mp_machdep.c revision 70798
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/amd64/amd64/mp_machdep.c 70798 2001-01-08 15:25:45Z jake $
26 */
27
28#include "opt_cpu.h"
29#include "opt_user_ldt.h"
30
31#ifdef SMP
32#include <machine/smptests.h>
33#else
34#error
35#endif
36
37#include <sys/param.h>
38#include <sys/bus.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#include <sys/mutex.h>
46#ifdef BETTER_CLOCK
47#include <sys/dkstat.h>
48#endif
49#include <sys/cons.h>	/* cngetc() */
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/pmap.h>
54#include <vm/vm_kern.h>
55#include <vm/vm_extern.h>
56#ifdef BETTER_CLOCK
57#include <sys/lock.h>
58#include <vm/vm_map.h>
59#include <sys/user.h>
60#ifdef GPROF
61#include <sys/gmon.h>
62#endif
63#endif
64
65#include <machine/smp.h>
66#include <machine/apic.h>
67#include <machine/atomic.h>
68#include <machine/cpufunc.h>
69#include <machine/mpapic.h>
70#include <machine/psl.h>
71#include <machine/segments.h>
72#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
73#include <machine/tss.h>
74#include <machine/specialreg.h>
75#include <machine/globaldata.h>
76
77#if defined(APIC_IO)
78#include <machine/md_var.h>		/* setidt() */
79#include <i386/isa/icu.h>		/* IPIs */
80#include <i386/isa/intr_machdep.h>	/* IPIs */
81#endif	/* APIC_IO */
82
83#if defined(TEST_DEFAULT_CONFIG)
84#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
85#else
86#define MPFPS_MPFB1	mpfps->mpfb1
87#endif  /* TEST_DEFAULT_CONFIG */
88
89#define WARMBOOT_TARGET		0
90#define WARMBOOT_OFF		(KERNBASE + 0x0467)
91#define WARMBOOT_SEG		(KERNBASE + 0x0469)
92
93#ifdef PC98
94#define BIOS_BASE		(0xe8000)
95#define BIOS_SIZE		(0x18000)
96#else
97#define BIOS_BASE		(0xf0000)
98#define BIOS_SIZE		(0x10000)
99#endif
100#define BIOS_COUNT		(BIOS_SIZE/4)
101
102#define CMOS_REG		(0x70)
103#define CMOS_DATA		(0x71)
104#define BIOS_RESET		(0x0f)
105#define BIOS_WARM		(0x0a)
106
107#define PROCENTRY_FLAG_EN	0x01
108#define PROCENTRY_FLAG_BP	0x02
109#define IOAPICENTRY_FLAG_EN	0x01
110
111
112/* MP Floating Pointer Structure */
113typedef struct MPFPS {
114	char    signature[4];
115	void   *pap;
116	u_char  length;
117	u_char  spec_rev;
118	u_char  checksum;
119	u_char  mpfb1;
120	u_char  mpfb2;
121	u_char  mpfb3;
122	u_char  mpfb4;
123	u_char  mpfb5;
124}      *mpfps_t;
125
126/* MP Configuration Table Header */
127typedef struct MPCTH {
128	char    signature[4];
129	u_short base_table_length;
130	u_char  spec_rev;
131	u_char  checksum;
132	u_char  oem_id[8];
133	u_char  product_id[12];
134	void   *oem_table_pointer;
135	u_short oem_table_size;
136	u_short entry_count;
137	void   *apic_address;
138	u_short extended_table_length;
139	u_char  extended_table_checksum;
140	u_char  reserved;
141}      *mpcth_t;
142
143
144typedef struct PROCENTRY {
145	u_char  type;
146	u_char  apic_id;
147	u_char  apic_version;
148	u_char  cpu_flags;
149	u_long  cpu_signature;
150	u_long  feature_flags;
151	u_long  reserved1;
152	u_long  reserved2;
153}      *proc_entry_ptr;
154
155typedef struct BUSENTRY {
156	u_char  type;
157	u_char  bus_id;
158	char    bus_type[6];
159}      *bus_entry_ptr;
160
161typedef struct IOAPICENTRY {
162	u_char  type;
163	u_char  apic_id;
164	u_char  apic_version;
165	u_char  apic_flags;
166	void   *apic_address;
167}      *io_apic_entry_ptr;
168
169typedef struct INTENTRY {
170	u_char  type;
171	u_char  int_type;
172	u_short int_flags;
173	u_char  src_bus_id;
174	u_char  src_bus_irq;
175	u_char  dst_apic_id;
176	u_char  dst_apic_int;
177}      *int_entry_ptr;
178
179/* descriptions of MP basetable entries */
180typedef struct BASETABLE_ENTRY {
181	u_char  type;
182	u_char  length;
183	char    name[16];
184}       basetable_entry;
185
186/*
187 * this code MUST be enabled here and in mpboot.s.
188 * it follows the very early stages of AP boot by placing values in CMOS ram.
189 * it NORMALLY will never be needed and thus the primitive method for enabling.
190 *
191#define CHECK_POINTS
192 */
193
194#if defined(CHECK_POINTS) && !defined(PC98)
195#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
196#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
197
198#define CHECK_INIT(D);				\
199	CHECK_WRITE(0x34, (D));			\
200	CHECK_WRITE(0x35, (D));			\
201	CHECK_WRITE(0x36, (D));			\
202	CHECK_WRITE(0x37, (D));			\
203	CHECK_WRITE(0x38, (D));			\
204	CHECK_WRITE(0x39, (D));
205
206#define CHECK_PRINT(S);				\
207	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
208	   (S),					\
209	   CHECK_READ(0x34),			\
210	   CHECK_READ(0x35),			\
211	   CHECK_READ(0x36),			\
212	   CHECK_READ(0x37),			\
213	   CHECK_READ(0x38),			\
214	   CHECK_READ(0x39));
215
216#else				/* CHECK_POINTS */
217
218#define CHECK_INIT(D)
219#define CHECK_PRINT(S)
220
221#endif				/* CHECK_POINTS */
222
223/*
224 * Values to send to the POST hardware.
225 */
226#define MP_BOOTADDRESS_POST	0x10
227#define MP_PROBE_POST		0x11
228#define MPTABLE_PASS1_POST	0x12
229
230#define MP_START_POST		0x13
231#define MP_ENABLE_POST		0x14
232#define MPTABLE_PASS2_POST	0x15
233
234#define START_ALL_APS_POST	0x16
235#define INSTALL_AP_TRAMP_POST	0x17
236#define START_AP_POST		0x18
237
238#define MP_ANNOUNCE_POST	0x19
239
240/* used to hold the AP's until we are ready to release them */
241struct simplelock	ap_boot_lock;
242
243/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
244int	current_postcode;
245
246/** XXX FIXME: what system files declare these??? */
247extern struct region_descriptor r_gdt, r_idt;
248
249int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
250int	mp_ncpus;		/* # of CPUs, including BSP */
251int	mp_naps;		/* # of Applications processors */
252int	mp_nbusses;		/* # of busses */
253int	mp_napics;		/* # of IO APICs */
254int	boot_cpu_id;		/* designated BSP */
255vm_offset_t cpu_apic_address;
256vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
257extern	int nkpt;
258
259u_int32_t cpu_apic_versions[MAXCPU];
260u_int32_t *io_apic_versions;
261
262#ifdef APIC_INTR_DIAGNOSTIC
263int apic_itrace_enter[32];
264int apic_itrace_tryisrlock[32];
265int apic_itrace_gotisrlock[32];
266int apic_itrace_active[32];
267int apic_itrace_masked[32];
268int apic_itrace_noisrlock[32];
269int apic_itrace_masked2[32];
270int apic_itrace_unmask[32];
271int apic_itrace_noforward[32];
272int apic_itrace_leave[32];
273int apic_itrace_enter2[32];
274int apic_itrace_doreti[32];
275int apic_itrace_splz[32];
276int apic_itrace_eoi[32];
277#ifdef APIC_INTR_DIAGNOSTIC_IRQ
278unsigned short apic_itrace_debugbuffer[32768];
279int apic_itrace_debugbuffer_idx;
280struct simplelock apic_itrace_debuglock;
281#endif
282#endif
283
284#ifdef APIC_INTR_REORDER
285struct {
286	volatile int *location;
287	int bit;
288} apic_isrbit_location[32];
289#endif
290
291struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
292
293/*
294 * APIC ID logical/physical mapping structures.
295 * We oversize these to simplify boot-time config.
296 */
297int     cpu_num_to_apic_id[NAPICID];
298int     io_num_to_apic_id[NAPICID];
299int     apic_id_to_logical[NAPICID];
300
301
302/* Bitmap of all available CPUs */
303u_int	all_cpus;
304
305/* AP uses this during bootstrap.  Do not staticize.  */
306char *bootSTK;
307static int bootAP;
308
309/* Hotwire a 0->4MB V==P mapping */
310extern pt_entry_t *KPTphys;
311
312/* SMP page table page */
313extern pt_entry_t *SMPpt;
314
315struct pcb stoppcbs[MAXCPU];
316
317int smp_started;		/* has the system started? */
318
319/*
320 * Local data and functions.
321 */
322
323static int	mp_capable;
324static u_int	boot_address;
325static u_int	base_memory;
326
327static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
328static mpfps_t	mpfps;
329static int	search_for_sig(u_int32_t target, int count);
330static void	mp_enable(u_int boot_addr);
331
332static void	mptable_pass1(void);
333static int	mptable_pass2(void);
334static void	default_mp_table(int type);
335static void	fix_mp_table(void);
336static void	setup_apic_irq_mapping(void);
337static void	init_locks(void);
338static int	start_all_aps(u_int boot_addr);
339static void	install_ap_tramp(u_int boot_addr);
340static int	start_ap(int logicalCpu, u_int boot_addr);
341static int	apic_int_is_bus_type(int intr, int bus_type);
342static void	release_aps(void *dummy);
343
344/*
345 * Calculate usable address in base memory for AP trampoline code.
346 */
347u_int
348mp_bootaddress(u_int basemem)
349{
350	POSTCODE(MP_BOOTADDRESS_POST);
351
352	base_memory = basemem * 1024;	/* convert to bytes */
353
354	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
355	if ((base_memory - boot_address) < bootMP_size)
356		boot_address -= 4096;	/* not enough, lower by 4k */
357
358	return boot_address;
359}
360
361
362/*
363 * Look for an Intel MP spec table (ie, SMP capable hardware).
364 */
365int
366mp_probe(void)
367{
368	int     x;
369	u_long  segment;
370	u_int32_t target;
371
372	POSTCODE(MP_PROBE_POST);
373
374	/* see if EBDA exists */
375	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
376		/* search first 1K of EBDA */
377		target = (u_int32_t) (segment << 4);
378		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
379			goto found;
380	} else {
381		/* last 1K of base memory, effective 'top of base' passed in */
382		target = (u_int32_t) (base_memory - 0x400);
383		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
384			goto found;
385	}
386
387	/* search the BIOS */
388	target = (u_int32_t) BIOS_BASE;
389	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
390		goto found;
391
392	/* nothing found */
393	mpfps = (mpfps_t)0;
394	mp_capable = 0;
395	return 0;
396
397found:
398	/* calculate needed resources */
399	mpfps = (mpfps_t)x;
400	mptable_pass1();
401
402	/* flag fact that we are running multiple processors */
403	mp_capable = 1;
404	return 1;
405}
406
407
408/*
409 * Initialize the SMP hardware and the APIC and start up the AP's.
410 */
411void
412mp_start(void)
413{
414	POSTCODE(MP_START_POST);
415
416	/* look for MP capable motherboard */
417	if (mp_capable)
418		mp_enable(boot_address);
419	else
420		panic("MP hardware not found!");
421}
422
423
424/*
425 * Print various information about the SMP system hardware and setup.
426 */
427void
428mp_announce(void)
429{
430	int     x;
431
432	POSTCODE(MP_ANNOUNCE_POST);
433
434	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
435	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
436	printf(", version: 0x%08x", cpu_apic_versions[0]);
437	printf(", at 0x%08x\n", cpu_apic_address);
438	for (x = 1; x <= mp_naps; ++x) {
439		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
440		printf(", version: 0x%08x", cpu_apic_versions[x]);
441		printf(", at 0x%08x\n", cpu_apic_address);
442	}
443
444#if defined(APIC_IO)
445	for (x = 0; x < mp_napics; ++x) {
446		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
447		printf(", version: 0x%08x", io_apic_versions[x]);
448		printf(", at 0x%08x\n", io_apic_address[x]);
449	}
450#else
451	printf(" Warning: APIC I/O disabled\n");
452#endif	/* APIC_IO */
453}
454
455/*
456 * AP cpu's call this to sync up protected mode.
457 */
458void
459init_secondary(void)
460{
461	int	gsel_tss;
462	int	x, myid = bootAP;
463
464	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
465	gdt_segs[GPROC0_SEL].ssd_base =
466		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
467	SMP_prvspace[myid].globaldata.gd_prvspace =
468		&SMP_prvspace[myid].globaldata;
469
470	for (x = 0; x < NGDT; x++) {
471		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
472	}
473
474	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
475	r_gdt.rd_base = (int) &gdt[myid * NGDT];
476	lgdt(&r_gdt);			/* does magic intra-segment return */
477
478	lidt(&r_idt);
479
480	lldt(_default_ldt);
481#ifdef USER_LDT
482	PCPU_SET(currentldt, _default_ldt);
483#endif
484
485	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
486	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
487	common_tss.tss_esp0 = 0;	/* not used until after switch */
488	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
489	common_tss.tss_ioopt = (sizeof common_tss) << 16;
490	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
491	common_tssd = *tss_gdt;
492	ltr(gsel_tss);
493
494	pmap_set_opt();
495}
496
497
498#if defined(APIC_IO)
499/*
500 * Final configuration of the BSP's local APIC:
501 *  - disable 'pic mode'.
502 *  - disable 'virtual wire mode'.
503 *  - enable NMI.
504 */
505void
506bsp_apic_configure(void)
507{
508	u_char		byte;
509	u_int32_t	temp;
510
511	/* leave 'pic mode' if necessary */
512	if (picmode) {
513		outb(0x22, 0x70);	/* select IMCR */
514		byte = inb(0x23);	/* current contents */
515		byte |= 0x01;		/* mask external INTR */
516		outb(0x23, byte);	/* disconnect 8259s/NMI */
517	}
518
519	/* mask lint0 (the 8259 'virtual wire' connection) */
520	temp = lapic.lvt_lint0;
521	temp |= APIC_LVT_M;		/* set the mask */
522	lapic.lvt_lint0 = temp;
523
524        /* setup lint1 to handle NMI */
525        temp = lapic.lvt_lint1;
526        temp &= ~APIC_LVT_M;		/* clear the mask */
527        lapic.lvt_lint1 = temp;
528
529	if (bootverbose)
530		apic_dump("bsp_apic_configure()");
531}
532#endif  /* APIC_IO */
533
534
535/*******************************************************************
536 * local functions and data
537 */
538
539/*
540 * start the SMP system
541 */
542static void
543mp_enable(u_int boot_addr)
544{
545	int     x;
546#if defined(APIC_IO)
547	int     apic;
548	u_int   ux;
549#endif	/* APIC_IO */
550
551	POSTCODE(MP_ENABLE_POST);
552
553	/* turn on 4MB of V == P addressing so we can get to MP table */
554	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
555	invltlb();
556
557	/* examine the MP table for needed info, uses physical addresses */
558	x = mptable_pass2();
559
560	*(int *)PTD = 0;
561	invltlb();
562
563	/* can't process default configs till the CPU APIC is pmapped */
564	if (x)
565		default_mp_table(x);
566
567	/* post scan cleanup */
568	fix_mp_table();
569	setup_apic_irq_mapping();
570
571#if defined(APIC_IO)
572
573	/* fill the LOGICAL io_apic_versions table */
574	for (apic = 0; apic < mp_napics; ++apic) {
575		ux = io_apic_read(apic, IOAPIC_VER);
576		io_apic_versions[apic] = ux;
577		io_apic_set_id(apic, IO_TO_ID(apic));
578	}
579
580	/* program each IO APIC in the system */
581	for (apic = 0; apic < mp_napics; ++apic)
582		if (io_apic_setup(apic) < 0)
583			panic("IO APIC setup failure");
584
585	/* install a 'Spurious INTerrupt' vector */
586	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
587	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
588
589	/* install an inter-CPU IPI for TLB invalidation */
590	setidt(XINVLTLB_OFFSET, Xinvltlb,
591	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
592
593#ifdef BETTER_CLOCK
594	/* install an inter-CPU IPI for reading processor state */
595	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
596	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
597#endif
598
599	/* install an inter-CPU IPI for all-CPU rendezvous */
600	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
601	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
602
603	/* install an inter-CPU IPI for forcing an additional software trap */
604	setidt(XCPUAST_OFFSET, Xcpuast,
605	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
606
607	/* install an inter-CPU IPI for interrupt forwarding */
608	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
609	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
610
611	/* install an inter-CPU IPI for CPU stop/restart */
612	setidt(XCPUSTOP_OFFSET, Xcpustop,
613	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
614
615#if defined(TEST_TEST1)
616	/* install a "fake hardware INTerrupt" vector */
617	setidt(XTEST1_OFFSET, Xtest1,
618	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
619#endif  /** TEST_TEST1 */
620
621#endif	/* APIC_IO */
622
623	/* initialize all SMP locks */
624	init_locks();
625
626	/* obtain the ap_boot_lock */
627	s_lock(&ap_boot_lock);
628
629	/* start each Application Processor */
630	start_all_aps(boot_addr);
631}
632
633
634/*
635 * look for the MP spec signature
636 */
637
638/* string defined by the Intel MP Spec as identifying the MP table */
639#define MP_SIG		0x5f504d5f	/* _MP_ */
640#define NEXT(X)		((X) += 4)
641static int
642search_for_sig(u_int32_t target, int count)
643{
644	int     x;
645	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
646
647	for (x = 0; x < count; NEXT(x))
648		if (addr[x] == MP_SIG)
649			/* make array index a byte index */
650			return (target + (x * sizeof(u_int32_t)));
651
652	return -1;
653}
654
655
656static basetable_entry basetable_entry_types[] =
657{
658	{0, 20, "Processor"},
659	{1, 8, "Bus"},
660	{2, 8, "I/O APIC"},
661	{3, 8, "I/O INT"},
662	{4, 8, "Local INT"}
663};
664
665typedef struct BUSDATA {
666	u_char  bus_id;
667	enum busTypes bus_type;
668}       bus_datum;
669
670typedef struct INTDATA {
671	u_char  int_type;
672	u_short int_flags;
673	u_char  src_bus_id;
674	u_char  src_bus_irq;
675	u_char  dst_apic_id;
676	u_char  dst_apic_int;
677	u_char	int_vector;
678}       io_int, local_int;
679
680typedef struct BUSTYPENAME {
681	u_char  type;
682	char    name[7];
683}       bus_type_name;
684
685static bus_type_name bus_type_table[] =
686{
687	{CBUS, "CBUS"},
688	{CBUSII, "CBUSII"},
689	{EISA, "EISA"},
690	{MCA, "MCA"},
691	{UNKNOWN_BUSTYPE, "---"},
692	{ISA, "ISA"},
693	{MCA, "MCA"},
694	{UNKNOWN_BUSTYPE, "---"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{PCI, "PCI"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{UNKNOWN_BUSTYPE, "---"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{UNKNOWN_BUSTYPE, "---"},
704	{XPRESS, "XPRESS"},
705	{UNKNOWN_BUSTYPE, "---"}
706};
707/* from MP spec v1.4, table 5-1 */
708static int default_data[7][5] =
709{
710/*   nbus, id0, type0, id1, type1 */
711	{1, 0, ISA, 255, 255},
712	{1, 0, EISA, 255, 255},
713	{1, 0, EISA, 255, 255},
714	{1, 0, MCA, 255, 255},
715	{2, 0, ISA, 1, PCI},
716	{2, 0, EISA, 1, PCI},
717	{2, 0, MCA, 1, PCI}
718};
719
720
721/* the bus data */
722static bus_datum *bus_data;
723
724/* the IO INT data, one entry per possible APIC INTerrupt */
725static io_int  *io_apic_ints;
726
727static int nintrs;
728
729static int processor_entry	__P((proc_entry_ptr entry, int cpu));
730static int bus_entry		__P((bus_entry_ptr entry, int bus));
731static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
732static int int_entry		__P((int_entry_ptr entry, int intr));
733static int lookup_bus_type	__P((char *name));
734
735
736/*
737 * 1st pass on motherboard's Intel MP specification table.
738 *
739 * initializes:
740 *	mp_ncpus = 1
741 *
742 * determines:
743 *	cpu_apic_address (common to all CPUs)
744 *	io_apic_address[N]
745 *	mp_naps
746 *	mp_nbusses
747 *	mp_napics
748 *	nintrs
749 */
750static void
751mptable_pass1(void)
752{
753	int	x;
754	mpcth_t	cth;
755	int	totalSize;
756	void*	position;
757	int	count;
758	int	type;
759
760	POSTCODE(MPTABLE_PASS1_POST);
761
762	/* clear various tables */
763	for (x = 0; x < NAPICID; ++x) {
764		io_apic_address[x] = ~0;	/* IO APIC address table */
765	}
766
767	/* init everything to empty */
768	mp_naps = 0;
769	mp_nbusses = 0;
770	mp_napics = 0;
771	nintrs = 0;
772
773	/* check for use of 'default' configuration */
774	if (MPFPS_MPFB1 != 0) {
775		/* use default addresses */
776		cpu_apic_address = DEFAULT_APIC_BASE;
777		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
778
779		/* fill in with defaults */
780		mp_naps = 2;		/* includes BSP */
781		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
782#if defined(APIC_IO)
783		mp_napics = 1;
784		nintrs = 16;
785#endif	/* APIC_IO */
786	}
787	else {
788		if ((cth = mpfps->pap) == 0)
789			panic("MP Configuration Table Header MISSING!");
790
791		cpu_apic_address = (vm_offset_t) cth->apic_address;
792
793		/* walk the table, recording info of interest */
794		totalSize = cth->base_table_length - sizeof(struct MPCTH);
795		position = (u_char *) cth + sizeof(struct MPCTH);
796		count = cth->entry_count;
797
798		while (count--) {
799			switch (type = *(u_char *) position) {
800			case 0: /* processor_entry */
801				if (((proc_entry_ptr)position)->cpu_flags
802					& PROCENTRY_FLAG_EN)
803					++mp_naps;
804				break;
805			case 1: /* bus_entry */
806				++mp_nbusses;
807				break;
808			case 2: /* io_apic_entry */
809				if (((io_apic_entry_ptr)position)->apic_flags
810					& IOAPICENTRY_FLAG_EN)
811					io_apic_address[mp_napics++] =
812					    (vm_offset_t)((io_apic_entry_ptr)
813						position)->apic_address;
814				break;
815			case 3: /* int_entry */
816				++nintrs;
817				break;
818			case 4:	/* int_entry */
819				break;
820			default:
821				panic("mpfps Base Table HOSED!");
822				/* NOTREACHED */
823			}
824
825			totalSize -= basetable_entry_types[type].length;
826			(u_char*)position += basetable_entry_types[type].length;
827		}
828	}
829
830	/* qualify the numbers */
831	if (mp_naps > MAXCPU) {
832		printf("Warning: only using %d of %d available CPUs!\n",
833			MAXCPU, mp_naps);
834		mp_naps = MAXCPU;
835	}
836
837	/*
838	 * Count the BSP.
839	 * This is also used as a counter while starting the APs.
840	 */
841	mp_ncpus = 1;
842
843	--mp_naps;	/* subtract the BSP */
844}
845
846
847/*
848 * 2nd pass on motherboard's Intel MP specification table.
849 *
850 * sets:
851 *	boot_cpu_id
852 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
853 *	CPU_TO_ID(N), logical CPU to APIC ID table
854 *	IO_TO_ID(N), logical IO to APIC ID table
855 *	bus_data[N]
856 *	io_apic_ints[N]
857 */
858static int
859mptable_pass2(void)
860{
861	int     x;
862	mpcth_t cth;
863	int     totalSize;
864	void*   position;
865	int     count;
866	int     type;
867	int     apic, bus, cpu, intr;
868	int	i, j;
869	int	pgeflag;
870
871	POSTCODE(MPTABLE_PASS2_POST);
872
873	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
874
875	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
876	    M_DEVBUF, M_WAITOK);
877	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
878	    M_DEVBUF, M_WAITOK);
879	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
880	    M_DEVBUF, M_WAITOK);
881	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
882	    M_DEVBUF, M_WAITOK);
883
884	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
885
886	for (i = 0; i < mp_napics; i++) {
887		for (j = 0; j < mp_napics; j++) {
888			/* same page frame as a previous IO apic? */
889			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
890			    (io_apic_address[i] & PG_FRAME)) {
891				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
892					+ (NPTEPG-2-j) * PAGE_SIZE
893					+ (io_apic_address[i] & PAGE_MASK));
894				break;
895			}
896			/* use this slot if available */
897			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
898				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
899				    pgeflag | (io_apic_address[i] & PG_FRAME));
900				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
901					+ (NPTEPG-2-j) * PAGE_SIZE
902					+ (io_apic_address[i] & PAGE_MASK));
903				break;
904			}
905		}
906	}
907
908	/* clear various tables */
909	for (x = 0; x < NAPICID; ++x) {
910		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
911		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
912		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
913	}
914
915	/* clear bus data table */
916	for (x = 0; x < mp_nbusses; ++x)
917		bus_data[x].bus_id = 0xff;
918
919	/* clear IO APIC INT table */
920	for (x = 0; x < (nintrs + 1); ++x) {
921		io_apic_ints[x].int_type = 0xff;
922		io_apic_ints[x].int_vector = 0xff;
923	}
924
925	/* setup the cpu/apic mapping arrays */
926	boot_cpu_id = -1;
927
928	/* record whether PIC or virtual-wire mode */
929	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
930
931	/* check for use of 'default' configuration */
932	if (MPFPS_MPFB1 != 0)
933		return MPFPS_MPFB1;	/* return default configuration type */
934
935	if ((cth = mpfps->pap) == 0)
936		panic("MP Configuration Table Header MISSING!");
937
938	/* walk the table, recording info of interest */
939	totalSize = cth->base_table_length - sizeof(struct MPCTH);
940	position = (u_char *) cth + sizeof(struct MPCTH);
941	count = cth->entry_count;
942	apic = bus = intr = 0;
943	cpu = 1;				/* pre-count the BSP */
944
945	while (count--) {
946		switch (type = *(u_char *) position) {
947		case 0:
948			if (processor_entry(position, cpu))
949				++cpu;
950			break;
951		case 1:
952			if (bus_entry(position, bus))
953				++bus;
954			break;
955		case 2:
956			if (io_apic_entry(position, apic))
957				++apic;
958			break;
959		case 3:
960			if (int_entry(position, intr))
961				++intr;
962			break;
963		case 4:
964			/* int_entry(position); */
965			break;
966		default:
967			panic("mpfps Base Table HOSED!");
968			/* NOTREACHED */
969		}
970
971		totalSize -= basetable_entry_types[type].length;
972		(u_char *) position += basetable_entry_types[type].length;
973	}
974
975	if (boot_cpu_id == -1)
976		panic("NO BSP found!");
977
978	/* report fact that its NOT a default configuration */
979	return 0;
980}
981
982
983void
984assign_apic_irq(int apic, int intpin, int irq)
985{
986	int x;
987
988	if (int_to_apicintpin[irq].ioapic != -1)
989		panic("assign_apic_irq: inconsistent table");
990
991	int_to_apicintpin[irq].ioapic = apic;
992	int_to_apicintpin[irq].int_pin = intpin;
993	int_to_apicintpin[irq].apic_address = ioapic[apic];
994	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
995
996	for (x = 0; x < nintrs; x++) {
997		if ((io_apic_ints[x].int_type == 0 ||
998		     io_apic_ints[x].int_type == 3) &&
999		    io_apic_ints[x].int_vector == 0xff &&
1000		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1001		    io_apic_ints[x].dst_apic_int == intpin)
1002			io_apic_ints[x].int_vector = irq;
1003	}
1004}
1005
1006void
1007revoke_apic_irq(int irq)
1008{
1009	int x;
1010	int oldapic;
1011	int oldintpin;
1012
1013	if (int_to_apicintpin[irq].ioapic == -1)
1014		panic("assign_apic_irq: inconsistent table");
1015
1016	oldapic = int_to_apicintpin[irq].ioapic;
1017	oldintpin = int_to_apicintpin[irq].int_pin;
1018
1019	int_to_apicintpin[irq].ioapic = -1;
1020	int_to_apicintpin[irq].int_pin = 0;
1021	int_to_apicintpin[irq].apic_address = NULL;
1022	int_to_apicintpin[irq].redirindex = 0;
1023
1024	for (x = 0; x < nintrs; x++) {
1025		if ((io_apic_ints[x].int_type == 0 ||
1026		     io_apic_ints[x].int_type == 3) &&
1027		    io_apic_ints[x].int_vector == 0xff &&
1028		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1029		    io_apic_ints[x].dst_apic_int == oldintpin)
1030			io_apic_ints[x].int_vector = 0xff;
1031	}
1032}
1033
1034
1035
1036static void
1037swap_apic_id(int apic, int oldid, int newid)
1038{
1039	int x;
1040	int oapic;
1041
1042
1043	if (oldid == newid)
1044		return;			/* Nothing to do */
1045
1046	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1047	       apic, oldid, newid);
1048
1049	/* Swap physical APIC IDs in interrupt entries */
1050	for (x = 0; x < nintrs; x++) {
1051		if (io_apic_ints[x].dst_apic_id == oldid)
1052			io_apic_ints[x].dst_apic_id = newid;
1053		else if (io_apic_ints[x].dst_apic_id == newid)
1054			io_apic_ints[x].dst_apic_id = oldid;
1055	}
1056
1057	/* Swap physical APIC IDs in IO_TO_ID mappings */
1058	for (oapic = 0; oapic < mp_napics; oapic++)
1059		if (IO_TO_ID(oapic) == newid)
1060			break;
1061
1062	if (oapic < mp_napics) {
1063		printf("Changing APIC ID for IO APIC #%d from "
1064		       "%d to %d in MP table\n",
1065		       oapic, newid, oldid);
1066		IO_TO_ID(oapic) = oldid;
1067	}
1068	IO_TO_ID(apic) = newid;
1069}
1070
1071
1072static void
1073fix_id_to_io_mapping(void)
1074{
1075	int x;
1076
1077	for (x = 0; x < NAPICID; x++)
1078		ID_TO_IO(x) = -1;
1079
1080	for (x = 0; x <= mp_naps; x++)
1081		if (CPU_TO_ID(x) < NAPICID)
1082			ID_TO_IO(CPU_TO_ID(x)) = x;
1083
1084	for (x = 0; x < mp_napics; x++)
1085		if (IO_TO_ID(x) < NAPICID)
1086			ID_TO_IO(IO_TO_ID(x)) = x;
1087}
1088
1089
1090static int
1091first_free_apic_id(void)
1092{
1093	int freeid, x;
1094
1095	for (freeid = 0; freeid < NAPICID; freeid++) {
1096		for (x = 0; x <= mp_naps; x++)
1097			if (CPU_TO_ID(x) == freeid)
1098				break;
1099		if (x <= mp_naps)
1100			continue;
1101		for (x = 0; x < mp_napics; x++)
1102			if (IO_TO_ID(x) == freeid)
1103				break;
1104		if (x < mp_napics)
1105			continue;
1106		return freeid;
1107	}
1108	return freeid;
1109}
1110
1111
1112static int
1113io_apic_id_acceptable(int apic, int id)
1114{
1115	int cpu;		/* Logical CPU number */
1116	int oapic;		/* Logical IO APIC number for other IO APIC */
1117
1118	if (id >= NAPICID)
1119		return 0;	/* Out of range */
1120
1121	for (cpu = 0; cpu <= mp_naps; cpu++)
1122		if (CPU_TO_ID(cpu) == id)
1123			return 0;	/* Conflict with CPU */
1124
1125	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1126		if (IO_TO_ID(oapic) == id)
1127			return 0;	/* Conflict with other APIC */
1128
1129	return 1;		/* ID is acceptable for IO APIC */
1130}
1131
1132
1133/*
1134 * parse an Intel MP specification table
1135 */
1136static void
1137fix_mp_table(void)
1138{
1139	int	x;
1140	int	id;
1141	int	bus_0 = 0;	/* Stop GCC warning */
1142	int	bus_pci = 0;	/* Stop GCC warning */
1143	int	num_pci_bus;
1144	int	apic;		/* IO APIC unit number */
1145	int     freeid;		/* Free physical APIC ID */
1146	int	physid;		/* Current physical IO APIC ID */
1147
1148	/*
1149	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1150	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1151	 * exists the BIOS must begin with bus entries for the PCI bus and use
1152	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1153	 * exists the BIOS can choose to ignore this ordering, and indeed many
1154	 * MP motherboards do ignore it.  This causes a problem when the PCI
1155	 * sub-system makes requests of the MP sub-system based on PCI bus
1156	 * numbers.	So here we look for the situation and renumber the
1157	 * busses and associated INTs in an effort to "make it right".
1158	 */
1159
1160	/* find bus 0, PCI bus, count the number of PCI busses */
1161	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1162		if (bus_data[x].bus_id == 0) {
1163			bus_0 = x;
1164		}
1165		if (bus_data[x].bus_type == PCI) {
1166			++num_pci_bus;
1167			bus_pci = x;
1168		}
1169	}
1170	/*
1171	 * bus_0 == slot of bus with ID of 0
1172	 * bus_pci == slot of last PCI bus encountered
1173	 */
1174
1175	/* check the 1 PCI bus case for sanity */
1176	/* if it is number 0 all is well */
1177	if (num_pci_bus == 1 &&
1178	    bus_data[bus_pci].bus_id != 0) {
1179
1180		/* mis-numbered, swap with whichever bus uses slot 0 */
1181
1182		/* swap the bus entry types */
1183		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1184		bus_data[bus_0].bus_type = PCI;
1185
1186		/* swap each relavant INTerrupt entry */
1187		id = bus_data[bus_pci].bus_id;
1188		for (x = 0; x < nintrs; ++x) {
1189			if (io_apic_ints[x].src_bus_id == id) {
1190				io_apic_ints[x].src_bus_id = 0;
1191			}
1192			else if (io_apic_ints[x].src_bus_id == 0) {
1193				io_apic_ints[x].src_bus_id = id;
1194			}
1195		}
1196	}
1197
1198	/* Assign IO APIC IDs.
1199	 *
1200	 * First try the existing ID. If a conflict is detected, try
1201	 * the ID in the MP table.  If a conflict is still detected, find
1202	 * a free id.
1203	 *
1204	 * We cannot use the ID_TO_IO table before all conflicts has been
1205	 * resolved and the table has been corrected.
1206	 */
1207	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1208
1209		/* First try to use the value set by the BIOS */
1210		physid = io_apic_get_id(apic);
1211		if (io_apic_id_acceptable(apic, physid)) {
1212			if (IO_TO_ID(apic) != physid)
1213				swap_apic_id(apic, IO_TO_ID(apic), physid);
1214			continue;
1215		}
1216
1217		/* Then check if the value in the MP table is acceptable */
1218		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1219			continue;
1220
1221		/* Last resort, find a free APIC ID and use it */
1222		freeid = first_free_apic_id();
1223		if (freeid >= NAPICID)
1224			panic("No free physical APIC IDs found");
1225
1226		if (io_apic_id_acceptable(apic, freeid)) {
1227			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1228			continue;
1229		}
1230		panic("Free physical APIC ID not usable");
1231	}
1232	fix_id_to_io_mapping();
1233
1234	/* detect and fix broken Compaq MP table */
1235	if (apic_int_type(0, 0) == -1) {
1236		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1237		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1238		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1239		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1240		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1241		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1242		nintrs++;
1243	}
1244}
1245
1246
1247/* Assign low level interrupt handlers */
1248static void
1249setup_apic_irq_mapping(void)
1250{
1251	int	x;
1252	int	int_vector;
1253
1254	/* Clear array */
1255	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1256		int_to_apicintpin[x].ioapic = -1;
1257		int_to_apicintpin[x].int_pin = 0;
1258		int_to_apicintpin[x].apic_address = NULL;
1259		int_to_apicintpin[x].redirindex = 0;
1260	}
1261
1262	/* First assign ISA/EISA interrupts */
1263	for (x = 0; x < nintrs; x++) {
1264		int_vector = io_apic_ints[x].src_bus_irq;
1265		if (int_vector < APIC_INTMAPSIZE &&
1266		    io_apic_ints[x].int_vector == 0xff &&
1267		    int_to_apicintpin[int_vector].ioapic == -1 &&
1268		    (apic_int_is_bus_type(x, ISA) ||
1269		     apic_int_is_bus_type(x, EISA)) &&
1270		    io_apic_ints[x].int_type == 0) {
1271			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1272					io_apic_ints[x].dst_apic_int,
1273					int_vector);
1274		}
1275	}
1276
1277	/* Assign first set of interrupts to intpins on IOAPIC #0 */
1278	for (x = 0; x < nintrs; x++) {
1279		int_vector = io_apic_ints[x].dst_apic_int;
1280		if (int_vector < APIC_INTMAPSIZE &&
1281		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1282		    io_apic_ints[x].int_vector == 0xff &&
1283		    int_to_apicintpin[int_vector].ioapic == -1 &&
1284		    (io_apic_ints[x].int_type == 0 ||
1285		     io_apic_ints[x].int_type == 3)) {
1286			assign_apic_irq(0,
1287					io_apic_ints[x].dst_apic_int,
1288					int_vector);
1289		}
1290	}
1291	/*
1292	 * Assign interrupts for remaining intpins.
1293	 * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates
1294	 * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode
1295	 * due to 8254 interrupts not being delivered can reuse that low level
1296	 * interrupt handler.
1297	 */
1298	int_vector = 0;
1299	while (int_vector < APIC_INTMAPSIZE &&
1300	       int_to_apicintpin[int_vector].ioapic != -1)
1301		int_vector++;
1302	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1303		if ((io_apic_ints[x].int_type == 0 ||
1304		     (io_apic_ints[x].int_type == 3 &&
1305		      (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) ||
1306		       io_apic_ints[x].dst_apic_int != 0))) &&
1307		    io_apic_ints[x].int_vector == 0xff) {
1308			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1309					io_apic_ints[x].dst_apic_int,
1310					int_vector);
1311			int_vector++;
1312			while (int_vector < APIC_INTMAPSIZE &&
1313			       int_to_apicintpin[int_vector].ioapic != -1)
1314				int_vector++;
1315		}
1316	}
1317}
1318
1319
1320static int
1321processor_entry(proc_entry_ptr entry, int cpu)
1322{
1323	/* check for usability */
1324	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1325		return 0;
1326
1327	if(entry->apic_id >= NAPICID)
1328		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1329	/* check for BSP flag */
1330	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1331		boot_cpu_id = entry->apic_id;
1332		CPU_TO_ID(0) = entry->apic_id;
1333		ID_TO_CPU(entry->apic_id) = 0;
1334		return 0;	/* its already been counted */
1335	}
1336
1337	/* add another AP to list, if less than max number of CPUs */
1338	else if (cpu < MAXCPU) {
1339		CPU_TO_ID(cpu) = entry->apic_id;
1340		ID_TO_CPU(entry->apic_id) = cpu;
1341		return 1;
1342	}
1343
1344	return 0;
1345}
1346
1347
1348static int
1349bus_entry(bus_entry_ptr entry, int bus)
1350{
1351	int     x;
1352	char    c, name[8];
1353
1354	/* encode the name into an index */
1355	for (x = 0; x < 6; ++x) {
1356		if ((c = entry->bus_type[x]) == ' ')
1357			break;
1358		name[x] = c;
1359	}
1360	name[x] = '\0';
1361
1362	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1363		panic("unknown bus type: '%s'", name);
1364
1365	bus_data[bus].bus_id = entry->bus_id;
1366	bus_data[bus].bus_type = x;
1367
1368	return 1;
1369}
1370
1371
1372static int
1373io_apic_entry(io_apic_entry_ptr entry, int apic)
1374{
1375	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1376		return 0;
1377
1378	IO_TO_ID(apic) = entry->apic_id;
1379	if (entry->apic_id < NAPICID)
1380		ID_TO_IO(entry->apic_id) = apic;
1381
1382	return 1;
1383}
1384
1385
1386static int
1387lookup_bus_type(char *name)
1388{
1389	int     x;
1390
1391	for (x = 0; x < MAX_BUSTYPE; ++x)
1392		if (strcmp(bus_type_table[x].name, name) == 0)
1393			return bus_type_table[x].type;
1394
1395	return UNKNOWN_BUSTYPE;
1396}
1397
1398
1399static int
1400int_entry(int_entry_ptr entry, int intr)
1401{
1402	int apic;
1403
1404	io_apic_ints[intr].int_type = entry->int_type;
1405	io_apic_ints[intr].int_flags = entry->int_flags;
1406	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1407	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1408	if (entry->dst_apic_id == 255) {
1409		/* This signal goes to all IO APICS.  Select an IO APIC
1410		   with sufficient number of interrupt pins */
1411		for (apic = 0; apic < mp_napics; apic++)
1412			if (((io_apic_read(apic, IOAPIC_VER) &
1413			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1414			    entry->dst_apic_int)
1415				break;
1416		if (apic < mp_napics)
1417			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1418		else
1419			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1420	} else
1421		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1422	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1423
1424	return 1;
1425}
1426
1427
1428static int
1429apic_int_is_bus_type(int intr, int bus_type)
1430{
1431	int     bus;
1432
1433	for (bus = 0; bus < mp_nbusses; ++bus)
1434		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1435		    && ((int) bus_data[bus].bus_type == bus_type))
1436			return 1;
1437
1438	return 0;
1439}
1440
1441
1442/*
1443 * Given a traditional ISA INT mask, return an APIC mask.
1444 */
1445u_int
1446isa_apic_mask(u_int isa_mask)
1447{
1448	int isa_irq;
1449	int apic_pin;
1450
1451#if defined(SKIP_IRQ15_REDIRECT)
1452	if (isa_mask == (1 << 15)) {
1453		printf("skipping ISA IRQ15 redirect\n");
1454		return isa_mask;
1455	}
1456#endif  /* SKIP_IRQ15_REDIRECT */
1457
1458	isa_irq = ffs(isa_mask);		/* find its bit position */
1459	if (isa_irq == 0)			/* doesn't exist */
1460		return 0;
1461	--isa_irq;				/* make it zero based */
1462
1463	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1464	if (apic_pin == -1)
1465		return 0;
1466
1467	return (1 << apic_pin);			/* convert pin# to a mask */
1468}
1469
1470
1471/*
1472 * Determine which APIC pin an ISA/EISA INT is attached to.
1473 */
1474#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1475#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1476#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1477#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1478
1479#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1480int
1481isa_apic_irq(int isa_irq)
1482{
1483	int     intr;
1484
1485	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1486		if (INTTYPE(intr) == 0) {		/* standard INT */
1487			if (SRCBUSIRQ(intr) == isa_irq) {
1488				if (apic_int_is_bus_type(intr, ISA) ||
1489			            apic_int_is_bus_type(intr, EISA))
1490					return INTIRQ(intr);	/* found */
1491			}
1492		}
1493	}
1494	return -1;					/* NOT found */
1495}
1496
1497
1498/*
1499 * Determine which APIC pin a PCI INT is attached to.
1500 */
1501#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1502#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1503#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1504int
1505pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1506{
1507	int     intr;
1508
1509	--pciInt;					/* zero based */
1510
1511	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1512		if ((INTTYPE(intr) == 0)		/* standard INT */
1513		    && (SRCBUSID(intr) == pciBus)
1514		    && (SRCBUSDEVICE(intr) == pciDevice)
1515		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1516			if (apic_int_is_bus_type(intr, PCI))
1517				return INTIRQ(intr);	/* exact match */
1518
1519	return -1;					/* NOT found */
1520}
1521
1522int
1523next_apic_irq(int irq)
1524{
1525	int intr, ointr;
1526	int bus, bustype;
1527
1528	bus = 0;
1529	bustype = 0;
1530	for (intr = 0; intr < nintrs; intr++) {
1531		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1532			continue;
1533		bus = SRCBUSID(intr);
1534		bustype = apic_bus_type(bus);
1535		if (bustype != ISA &&
1536		    bustype != EISA &&
1537		    bustype != PCI)
1538			continue;
1539		break;
1540	}
1541	if (intr >= nintrs) {
1542		return -1;
1543	}
1544	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1545		if (INTTYPE(ointr) != 0)
1546			continue;
1547		if (bus != SRCBUSID(ointr))
1548			continue;
1549		if (bustype == PCI) {
1550			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1551				continue;
1552			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1553				continue;
1554		}
1555		if (bustype == ISA || bustype == EISA) {
1556			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1557				continue;
1558		}
1559		if (INTPIN(intr) == INTPIN(ointr))
1560			continue;
1561		break;
1562	}
1563	if (ointr >= nintrs) {
1564		return -1;
1565	}
1566	return INTIRQ(ointr);
1567}
1568#undef SRCBUSLINE
1569#undef SRCBUSDEVICE
1570#undef SRCBUSID
1571#undef SRCBUSIRQ
1572
1573#undef INTPIN
1574#undef INTIRQ
1575#undef INTAPIC
1576#undef INTTYPE
1577
1578
1579/*
1580 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1581 *
1582 * XXX FIXME:
1583 *  Exactly what this means is unclear at this point.  It is a solution
1584 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1585 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1586 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1587 *  option.
1588 */
1589int
1590undirect_isa_irq(int rirq)
1591{
1592#if defined(READY)
1593	if (bootverbose)
1594	    printf("Freeing redirected ISA irq %d.\n", rirq);
1595	/** FIXME: tickle the MB redirector chip */
1596	return ???;
1597#else
1598	if (bootverbose)
1599	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1600	return 0;
1601#endif  /* READY */
1602}
1603
1604
1605/*
1606 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1607 */
1608int
1609undirect_pci_irq(int rirq)
1610{
1611#if defined(READY)
1612	if (bootverbose)
1613		printf("Freeing redirected PCI irq %d.\n", rirq);
1614
1615	/** FIXME: tickle the MB redirector chip */
1616	return ???;
1617#else
1618	if (bootverbose)
1619		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1620		       rirq);
1621	return 0;
1622#endif  /* READY */
1623}
1624
1625
1626/*
1627 * given a bus ID, return:
1628 *  the bus type if found
1629 *  -1 if NOT found
1630 */
1631int
1632apic_bus_type(int id)
1633{
1634	int     x;
1635
1636	for (x = 0; x < mp_nbusses; ++x)
1637		if (bus_data[x].bus_id == id)
1638			return bus_data[x].bus_type;
1639
1640	return -1;
1641}
1642
1643
1644/*
1645 * given a LOGICAL APIC# and pin#, return:
1646 *  the associated src bus ID if found
1647 *  -1 if NOT found
1648 */
1649int
1650apic_src_bus_id(int apic, int pin)
1651{
1652	int     x;
1653
1654	/* search each of the possible INTerrupt sources */
1655	for (x = 0; x < nintrs; ++x)
1656		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1657		    (pin == io_apic_ints[x].dst_apic_int))
1658			return (io_apic_ints[x].src_bus_id);
1659
1660	return -1;		/* NOT found */
1661}
1662
1663
1664/*
1665 * given a LOGICAL APIC# and pin#, return:
1666 *  the associated src bus IRQ if found
1667 *  -1 if NOT found
1668 */
1669int
1670apic_src_bus_irq(int apic, int pin)
1671{
1672	int     x;
1673
1674	for (x = 0; x < nintrs; x++)
1675		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1676		    (pin == io_apic_ints[x].dst_apic_int))
1677			return (io_apic_ints[x].src_bus_irq);
1678
1679	return -1;		/* NOT found */
1680}
1681
1682
1683/*
1684 * given a LOGICAL APIC# and pin#, return:
1685 *  the associated INTerrupt type if found
1686 *  -1 if NOT found
1687 */
1688int
1689apic_int_type(int apic, int pin)
1690{
1691	int     x;
1692
1693	/* search each of the possible INTerrupt sources */
1694	for (x = 0; x < nintrs; ++x)
1695		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1696		    (pin == io_apic_ints[x].dst_apic_int))
1697			return (io_apic_ints[x].int_type);
1698
1699	return -1;		/* NOT found */
1700}
1701
1702int
1703apic_irq(int apic, int pin)
1704{
1705	int x;
1706	int res;
1707
1708	for (x = 0; x < nintrs; ++x)
1709		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1710		    (pin == io_apic_ints[x].dst_apic_int)) {
1711			res = io_apic_ints[x].int_vector;
1712			if (res == 0xff)
1713				return -1;
1714			if (apic != int_to_apicintpin[res].ioapic)
1715				panic("apic_irq: inconsistent table");
1716			if (pin != int_to_apicintpin[res].int_pin)
1717				panic("apic_irq inconsistent table (2)");
1718			return res;
1719		}
1720	return -1;
1721}
1722
1723
1724/*
1725 * given a LOGICAL APIC# and pin#, return:
1726 *  the associated trigger mode if found
1727 *  -1 if NOT found
1728 */
1729int
1730apic_trigger(int apic, int pin)
1731{
1732	int     x;
1733
1734	/* search each of the possible INTerrupt sources */
1735	for (x = 0; x < nintrs; ++x)
1736		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1737		    (pin == io_apic_ints[x].dst_apic_int))
1738			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1739
1740	return -1;		/* NOT found */
1741}
1742
1743
1744/*
1745 * given a LOGICAL APIC# and pin#, return:
1746 *  the associated 'active' level if found
1747 *  -1 if NOT found
1748 */
1749int
1750apic_polarity(int apic, int pin)
1751{
1752	int     x;
1753
1754	/* search each of the possible INTerrupt sources */
1755	for (x = 0; x < nintrs; ++x)
1756		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1757		    (pin == io_apic_ints[x].dst_apic_int))
1758			return (io_apic_ints[x].int_flags & 0x03);
1759
1760	return -1;		/* NOT found */
1761}
1762
1763
1764/*
1765 * set data according to MP defaults
1766 * FIXME: probably not complete yet...
1767 */
1768static void
1769default_mp_table(int type)
1770{
1771	int     ap_cpu_id;
1772#if defined(APIC_IO)
1773	int     io_apic_id;
1774	int     pin;
1775#endif	/* APIC_IO */
1776
1777#if 0
1778	printf("  MP default config type: %d\n", type);
1779	switch (type) {
1780	case 1:
1781		printf("   bus: ISA, APIC: 82489DX\n");
1782		break;
1783	case 2:
1784		printf("   bus: EISA, APIC: 82489DX\n");
1785		break;
1786	case 3:
1787		printf("   bus: EISA, APIC: 82489DX\n");
1788		break;
1789	case 4:
1790		printf("   bus: MCA, APIC: 82489DX\n");
1791		break;
1792	case 5:
1793		printf("   bus: ISA+PCI, APIC: Integrated\n");
1794		break;
1795	case 6:
1796		printf("   bus: EISA+PCI, APIC: Integrated\n");
1797		break;
1798	case 7:
1799		printf("   bus: MCA+PCI, APIC: Integrated\n");
1800		break;
1801	default:
1802		printf("   future type\n");
1803		break;
1804		/* NOTREACHED */
1805	}
1806#endif	/* 0 */
1807
1808	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1809	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1810
1811	/* BSP */
1812	CPU_TO_ID(0) = boot_cpu_id;
1813	ID_TO_CPU(boot_cpu_id) = 0;
1814
1815	/* one and only AP */
1816	CPU_TO_ID(1) = ap_cpu_id;
1817	ID_TO_CPU(ap_cpu_id) = 1;
1818
1819#if defined(APIC_IO)
1820	/* one and only IO APIC */
1821	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1822
1823	/*
1824	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1825	 * necessary as some hardware isn't properly setting up the IO APIC
1826	 */
1827#if defined(REALLY_ANAL_IOAPICID_VALUE)
1828	if (io_apic_id != 2) {
1829#else
1830	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1831#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1832		io_apic_set_id(0, 2);
1833		io_apic_id = 2;
1834	}
1835	IO_TO_ID(0) = io_apic_id;
1836	ID_TO_IO(io_apic_id) = 0;
1837#endif	/* APIC_IO */
1838
1839	/* fill out bus entries */
1840	switch (type) {
1841	case 1:
1842	case 2:
1843	case 3:
1844	case 4:
1845	case 5:
1846	case 6:
1847	case 7:
1848		bus_data[0].bus_id = default_data[type - 1][1];
1849		bus_data[0].bus_type = default_data[type - 1][2];
1850		bus_data[1].bus_id = default_data[type - 1][3];
1851		bus_data[1].bus_type = default_data[type - 1][4];
1852		break;
1853
1854	/* case 4: case 7:		   MCA NOT supported */
1855	default:		/* illegal/reserved */
1856		panic("BAD default MP config: %d", type);
1857		/* NOTREACHED */
1858	}
1859
1860#if defined(APIC_IO)
1861	/* general cases from MP v1.4, table 5-2 */
1862	for (pin = 0; pin < 16; ++pin) {
1863		io_apic_ints[pin].int_type = 0;
1864		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1865		io_apic_ints[pin].src_bus_id = 0;
1866		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1867		io_apic_ints[pin].dst_apic_id = io_apic_id;
1868		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1869	}
1870
1871	/* special cases from MP v1.4, table 5-2 */
1872	if (type == 2) {
1873		io_apic_ints[2].int_type = 0xff;	/* N/C */
1874		io_apic_ints[13].int_type = 0xff;	/* N/C */
1875#if !defined(APIC_MIXED_MODE)
1876		/** FIXME: ??? */
1877		panic("sorry, can't support type 2 default yet");
1878#endif	/* APIC_MIXED_MODE */
1879	}
1880	else
1881		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1882
1883	if (type == 7)
1884		io_apic_ints[0].int_type = 0xff;	/* N/C */
1885	else
1886		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1887#endif	/* APIC_IO */
1888}
1889
1890
1891/*
1892 * initialize all the SMP locks
1893 */
1894
1895/* critical region around IO APIC, apic_imen */
1896struct simplelock	imen_lock;
1897
1898/* critical region around splxx(), cpl, cml, cil, ipending */
1899struct simplelock	cpl_lock;
1900
1901/* Make FAST_INTR() routines sequential */
1902struct simplelock	fast_intr_lock;
1903
1904/* critical region around INTR() routines */
1905struct simplelock	intr_lock;
1906
1907/* lock region used by kernel profiling */
1908struct simplelock	mcount_lock;
1909
1910#ifdef USE_COMLOCK
1911/* locks com (tty) data/hardware accesses: a FASTINTR() */
1912struct simplelock	com_lock;
1913#endif /* USE_COMLOCK */
1914
1915/* lock around the MP rendezvous */
1916static struct simplelock smp_rv_lock;
1917
1918/* only 1 CPU can panic at a time :) */
1919struct simplelock	panic_lock;
1920
1921static void
1922init_locks(void)
1923{
1924#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1925	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1926#endif
1927
1928	s_lock_init((struct simplelock*)&mcount_lock);
1929
1930	s_lock_init((struct simplelock*)&fast_intr_lock);
1931	s_lock_init((struct simplelock*)&intr_lock);
1932	s_lock_init((struct simplelock*)&imen_lock);
1933	s_lock_init((struct simplelock*)&cpl_lock);
1934	s_lock_init(&smp_rv_lock);
1935	s_lock_init(&panic_lock);
1936
1937#ifdef USE_COMLOCK
1938	s_lock_init((struct simplelock*)&com_lock);
1939#endif /* USE_COMLOCK */
1940
1941	s_lock_init(&ap_boot_lock);
1942}
1943
1944/*
1945 * start each AP in our list
1946 */
1947static int
1948start_all_aps(u_int boot_addr)
1949{
1950	int     x, i, pg;
1951	u_char  mpbiosreason;
1952	u_long  mpbioswarmvec;
1953	struct globaldata *gd;
1954	char *stack;
1955
1956	POSTCODE(START_ALL_APS_POST);
1957
1958	/* initialize BSP's local APIC */
1959	apic_initialize();
1960	bsp_apic_ready = 1;
1961
1962	/* install the AP 1st level boot code */
1963	install_ap_tramp(boot_addr);
1964
1965
1966	/* save the current value of the warm-start vector */
1967	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1968#ifndef PC98
1969	outb(CMOS_REG, BIOS_RESET);
1970	mpbiosreason = inb(CMOS_DATA);
1971#endif
1972
1973	/* record BSP in CPU map */
1974	all_cpus = 1;
1975
1976	/* set up 0 -> 4MB P==V mapping for AP boot */
1977	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1978	invltlb();
1979
1980	/* start each AP */
1981	for (x = 1; x <= mp_naps; ++x) {
1982
1983		/* This is a bit verbose, it will go away soon.  */
1984
1985		/* first page of AP's private space */
1986		pg = x * i386_btop(sizeof(struct privatespace));
1987
1988		/* allocate a new private data page */
1989		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1990
1991		/* wire it into the private page table page */
1992		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1993
1994		/* allocate and set up an idle stack data page */
1995		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1996		for (i = 0; i < UPAGES; i++)
1997			SMPpt[pg + 5 + i] = (pt_entry_t)
1998			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1999
2000		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
2001		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
2002		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
2003		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
2004
2005		/* prime data page for it to use */
2006		SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
2007		gd->gd_cpuid = x;
2008		gd->gd_cpu_lockid = x << 24;
2009		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
2010		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
2011		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
2012		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
2013		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
2014		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
2015		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
2016		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
2017
2018		/* setup a vector to our boot code */
2019		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
2020		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
2021#ifndef PC98
2022		outb(CMOS_REG, BIOS_RESET);
2023		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
2024#endif
2025
2026		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2027		bootAP = x;
2028
2029		/* attempt to start the Application Processor */
2030		CHECK_INIT(99);	/* setup checkpoints */
2031		if (!start_ap(x, boot_addr)) {
2032			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2033			CHECK_PRINT("trace");	/* show checkpoints */
2034			/* better panic as the AP may be running loose */
2035			printf("panic y/n? [y] ");
2036			if (cngetc() != 'n')
2037				panic("bye-bye");
2038		}
2039		CHECK_PRINT("trace");		/* show checkpoints */
2040
2041		/* record its version info */
2042		cpu_apic_versions[x] = cpu_apic_versions[0];
2043
2044		all_cpus |= (1 << x);		/* record AP in CPU map */
2045	}
2046
2047	/* build our map of 'other' CPUs */
2048	other_cpus = all_cpus & ~(1 << cpuid);
2049
2050	/* fill in our (BSP) APIC version */
2051	cpu_apic_versions[0] = lapic.version;
2052
2053	/* restore the warmstart vector */
2054	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2055#ifndef PC98
2056	outb(CMOS_REG, BIOS_RESET);
2057	outb(CMOS_DATA, mpbiosreason);
2058#endif
2059
2060	/*
2061	 * Set up the idle context for the BSP.  Similar to above except
2062	 * that some was done by locore, some by pmap.c and some is implicit
2063	 * because the BSP is cpu#0 and the page is initially zero, and also
2064	 * because we can refer to variables by name on the BSP..
2065	 */
2066
2067	/* Allocate and setup BSP idle stack */
2068	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2069	for (i = 0; i < UPAGES; i++)
2070		SMPpt[5 + i] = (pt_entry_t)
2071		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2072
2073	*(int *)PTD = 0;
2074	pmap_set_opt();
2075
2076	/* number of APs actually started */
2077	return mp_ncpus - 1;
2078}
2079
2080
2081/*
2082 * load the 1st level AP boot code into base memory.
2083 */
2084
2085/* targets for relocation */
2086extern void bigJump(void);
2087extern void bootCodeSeg(void);
2088extern void bootDataSeg(void);
2089extern void MPentry(void);
2090extern u_int MP_GDT;
2091extern u_int mp_gdtbase;
2092
2093static void
2094install_ap_tramp(u_int boot_addr)
2095{
2096	int     x;
2097	int     size = *(int *) ((u_long) & bootMP_size);
2098	u_char *src = (u_char *) ((u_long) bootMP);
2099	u_char *dst = (u_char *) boot_addr + KERNBASE;
2100	u_int   boot_base = (u_int) bootMP;
2101	u_int8_t *dst8;
2102	u_int16_t *dst16;
2103	u_int32_t *dst32;
2104
2105	POSTCODE(INSTALL_AP_TRAMP_POST);
2106
2107	for (x = 0; x < size; ++x)
2108		*dst++ = *src++;
2109
2110	/*
2111	 * modify addresses in code we just moved to basemem. unfortunately we
2112	 * need fairly detailed info about mpboot.s for this to work.  changes
2113	 * to mpboot.s might require changes here.
2114	 */
2115
2116	/* boot code is located in KERNEL space */
2117	dst = (u_char *) boot_addr + KERNBASE;
2118
2119	/* modify the lgdt arg */
2120	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2121	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2122
2123	/* modify the ljmp target for MPentry() */
2124	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2125	*dst32 = ((u_int) MPentry - KERNBASE);
2126
2127	/* modify the target for boot code segment */
2128	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2129	dst8 = (u_int8_t *) (dst16 + 1);
2130	*dst16 = (u_int) boot_addr & 0xffff;
2131	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2132
2133	/* modify the target for boot data segment */
2134	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2135	dst8 = (u_int8_t *) (dst16 + 1);
2136	*dst16 = (u_int) boot_addr & 0xffff;
2137	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2138}
2139
2140
2141/*
2142 * this function starts the AP (application processor) identified
2143 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2144 * to accomplish this.  This is necessary because of the nuances
2145 * of the different hardware we might encounter.  It ain't pretty,
2146 * but it seems to work.
2147 */
2148static int
2149start_ap(int logical_cpu, u_int boot_addr)
2150{
2151	int     physical_cpu;
2152	int     vector;
2153	int     cpus;
2154	u_long  icr_lo, icr_hi;
2155
2156	POSTCODE(START_AP_POST);
2157
2158	/* get the PHYSICAL APIC ID# */
2159	physical_cpu = CPU_TO_ID(logical_cpu);
2160
2161	/* calculate the vector */
2162	vector = (boot_addr >> 12) & 0xff;
2163
2164	/* used as a watchpoint to signal AP startup */
2165	cpus = mp_ncpus;
2166
2167	/*
2168	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2169	 * and running the target CPU. OR this INIT IPI might be latched (P5
2170	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2171	 * ignored.
2172	 */
2173
2174	/* setup the address for the target AP */
2175	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2176	icr_hi |= (physical_cpu << 24);
2177	lapic.icr_hi = icr_hi;
2178
2179	/* do an INIT IPI: assert RESET */
2180	icr_lo = lapic.icr_lo & 0xfff00000;
2181	lapic.icr_lo = icr_lo | 0x0000c500;
2182
2183	/* wait for pending status end */
2184	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2185		 /* spin */ ;
2186
2187	/* do an INIT IPI: deassert RESET */
2188	lapic.icr_lo = icr_lo | 0x00008500;
2189
2190	/* wait for pending status end */
2191	u_sleep(10000);		/* wait ~10mS */
2192	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2193		 /* spin */ ;
2194
2195	/*
2196	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2197	 * latched, (P5 bug) this 1st STARTUP would then terminate
2198	 * immediately, and the previously started INIT IPI would continue. OR
2199	 * the previous INIT IPI has already run. and this STARTUP IPI will
2200	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2201	 * will run.
2202	 */
2203
2204	/* do a STARTUP IPI */
2205	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2206	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2207		 /* spin */ ;
2208	u_sleep(200);		/* wait ~200uS */
2209
2210	/*
2211	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2212	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2213	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2214	 * recognized after hardware RESET or INIT IPI.
2215	 */
2216
2217	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2218	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2219		 /* spin */ ;
2220	u_sleep(200);		/* wait ~200uS */
2221
2222	/* wait for it to start */
2223	set_apic_timer(5000000);/* == 5 seconds */
2224	while (read_apic_timer())
2225		if (mp_ncpus > cpus)
2226			return 1;	/* return SUCCESS */
2227
2228	return 0;		/* return FAILURE */
2229}
2230
2231/*
2232 * Flush the TLB on all other CPU's
2233 *
2234 * XXX: Needs to handshake and wait for completion before proceding.
2235 */
2236void
2237smp_invltlb(void)
2238{
2239#if defined(APIC_IO)
2240	if (smp_started && invltlb_ok)
2241		all_but_self_ipi(XINVLTLB_OFFSET);
2242#endif  /* APIC_IO */
2243}
2244
2245void
2246invlpg(u_int addr)
2247{
2248	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2249
2250	/* send a message to the other CPUs */
2251	smp_invltlb();
2252}
2253
2254void
2255invltlb(void)
2256{
2257	u_long  temp;
2258
2259	/*
2260	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2261	 * inlined.
2262	 */
2263	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2264
2265	/* send a message to the other CPUs */
2266	smp_invltlb();
2267}
2268
2269
2270/*
2271 * When called the executing CPU will send an IPI to all other CPUs
2272 *  requesting that they halt execution.
2273 *
2274 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2275 *
2276 *  - Signals all CPUs in map to stop.
2277 *  - Waits for each to stop.
2278 *
2279 * Returns:
2280 *  -1: error
2281 *   0: NA
2282 *   1: ok
2283 *
2284 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2285 *            from executing at same time.
2286 */
2287int
2288stop_cpus(u_int map)
2289{
2290	int count = 0;
2291
2292	if (!smp_started)
2293		return 0;
2294
2295	/* send the Xcpustop IPI to all CPUs in map */
2296	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2297
2298	while (count++ < 100000 && (stopped_cpus & map) != map)
2299		/* spin */ ;
2300
2301#ifdef DIAGNOSTIC
2302	if ((stopped_cpus & map) != map)
2303		printf("Warning: CPUs 0x%x did not stop!\n",
2304		    (~(stopped_cpus & map)) & map);
2305#endif
2306
2307	return 1;
2308}
2309
2310
2311/*
2312 * Called by a CPU to restart stopped CPUs.
2313 *
2314 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2315 *
2316 *  - Signals all CPUs in map to restart.
2317 *  - Waits for each to restart.
2318 *
2319 * Returns:
2320 *  -1: error
2321 *   0: NA
2322 *   1: ok
2323 */
2324int
2325restart_cpus(u_int map)
2326{
2327	int count = 0;
2328
2329	if (!smp_started)
2330		return 0;
2331
2332	started_cpus = map;		/* signal other cpus to restart */
2333
2334	/* wait for each to clear its bit */
2335	while (count++ < 100000 && (stopped_cpus & map) != 0)
2336		/* spin */ ;
2337
2338#ifdef DIAGNOSTIC
2339	if ((stopped_cpus & map) != 0)
2340		printf("Warning: CPUs 0x%x did not restart!\n",
2341		    (~(stopped_cpus & map)) & map);
2342#endif
2343
2344	return 1;
2345}
2346
2347int smp_active = 0;	/* are the APs allowed to run? */
2348SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2349
2350/* XXX maybe should be hw.ncpu */
2351static int smp_cpus = 1;	/* how many cpu's running */
2352SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2353
2354int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2355SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2356
2357/* Warning: Do not staticize.  Used from swtch.s */
2358int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2359SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2360	   &do_page_zero_idle, 0, "");
2361
2362/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2363int forward_irq_enabled = 1;
2364SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2365	   &forward_irq_enabled, 0, "");
2366
2367/* Enable forwarding of a signal to a process running on a different CPU */
2368static int forward_signal_enabled = 1;
2369SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2370	   &forward_signal_enabled, 0, "");
2371
2372/* Enable forwarding of roundrobin to all other cpus */
2373static int forward_roundrobin_enabled = 1;
2374SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2375	   &forward_roundrobin_enabled, 0, "");
2376
2377/*
2378 * This is called once the rest of the system is up and running and we're
2379 * ready to let the AP's out of the pen.
2380 */
2381void ap_init(void);
2382
2383void
2384ap_init(void)
2385{
2386	u_int	apic_id;
2387
2388	/* lock against other AP's that are waking up */
2389	s_lock(&ap_boot_lock);
2390
2391	/* BSP may have changed PTD while we're waiting for the lock */
2392	cpu_invltlb();
2393
2394	smp_cpus++;
2395
2396#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2397	lidt(&r_idt);
2398#endif
2399
2400	/* Build our map of 'other' CPUs. */
2401	other_cpus = all_cpus & ~(1 << cpuid);
2402
2403	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2404
2405	/* set up CPU registers and state */
2406	cpu_setregs();
2407
2408	/* set up FPU state on the AP */
2409	npxinit(__INITIAL_NPXCW__);
2410
2411	/* A quick check from sanity claus */
2412	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2413	if (cpuid != apic_id) {
2414		printf("SMP: cpuid = %d\n", cpuid);
2415		printf("SMP: apic_id = %d\n", apic_id);
2416		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2417		panic("cpuid mismatch! boom!!");
2418	}
2419
2420	/* Init local apic for irq's */
2421	apic_initialize();
2422
2423	/* Set memory range attributes for this CPU to match the BSP */
2424	mem_range_AP_init();
2425
2426	/*
2427	 * Activate smp_invltlb, although strictly speaking, this isn't
2428	 * quite correct yet.  We should have a bitfield for cpus willing
2429	 * to accept TLB flush IPI's or something and sync them.
2430	 */
2431	if (smp_cpus == mp_ncpus) {
2432		invltlb_ok = 1;
2433		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2434		smp_active = 1;	 /* historic */
2435	}
2436
2437	/* let other AP's wake up now */
2438	s_unlock(&ap_boot_lock);
2439
2440	/* wait until all the AP's are up */
2441	while (smp_started == 0)
2442		; /* nothing */
2443
2444	/*
2445	 * Set curproc to our per-cpu idleproc so that mutexes have
2446	 * something unique to lock with.
2447	 */
2448	PCPU_SET(curproc,idleproc);
2449
2450	microuptime(&switchtime);
2451	switchticks = ticks;
2452
2453	/* ok, now grab sched_lock and enter the scheduler */
2454	enable_intr();
2455	mtx_enter(&sched_lock, MTX_SPIN);
2456	cpu_throw();	/* doesn't return */
2457
2458	panic("scheduler returned us to ap_init");
2459}
2460
2461#ifdef BETTER_CLOCK
2462
2463#define CHECKSTATE_USER	0
2464#define CHECKSTATE_SYS	1
2465#define CHECKSTATE_INTR	2
2466
2467/* Do not staticize.  Used from apic_vector.s */
2468struct proc*	checkstate_curproc[MAXCPU];
2469int		checkstate_cpustate[MAXCPU];
2470u_long		checkstate_pc[MAXCPU];
2471
2472#define PC_TO_INDEX(pc, prof)				\
2473        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2474            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2475
2476static void
2477addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2478{
2479	int i;
2480	struct uprof *prof;
2481	u_long pc;
2482
2483	pc = checkstate_pc[id];
2484	prof = &p->p_stats->p_prof;
2485	if (pc >= prof->pr_off &&
2486	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2487		if ((p->p_flag & P_OWEUPC) == 0) {
2488			prof->pr_addr = pc;
2489			prof->pr_ticks = 1;
2490			p->p_flag |= P_OWEUPC;
2491		}
2492		*astmap |= (1 << id);
2493	}
2494}
2495
2496static void
2497forwarded_statclock(int id, int pscnt, int *astmap)
2498{
2499	struct pstats *pstats;
2500	long rss;
2501	struct rusage *ru;
2502	struct vmspace *vm;
2503	int cpustate;
2504	struct proc *p;
2505#ifdef GPROF
2506	register struct gmonparam *g;
2507	int i;
2508#endif
2509
2510	p = checkstate_curproc[id];
2511	cpustate = checkstate_cpustate[id];
2512
2513	/* XXX */
2514	if (p->p_ithd)
2515		cpustate = CHECKSTATE_INTR;
2516	else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2517		cpustate = CHECKSTATE_SYS;
2518
2519	switch (cpustate) {
2520	case CHECKSTATE_USER:
2521		if (p->p_flag & P_PROFIL)
2522			addupc_intr_forwarded(p, id, astmap);
2523		if (pscnt > 1)
2524			return;
2525		p->p_uticks++;
2526		if (p->p_nice > NZERO)
2527			cp_time[CP_NICE]++;
2528		else
2529			cp_time[CP_USER]++;
2530		break;
2531	case CHECKSTATE_SYS:
2532#ifdef GPROF
2533		/*
2534		 * Kernel statistics are just like addupc_intr, only easier.
2535		 */
2536		g = &_gmonparam;
2537		if (g->state == GMON_PROF_ON) {
2538			i = checkstate_pc[id] - g->lowpc;
2539			if (i < g->textsize) {
2540				i /= HISTFRACTION * sizeof(*g->kcount);
2541				g->kcount[i]++;
2542			}
2543		}
2544#endif
2545		if (pscnt > 1)
2546			return;
2547
2548		p->p_sticks++;
2549		if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2550			cp_time[CP_IDLE]++;
2551		else
2552			cp_time[CP_SYS]++;
2553		break;
2554	case CHECKSTATE_INTR:
2555	default:
2556#ifdef GPROF
2557		/*
2558		 * Kernel statistics are just like addupc_intr, only easier.
2559		 */
2560		g = &_gmonparam;
2561		if (g->state == GMON_PROF_ON) {
2562			i = checkstate_pc[id] - g->lowpc;
2563			if (i < g->textsize) {
2564				i /= HISTFRACTION * sizeof(*g->kcount);
2565				g->kcount[i]++;
2566			}
2567		}
2568#endif
2569		if (pscnt > 1)
2570			return;
2571		if (p)
2572			p->p_iticks++;
2573		cp_time[CP_INTR]++;
2574	}
2575	schedclock(p);
2576
2577	/* Update resource usage integrals and maximums. */
2578	if ((pstats = p->p_stats) != NULL &&
2579	    (ru = &pstats->p_ru) != NULL &&
2580	    (vm = p->p_vmspace) != NULL) {
2581		ru->ru_ixrss += pgtok(vm->vm_tsize);
2582		ru->ru_idrss += pgtok(vm->vm_dsize);
2583		ru->ru_isrss += pgtok(vm->vm_ssize);
2584		rss = pgtok(vmspace_resident_count(vm));
2585		if (ru->ru_maxrss < rss)
2586			ru->ru_maxrss = rss;
2587	}
2588}
2589
2590void
2591forward_statclock(int pscnt)
2592{
2593	int map;
2594	int id;
2595	int i;
2596
2597	/* Kludge. We don't yet have separate locks for the interrupts
2598	 * and the kernel. This means that we cannot let the other processors
2599	 * handle complex interrupts while inhibiting them from entering
2600	 * the kernel in a non-interrupt context.
2601	 *
2602	 * What we can do, without changing the locking mechanisms yet,
2603	 * is letting the other processors handle a very simple interrupt
2604	 * (wich determines the processor states), and do the main
2605	 * work ourself.
2606	 */
2607
2608	if (!smp_started || !invltlb_ok || cold || panicstr)
2609		return;
2610
2611	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2612
2613	map = other_cpus & ~stopped_cpus ;
2614	checkstate_probed_cpus = 0;
2615	if (map != 0)
2616		selected_apic_ipi(map,
2617				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2618
2619	i = 0;
2620	while (checkstate_probed_cpus != map) {
2621		/* spin */
2622		i++;
2623		if (i == 100000) {
2624#ifdef BETTER_CLOCK_DIAGNOSTIC
2625			printf("forward_statclock: checkstate %x\n",
2626			       checkstate_probed_cpus);
2627#endif
2628			break;
2629		}
2630	}
2631
2632	/*
2633	 * Step 2: walk through other processors processes, update ticks and
2634	 * profiling info.
2635	 */
2636
2637	map = 0;
2638	for (id = 0; id < mp_ncpus; id++) {
2639		if (id == cpuid)
2640			continue;
2641		if (((1 << id) & checkstate_probed_cpus) == 0)
2642			continue;
2643		forwarded_statclock(id, pscnt, &map);
2644	}
2645	if (map != 0) {
2646		checkstate_need_ast |= map;
2647		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2648		i = 0;
2649		while ((checkstate_need_ast & map) != 0) {
2650			/* spin */
2651			i++;
2652			if (i > 100000) {
2653#ifdef BETTER_CLOCK_DIAGNOSTIC
2654				printf("forward_statclock: dropped ast 0x%x\n",
2655				       checkstate_need_ast & map);
2656#endif
2657				break;
2658			}
2659		}
2660	}
2661}
2662
2663void
2664forward_hardclock(int pscnt)
2665{
2666	int map;
2667	int id;
2668	struct proc *p;
2669	struct pstats *pstats;
2670	int i;
2671
2672	/* Kludge. We don't yet have separate locks for the interrupts
2673	 * and the kernel. This means that we cannot let the other processors
2674	 * handle complex interrupts while inhibiting them from entering
2675	 * the kernel in a non-interrupt context.
2676	 *
2677	 * What we can do, without changing the locking mechanisms yet,
2678	 * is letting the other processors handle a very simple interrupt
2679	 * (wich determines the processor states), and do the main
2680	 * work ourself.
2681	 */
2682
2683	if (!smp_started || !invltlb_ok || cold || panicstr)
2684		return;
2685
2686	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2687
2688	map = other_cpus & ~stopped_cpus ;
2689	checkstate_probed_cpus = 0;
2690	if (map != 0)
2691		selected_apic_ipi(map,
2692				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2693
2694	i = 0;
2695	while (checkstate_probed_cpus != map) {
2696		/* spin */
2697		i++;
2698		if (i == 100000) {
2699#ifdef BETTER_CLOCK_DIAGNOSTIC
2700			printf("forward_hardclock: checkstate %x\n",
2701			       checkstate_probed_cpus);
2702#endif
2703			break;
2704		}
2705	}
2706
2707	/*
2708	 * Step 2: walk through other processors processes, update virtual
2709	 * timer and profiling timer. If stathz == 0, also update ticks and
2710	 * profiling info.
2711	 */
2712
2713	map = 0;
2714	for (id = 0; id < mp_ncpus; id++) {
2715		if (id == cpuid)
2716			continue;
2717		if (((1 << id) & checkstate_probed_cpus) == 0)
2718			continue;
2719		p = checkstate_curproc[id];
2720		if (p) {
2721			pstats = p->p_stats;
2722			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2723			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2724			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2725				psignal(p, SIGVTALRM);
2726				map |= (1 << id);
2727			}
2728			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2729			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2730				psignal(p, SIGPROF);
2731				map |= (1 << id);
2732			}
2733		}
2734		if (stathz == 0) {
2735			forwarded_statclock( id, pscnt, &map);
2736		}
2737	}
2738	if (map != 0) {
2739		checkstate_need_ast |= map;
2740		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2741		i = 0;
2742		while ((checkstate_need_ast & map) != 0) {
2743			/* spin */
2744			i++;
2745			if (i > 100000) {
2746#ifdef BETTER_CLOCK_DIAGNOSTIC
2747				printf("forward_hardclock: dropped ast 0x%x\n",
2748				       checkstate_need_ast & map);
2749#endif
2750				break;
2751			}
2752		}
2753	}
2754}
2755
2756#endif /* BETTER_CLOCK */
2757
2758void
2759forward_signal(struct proc *p)
2760{
2761	int map;
2762	int id;
2763	int i;
2764
2765	/* Kludge. We don't yet have separate locks for the interrupts
2766	 * and the kernel. This means that we cannot let the other processors
2767	 * handle complex interrupts while inhibiting them from entering
2768	 * the kernel in a non-interrupt context.
2769	 *
2770	 * What we can do, without changing the locking mechanisms yet,
2771	 * is letting the other processors handle a very simple interrupt
2772	 * (wich determines the processor states), and do the main
2773	 * work ourself.
2774	 */
2775
2776	if (!smp_started || !invltlb_ok || cold || panicstr)
2777		return;
2778	if (!forward_signal_enabled)
2779		return;
2780	while (1) {
2781		if (p->p_stat != SRUN)
2782			return;
2783		id = p->p_oncpu;
2784		if (id == 0xff)
2785			return;
2786		map = (1<<id);
2787		checkstate_need_ast |= map;
2788		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2789		i = 0;
2790		while ((checkstate_need_ast & map) != 0) {
2791			/* spin */
2792			i++;
2793			if (i > 100000) {
2794#if 0
2795				printf("forward_signal: dropped ast 0x%x\n",
2796				       checkstate_need_ast & map);
2797#endif
2798				break;
2799			}
2800		}
2801		if (id == p->p_oncpu)
2802			return;
2803	}
2804}
2805
2806void
2807forward_roundrobin(void)
2808{
2809	u_int map;
2810	int i;
2811
2812	if (!smp_started || !invltlb_ok || cold || panicstr)
2813		return;
2814	if (!forward_roundrobin_enabled)
2815		return;
2816	resched_cpus |= other_cpus;
2817	map = other_cpus & ~stopped_cpus ;
2818#if 1
2819	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2820#else
2821	(void) all_but_self_ipi(XCPUAST_OFFSET);
2822#endif
2823	i = 0;
2824	while ((checkstate_need_ast & map) != 0) {
2825		/* spin */
2826		i++;
2827		if (i > 100000) {
2828#if 0
2829			printf("forward_roundrobin: dropped ast 0x%x\n",
2830			       checkstate_need_ast & map);
2831#endif
2832			break;
2833		}
2834	}
2835}
2836
2837
2838#ifdef APIC_INTR_REORDER
2839/*
2840 *	Maintain mapping from softintr vector to isr bit in local apic.
2841 */
2842void
2843set_lapic_isrloc(int intr, int vector)
2844{
2845	if (intr < 0 || intr > 32)
2846		panic("set_apic_isrloc: bad intr argument: %d",intr);
2847	if (vector < ICU_OFFSET || vector > 255)
2848		panic("set_apic_isrloc: bad vector argument: %d",vector);
2849	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2850	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2851}
2852#endif
2853
2854/*
2855 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2856 * (if specified), rendezvous, execute the action function (if specified),
2857 * rendezvous again, execute the teardown function (if specified), and then
2858 * resume.
2859 *
2860 * Note that the supplied external functions _must_ be reentrant and aware
2861 * that they are running in parallel and in an unknown lock context.
2862 */
2863static void (*smp_rv_setup_func)(void *arg);
2864static void (*smp_rv_action_func)(void *arg);
2865static void (*smp_rv_teardown_func)(void *arg);
2866static void *smp_rv_func_arg;
2867static volatile int smp_rv_waiters[2];
2868
2869void
2870smp_rendezvous_action(void)
2871{
2872	/* setup function */
2873	if (smp_rv_setup_func != NULL)
2874		smp_rv_setup_func(smp_rv_func_arg);
2875	/* spin on entry rendezvous */
2876	atomic_add_int(&smp_rv_waiters[0], 1);
2877	while (smp_rv_waiters[0] < mp_ncpus)
2878		;
2879	/* action function */
2880	if (smp_rv_action_func != NULL)
2881		smp_rv_action_func(smp_rv_func_arg);
2882	/* spin on exit rendezvous */
2883	atomic_add_int(&smp_rv_waiters[1], 1);
2884	while (smp_rv_waiters[1] < mp_ncpus)
2885		;
2886	/* teardown function */
2887	if (smp_rv_teardown_func != NULL)
2888		smp_rv_teardown_func(smp_rv_func_arg);
2889}
2890
2891void
2892smp_rendezvous(void (* setup_func)(void *),
2893	       void (* action_func)(void *),
2894	       void (* teardown_func)(void *),
2895	       void *arg)
2896{
2897	u_int	efl;
2898
2899	/* obtain rendezvous lock */
2900	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2901
2902	/* set static function pointers */
2903	smp_rv_setup_func = setup_func;
2904	smp_rv_action_func = action_func;
2905	smp_rv_teardown_func = teardown_func;
2906	smp_rv_func_arg = arg;
2907	smp_rv_waiters[0] = 0;
2908	smp_rv_waiters[1] = 0;
2909
2910	/* disable interrupts on this CPU, save interrupt status */
2911	efl = read_eflags();
2912	write_eflags(efl & ~PSL_I);
2913
2914	/* signal other processors, which will enter the IPI with interrupts off */
2915	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2916
2917	/* call executor function */
2918	smp_rendezvous_action();
2919
2920	/* restore interrupt flag */
2921	write_eflags(efl);
2922
2923	/* release lock */
2924	s_unlock(&smp_rv_lock);
2925}
2926
2927void
2928release_aps(void *dummy __unused)
2929{
2930	s_unlock(&ap_boot_lock);
2931}
2932
2933SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2934