbiosreason);
2007#endif
2008
2009	/*
2010	 * Set up the idle context for the BSP.  Similar to above except
2011	 * that some was done by locore, some by pmap.c and some is implicit
2012	 * because the BSP is cpu#0 and the page is initially zero, and also
2013	 * because we can refer to variables by name on the BSP..
2014	 */
2015
2016	/* Allocate and setup BSP idle stack */
2017	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2018	for (i = 0; i < UPAGES; i++)
2019		SMPpt[1 + i] = (pt_entry_t)
2020		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2021
2022	for (x = 0; x < NKPT; x++)
2023		PTD[x] = 0;
2024	pmap_set_opt();
2025
2026	/* number of APs actually started */
2027	return mp_ncpus - 1;
2028}
2029
2030
2031/*
2032 * load the 1st level AP boot code into base memory.
2033 */
2034
2035/* targets for relocation */
2036extern void bigJump(void);
2037extern void bootCodeSeg(void);
2038extern void bootDataSeg(void);
2039extern void MPentry(void);
2040extern u_int MP_GDT;
2041extern u_int mp_gdtbase;
2042
2043static void
2044install_ap_tramp(u_int boot_addr)
2045{
2046	int     x;
2047	int     size = *(int *) ((u_long) & bootMP_size);
2048	u_char *src = (u_char *) ((u_long) bootMP);
2049	u_char *dst = (u_char *) boot_addr + KERNBASE;
2050	u_int   boot_base = (u_int) bootMP;
2051	u_int8_t *dst8;
2052	u_int16_t *dst16;
2053	u_int32_t *dst32;
2054
2055	POSTCODE(INSTALL_AP_TRAMP_POST);
2056
2057	for (x = 0; x < size; ++x)
2058		*dst++ = *src++;
2059
2060	/*
2061	 * modify addresses in code we just moved to basemem. unfortunately we
2062	 * need fairly detailed info about mpboot.s for this to work.  changes
2063	 * to mpboot.s might require changes here.
2064	 */
2065
2066	/* boot code is located in KERNEL space */
2067	dst = (u_char *) boot_addr + KERNBASE;
2068
2069	/* modify the lgdt arg */
2070	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2071	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2072
2073	/* modify the ljmp target for MPentry() */
2074	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2075	*dst32 = ((u_int) MPentry - KERNBASE);
2076
2077	/* modify the target for boot code segment */
2078	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2079	dst8 = (u_int8_t *) (dst16 + 1);
2080	*dst16 = (u_int) boot_addr & 0xffff;
2081	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2082
2083	/* modify the target for boot data segment */
2084	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2085	dst8 = (u_int8_t *) (dst16 + 1);
2086	*dst16 = (u_int) boot_addr & 0xffff;
2087	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2088}
2089
2090
2091/*
2092 * this function starts the AP (application processor) identified
2093 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2094 * to accomplish this.  This is necessary because of the nuances
2095 * of the different hardware we might encounter.  It ain't pretty,
2096 * but it seems to work.
2097 */
2098static int
2099start_ap(int logical_cpu, u_int boot_addr)
2100{
2101	int     physical_cpu;
2102	int     vector;
2103	int     cpus;
2104	u_long  icr_lo, icr_hi;
2105
2106	POSTCODE(START_AP_POST);
2107
2108	/* get the PHYSICAL APIC ID# */
2109	physical_cpu = CPU_TO_ID(logical_cpu);
2110
2111	/* calculate the vector */
2112	vector = (boot_addr >> 12) & 0xff;
2113
2114	/* used as a watchpoint to signal AP startup */
2115	cpus = mp_ncpus;
2116
2117	/*
2118	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2119	 * and running the target CPU. OR this INIT IPI might be latched (P5
2120	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2121	 * ignored.
2122	 */
2123
2124	/* setup the address for the target AP */
2125	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2126	icr_hi |= (physical_cpu << 24);
2127	lapic.icr_hi = icr_hi;
2128
2129	/* do an INIT IPI: assert RESET */
2130	icr_lo = lapic.icr_lo & 0xfff00000;
2131	lapic.icr_lo = icr_lo | 0x0000c500;
2132
2133	/* wait for pending status end */
2134	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2135		 /* spin */ ;
2136
2137	/* do an INIT IPI: deassert RESET */
2138	lapic.icr_lo = icr_lo | 0x00008500;
2139
2140	/* wait for pending status end */
2141	u_sleep(10000);		/* wait ~10mS */
2142	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2143		 /* spin */ ;
2144
2145	/*
2146	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2147	 * latched, (P5 bug) this 1st STARTUP would then terminate
2148	 * immediately, and the previously started INIT IPI would continue. OR
2149	 * the previous INIT IPI has already run. and this STARTUP IPI will
2150	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2151	 * will run.
2152	 */
2153
2154	/* do a STARTUP IPI */
2155	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2156	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2157		 /* spin */ ;
2158	u_sleep(200);		/* wait ~200uS */
2159
2160	/*
2161	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2162	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2163	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2164	 * recognized after hardware RESET or INIT IPI.
2165	 */
2166
2167	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2168	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2169		 /* spin */ ;
2170	u_sleep(200);		/* wait ~200uS */
2171
2172	/* wait for it to start */
2173	set_apic_timer(5000000);/* == 5 seconds */
2174	while (read_apic_timer())
2175		if (mp_ncpus > cpus)
2176			return 1;	/* return SUCCESS */
2177
2178	return 0;		/* return FAILURE */
2179}
2180
2181/*
2182 * Flush the TLB on all other CPU's
2183 *
2184 * XXX: Needs to handshake and wait for completion before proceding.
2185 */
2186void
2187smp_invltlb(void)
2188{
2189#if defined(APIC_IO)
2190	if (smp_started && invltlb_ok)
2191		ipi_all_but_self(IPI_INVLTLB);
2192#endif  /* APIC_IO */
2193}
2194
2195void
2196invlpg(u_int addr)
2197{
2198	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2199
2200	/* send a message to the other CPUs */
2201	smp_invltlb();
2202}
2203
2204void
2205invltlb(void)
2206{
2207	u_long  temp;
2208
2209	/*
2210	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2211	 * inlined.
2212	 */
2213	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2214
2215	/* send a message to the other CPUs */
2216	smp_invltlb();
2217}
2218
2219
2220/*
2221 * This is called once the rest of the system is up and running and we're
2222 * ready to let the AP's out of the pen.
2223 */
2224void
2225ap_init(void)
2226{
2227	u_int	apic_id;
2228
2229	/* spin until all the AP's are ready */
2230	while (!aps_ready)
2231		/* spin */ ;
2232
2233	/*
2234	 * Set curproc to our per-cpu idleproc so that mutexes have
2235	 * something unique to lock with.
2236	 */
2237	PCPU_SET(curproc, PCPU_GET(idleproc));
2238	PCPU_SET(spinlocks, NULL);
2239
2240	/* lock against other AP's that are waking up */
2241	mtx_lock_spin(&ap_boot_mtx);
2242
2243	/* BSP may have changed PTD while we're waiting for the lock */
2244	cpu_invltlb();
2245
2246	smp_cpus++;
2247
2248#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2249	lidt(&r_idt);
2250#endif
2251
2252	/* Build our map of 'other' CPUs. */
2253	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2254
2255	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
2256
2257	/* set up CPU registers and state */
2258	cpu_setregs();
2259
2260	/* set up FPU state on the AP */
2261	npxinit(__INITIAL_NPXCW__);
2262
2263	/* A quick check from sanity claus */
2264	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2265	if (PCPU_GET(cpuid) != apic_id) {
2266		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
2267		printf("SMP: apic_id = %d\n", apic_id);
2268		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2269		panic("cpuid mismatch! boom!!");
2270	}
2271
2272	/* Init local apic for irq's */
2273	apic_initialize();
2274
2275	/* Set memory range attributes for this CPU to match the BSP */
2276	mem_range_AP_init();
2277
2278	/*
2279	 * Activate smp_invltlb, although strictly speaking, this isn't
2280	 * quite correct yet.  We should have a bitfield for cpus willing
2281	 * to accept TLB flush IPI's or something and sync them.
2282	 */
2283	if (smp_cpus == mp_ncpus) {
2284		invltlb_ok = 1;
2285		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2286		smp_active = 1;	 /* historic */
2287	}
2288
2289	/* let other AP's wake up now */
2290	mtx_unlock_spin(&ap_boot_mtx);
2291
2292	/* wait until all the AP's are up */
2293	while (smp_started == 0)
2294		; /* nothing */
2295
2296	microuptime(PCPU_PTR(switchtime));
2297	PCPU_SET(switchticks, ticks);
2298
2299	/* ok, now grab sched_lock and enter the scheduler */
2300	enable_intr();
2301	mtx_lock_spin(&sched_lock);
2302	cpu_throw();	/* doesn't return */
2303
2304	panic("scheduler returned us to ap_init");
2305}
2306
2307/*
2308 * For statclock, we send an IPI to all CPU's to have them call this
2309 * function.
2310 */
2311void
2312forwarded_statclock(struct trapframe frame)
2313{
2314
2315	mtx_lock_spin(&sched_lock);
2316	statclock_process(curproc, TRAPF_PC(&frame), TRAPF_USERMODE(&frame));
2317	mtx_unlock_spin(&sched_lock);
2318}
2319
2320void
2321forward_statclock(void)
2322{
2323	int map;
2324
2325	CTR0(KTR_SMP, "forward_statclock");
2326
2327	if (!smp_started || !invltlb_ok || cold || panicstr)
2328		return;
2329
2330	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2331	if (map != 0)
2332		ipi_selected(map, IPI_STATCLOCK);
2333}
2334
2335/*
2336 * For each hardclock(), we send an IPI to all other CPU's to have them
2337 * execute this function.  It would be nice to reduce contention on
2338 * sched_lock if we could simply peek at the CPU to determine the user/kernel
2339 * state and call hardclock_process() on the CPU receiving the clock interrupt
2340 * and then just use a simple IPI to handle any ast's if needed.
2341 */
2342void
2343forwarded_hardclock(struct trapframe frame)
2344{
2345
2346	mtx_lock_spin(&sched_lock);
2347	hardclock_process(curproc, TRAPF_USERMODE(&frame));
2348	mtx_unlock_spin(&sched_lock);
2349}
2350
2351void
2352forward_hardclock(void)
2353{
2354	u_int map;
2355
2356	CTR0(KTR_SMP, "forward_hardclock");
2357
2358	if (!smp_started || !invltlb_ok || cold || panicstr)
2359		return;
2360
2361	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2362	if (map != 0)
2363		ipi_selected(map, IPI_HARDCLOCK);
2364}
2365
2366#ifdef APIC_INTR_REORDER
2367/*
2368 *	Maintain mapping from softintr vector to isr bit in local apic.
2369 */
2370void
2371set_lapic_isrloc(int intr, int vector)
2372{
2373	if (intr < 0 || intr > 32)
2374		panic("set_apic_isrloc: bad intr argument: %d",intr);
2375	if (vector < ICU_OFFSET || vector > 255)
2376		panic("set_apic_isrloc: bad vector argument: %d",vector);
2377	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2378	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2379}
2380#endif
2381
2382/*
2383 * send an IPI to a set of cpus.
2384 */
2385void
2386ipi_selected(u_int32_t cpus, u_int ipi)
2387{
2388
2389	CTR2(KTR_SMP, __func__ ": cpus: %x ipi: %x", cpus, ipi);
2390	selected_apic_ipi(cpus, ipi, APIC_DELMODE_FIXED);
2391}
2392
2393/*
2394 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
2395 */
2396void
2397ipi_all(u_int ipi)
2398{
2399
2400	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2401	apic_ipi(APIC_DEST_ALLISELF, ipi, APIC_DELMODE_FIXED);
2402}
2403
2404/*
2405 * send an IPI to all CPUs EXCEPT myself
2406 */
2407void
2408ipi_all_but_self(u_int ipi)
2409{
2410
2411	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2412	apic_ipi(APIC_DEST_ALLESELF, ipi, APIC_DELMODE_FIXED);
2413}
2414
2415/*
2416 * send an IPI to myself
2417 */
2418void
2419ipi_self(u_int ipi)
2420{
2421
2422	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2423	apic_ipi(APIC_DEST_SELF, ipi, APIC_DELMODE_FIXED);
2424}
2425
2426void
2427release_aps(void *dummy __unused)
2428{
2429	atomic_store_rel_int(&aps_ready, 1);
2430}
2431
2432SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2433