mp_machdep.c revision 53745
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/amd64/amd64/mp_machdep.c 53745 1999-11-27 12:32:27Z bde $
26 */
27
28#include "opt_smp.h"
29#include "opt_cpu.h"
30#include "opt_user_ldt.h"
31
32#ifdef SMP
33#include <machine/smptests.h>
34#else
35#error
36#endif
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#ifdef BETTER_CLOCK
46#include <sys/dkstat.h>
47#endif
48#include <sys/cons.h>	/* cngetc() */
49
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/pmap.h>
53#include <vm/vm_kern.h>
54#include <vm/vm_extern.h>
55#ifdef BETTER_CLOCK
56#include <sys/lock.h>
57#include <vm/vm_map.h>
58#include <sys/user.h>
59#ifdef GPROF
60#include <sys/gmon.h>
61#endif
62#endif
63
64#include <machine/smp.h>
65#include <machine/apic.h>
66#include <machine/atomic.h>
67#include <machine/cpufunc.h>
68#include <machine/mpapic.h>
69#include <machine/psl.h>
70#include <machine/segments.h>
71#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
72#include <machine/tss.h>
73#include <machine/specialreg.h>
74#include <machine/globaldata.h>
75
76#if defined(APIC_IO)
77#include <machine/md_var.h>		/* setidt() */
78#include <i386/isa/icu.h>		/* IPIs */
79#include <i386/isa/intr_machdep.h>	/* IPIs */
80#endif	/* APIC_IO */
81
82#if defined(TEST_DEFAULT_CONFIG)
83#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
84#else
85#define MPFPS_MPFB1	mpfps->mpfb1
86#endif  /* TEST_DEFAULT_CONFIG */
87
88#define WARMBOOT_TARGET		0
89#define WARMBOOT_OFF		(KERNBASE + 0x0467)
90#define WARMBOOT_SEG		(KERNBASE + 0x0469)
91
92#ifdef PC98
93#define BIOS_BASE		(0xe8000)
94#define BIOS_SIZE		(0x18000)
95#else
96#define BIOS_BASE		(0xf0000)
97#define BIOS_SIZE		(0x10000)
98#endif
99#define BIOS_COUNT		(BIOS_SIZE/4)
100
101#define CMOS_REG		(0x70)
102#define CMOS_DATA		(0x71)
103#define BIOS_RESET		(0x0f)
104#define BIOS_WARM		(0x0a)
105
106#define PROCENTRY_FLAG_EN	0x01
107#define PROCENTRY_FLAG_BP	0x02
108#define IOAPICENTRY_FLAG_EN	0x01
109
110
111/* MP Floating Pointer Structure */
112typedef struct MPFPS {
113	char    signature[4];
114	void   *pap;
115	u_char  length;
116	u_char  spec_rev;
117	u_char  checksum;
118	u_char  mpfb1;
119	u_char  mpfb2;
120	u_char  mpfb3;
121	u_char  mpfb4;
122	u_char  mpfb5;
123}      *mpfps_t;
124
125/* MP Configuration Table Header */
126typedef struct MPCTH {
127	char    signature[4];
128	u_short base_table_length;
129	u_char  spec_rev;
130	u_char  checksum;
131	u_char  oem_id[8];
132	u_char  product_id[12];
133	void   *oem_table_pointer;
134	u_short oem_table_size;
135	u_short entry_count;
136	void   *apic_address;
137	u_short extended_table_length;
138	u_char  extended_table_checksum;
139	u_char  reserved;
140}      *mpcth_t;
141
142
143typedef struct PROCENTRY {
144	u_char  type;
145	u_char  apic_id;
146	u_char  apic_version;
147	u_char  cpu_flags;
148	u_long  cpu_signature;
149	u_long  feature_flags;
150	u_long  reserved1;
151	u_long  reserved2;
152}      *proc_entry_ptr;
153
154typedef struct BUSENTRY {
155	u_char  type;
156	u_char  bus_id;
157	char    bus_type[6];
158}      *bus_entry_ptr;
159
160typedef struct IOAPICENTRY {
161	u_char  type;
162	u_char  apic_id;
163	u_char  apic_version;
164	u_char  apic_flags;
165	void   *apic_address;
166}      *io_apic_entry_ptr;
167
168typedef struct INTENTRY {
169	u_char  type;
170	u_char  int_type;
171	u_short int_flags;
172	u_char  src_bus_id;
173	u_char  src_bus_irq;
174	u_char  dst_apic_id;
175	u_char  dst_apic_int;
176}      *int_entry_ptr;
177
178/* descriptions of MP basetable entries */
179typedef struct BASETABLE_ENTRY {
180	u_char  type;
181	u_char  length;
182	char    name[16];
183}       basetable_entry;
184
185/*
186 * this code MUST be enabled here and in mpboot.s.
187 * it follows the very early stages of AP boot by placing values in CMOS ram.
188 * it NORMALLY will never be needed and thus the primitive method for enabling.
189 *
190#define CHECK_POINTS
191 */
192
193#if defined(CHECK_POINTS) && !defined(PC98)
194#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
195#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
196
197#define CHECK_INIT(D);				\
198	CHECK_WRITE(0x34, (D));			\
199	CHECK_WRITE(0x35, (D));			\
200	CHECK_WRITE(0x36, (D));			\
201	CHECK_WRITE(0x37, (D));			\
202	CHECK_WRITE(0x38, (D));			\
203	CHECK_WRITE(0x39, (D));
204
205#define CHECK_PRINT(S);				\
206	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
207	   (S),					\
208	   CHECK_READ(0x34),			\
209	   CHECK_READ(0x35),			\
210	   CHECK_READ(0x36),			\
211	   CHECK_READ(0x37),			\
212	   CHECK_READ(0x38),			\
213	   CHECK_READ(0x39));
214
215#else				/* CHECK_POINTS */
216
217#define CHECK_INIT(D)
218#define CHECK_PRINT(S)
219
220#endif				/* CHECK_POINTS */
221
222/*
223 * Values to send to the POST hardware.
224 */
225#define MP_BOOTADDRESS_POST	0x10
226#define MP_PROBE_POST		0x11
227#define MPTABLE_PASS1_POST	0x12
228
229#define MP_START_POST		0x13
230#define MP_ENABLE_POST		0x14
231#define MPTABLE_PASS2_POST	0x15
232
233#define START_ALL_APS_POST	0x16
234#define INSTALL_AP_TRAMP_POST	0x17
235#define START_AP_POST		0x18
236
237#define MP_ANNOUNCE_POST	0x19
238
239
240/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
241int	current_postcode;
242
243/** XXX FIXME: what system files declare these??? */
244extern struct region_descriptor r_gdt, r_idt;
245
246int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
247int	mp_ncpus;		/* # of CPUs, including BSP */
248int	mp_naps;		/* # of Applications processors */
249int	mp_nbusses;		/* # of busses */
250int	mp_napics;		/* # of IO APICs */
251int	boot_cpu_id;		/* designated BSP */
252vm_offset_t cpu_apic_address;
253vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
254extern	int nkpt;
255
256u_int32_t cpu_apic_versions[NCPU];
257u_int32_t io_apic_versions[NAPIC];
258
259#ifdef APIC_INTR_DIAGNOSTIC
260int apic_itrace_enter[32];
261int apic_itrace_tryisrlock[32];
262int apic_itrace_gotisrlock[32];
263int apic_itrace_active[32];
264int apic_itrace_masked[32];
265int apic_itrace_noisrlock[32];
266int apic_itrace_masked2[32];
267int apic_itrace_unmask[32];
268int apic_itrace_noforward[32];
269int apic_itrace_leave[32];
270int apic_itrace_enter2[32];
271int apic_itrace_doreti[32];
272int apic_itrace_splz[32];
273int apic_itrace_eoi[32];
274#ifdef APIC_INTR_DIAGNOSTIC_IRQ
275unsigned short apic_itrace_debugbuffer[32768];
276int apic_itrace_debugbuffer_idx;
277struct simplelock apic_itrace_debuglock;
278#endif
279#endif
280
281#ifdef APIC_INTR_REORDER
282struct {
283	volatile int *location;
284	int bit;
285} apic_isrbit_location[32];
286#endif
287
288struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
289
290/*
291 * APIC ID logical/physical mapping structures.
292 * We oversize these to simplify boot-time config.
293 */
294int     cpu_num_to_apic_id[NAPICID];
295int     io_num_to_apic_id[NAPICID];
296int     apic_id_to_logical[NAPICID];
297
298
299/* Bitmap of all available CPUs */
300u_int	all_cpus;
301
302/* AP uses this during bootstrap.  Do not staticize.  */
303char *bootSTK;
304static int bootAP;
305
306/* Hotwire a 0->4MB V==P mapping */
307extern pt_entry_t *KPTphys;
308
309/* SMP page table page */
310extern pt_entry_t *SMPpt;
311
312struct pcb stoppcbs[NCPU];
313
314int smp_started;		/* has the system started? */
315
316/*
317 * Local data and functions.
318 */
319
320static int	mp_capable;
321static u_int	boot_address;
322static u_int	base_memory;
323
324static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
325static mpfps_t	mpfps;
326static int	search_for_sig(u_int32_t target, int count);
327static void	mp_enable(u_int boot_addr);
328
329static int	mptable_pass1(void);
330static int	mptable_pass2(void);
331static void	default_mp_table(int type);
332static void	fix_mp_table(void);
333static void	setup_apic_irq_mapping(void);
334static void	init_locks(void);
335static int	start_all_aps(u_int boot_addr);
336static void	install_ap_tramp(u_int boot_addr);
337static int	start_ap(int logicalCpu, u_int boot_addr);
338
339/*
340 * Calculate usable address in base memory for AP trampoline code.
341 */
342u_int
343mp_bootaddress(u_int basemem)
344{
345	POSTCODE(MP_BOOTADDRESS_POST);
346
347	base_memory = basemem * 1024;	/* convert to bytes */
348
349	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
350	if ((base_memory - boot_address) < bootMP_size)
351		boot_address -= 4096;	/* not enough, lower by 4k */
352
353	return boot_address;
354}
355
356
357/*
358 * Look for an Intel MP spec table (ie, SMP capable hardware).
359 */
360int
361mp_probe(void)
362{
363	int     x;
364	u_long  segment;
365	u_int32_t target;
366
367	POSTCODE(MP_PROBE_POST);
368
369	/* see if EBDA exists */
370	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
371		/* search first 1K of EBDA */
372		target = (u_int32_t) (segment << 4);
373		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
374			goto found;
375	} else {
376		/* last 1K of base memory, effective 'top of base' passed in */
377		target = (u_int32_t) (base_memory - 0x400);
378		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
379			goto found;
380	}
381
382	/* search the BIOS */
383	target = (u_int32_t) BIOS_BASE;
384	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
385		goto found;
386
387	/* nothing found */
388	mpfps = (mpfps_t)0;
389	mp_capable = 0;
390	return 0;
391
392found:
393	/* calculate needed resources */
394	mpfps = (mpfps_t)x;
395	if (mptable_pass1())
396		panic("you must reconfigure your kernel");
397
398	/* flag fact that we are running multiple processors */
399	mp_capable = 1;
400	return 1;
401}
402
403
404/*
405 * Startup the SMP processors.
406 */
407void
408mp_start(void)
409{
410	POSTCODE(MP_START_POST);
411
412	/* look for MP capable motherboard */
413	if (mp_capable)
414		mp_enable(boot_address);
415	else
416		panic("MP hardware not found!");
417}
418
419
420/*
421 * Print various information about the SMP system hardware and setup.
422 */
423void
424mp_announce(void)
425{
426	int     x;
427
428	POSTCODE(MP_ANNOUNCE_POST);
429
430	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
431	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
432	printf(", version: 0x%08x", cpu_apic_versions[0]);
433	printf(", at 0x%08x\n", cpu_apic_address);
434	for (x = 1; x <= mp_naps; ++x) {
435		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
436		printf(", version: 0x%08x", cpu_apic_versions[x]);
437		printf(", at 0x%08x\n", cpu_apic_address);
438	}
439
440#if defined(APIC_IO)
441	for (x = 0; x < mp_napics; ++x) {
442		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
443		printf(", version: 0x%08x", io_apic_versions[x]);
444		printf(", at 0x%08x\n", io_apic_address[x]);
445	}
446#else
447	printf(" Warning: APIC I/O disabled\n");
448#endif	/* APIC_IO */
449}
450
451/*
452 * AP cpu's call this to sync up protected mode.
453 */
454void
455init_secondary(void)
456{
457	int	gsel_tss;
458	int	x, myid = bootAP;
459
460	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
461	gdt_segs[GPROC0_SEL].ssd_base =
462		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
463	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
464
465	for (x = 0; x < NGDT; x++) {
466		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
467	}
468
469	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
470	r_gdt.rd_base = (int) &gdt[myid * NGDT];
471	lgdt(&r_gdt);			/* does magic intra-segment return */
472
473	lidt(&r_idt);
474
475	lldt(_default_ldt);
476#ifdef USER_LDT
477	currentldt = _default_ldt;
478#endif
479
480	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
481	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
482	common_tss.tss_esp0 = 0;	/* not used until after switch */
483	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
484	common_tss.tss_ioopt = (sizeof common_tss) << 16;
485	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
486	common_tssd = *tss_gdt;
487	ltr(gsel_tss);
488
489	load_cr0(0x8005003b);		/* XXX! */
490
491	pmap_set_opt();
492}
493
494
495#if defined(APIC_IO)
496/*
497 * Final configuration of the BSP's local APIC:
498 *  - disable 'pic mode'.
499 *  - disable 'virtual wire mode'.
500 *  - enable NMI.
501 */
502void
503bsp_apic_configure(void)
504{
505	u_char		byte;
506	u_int32_t	temp;
507
508	/* leave 'pic mode' if necessary */
509	if (picmode) {
510		outb(0x22, 0x70);	/* select IMCR */
511		byte = inb(0x23);	/* current contents */
512		byte |= 0x01;		/* mask external INTR */
513		outb(0x23, byte);	/* disconnect 8259s/NMI */
514	}
515
516	/* mask lint0 (the 8259 'virtual wire' connection) */
517	temp = lapic.lvt_lint0;
518	temp |= APIC_LVT_M;		/* set the mask */
519	lapic.lvt_lint0 = temp;
520
521        /* setup lint1 to handle NMI */
522        temp = lapic.lvt_lint1;
523        temp &= ~APIC_LVT_M;		/* clear the mask */
524        lapic.lvt_lint1 = temp;
525
526	if (bootverbose)
527		apic_dump("bsp_apic_configure()");
528}
529#endif  /* APIC_IO */
530
531
532/*******************************************************************
533 * local functions and data
534 */
535
536/*
537 * start the SMP system
538 */
539static void
540mp_enable(u_int boot_addr)
541{
542	int     x;
543#if defined(APIC_IO)
544	int     apic;
545	u_int   ux;
546#endif	/* APIC_IO */
547
548	POSTCODE(MP_ENABLE_POST);
549
550	/* turn on 4MB of V == P addressing so we can get to MP table */
551	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
552	invltlb();
553
554	/* examine the MP table for needed info, uses physical addresses */
555	x = mptable_pass2();
556
557	*(int *)PTD = 0;
558	invltlb();
559
560	/* can't process default configs till the CPU APIC is pmapped */
561	if (x)
562		default_mp_table(x);
563
564	/* post scan cleanup */
565	fix_mp_table();
566	setup_apic_irq_mapping();
567
568#if defined(APIC_IO)
569
570	/* fill the LOGICAL io_apic_versions table */
571	for (apic = 0; apic < mp_napics; ++apic) {
572		ux = io_apic_read(apic, IOAPIC_VER);
573		io_apic_versions[apic] = ux;
574	}
575
576	/* program each IO APIC in the system */
577	for (apic = 0; apic < mp_napics; ++apic)
578		if (io_apic_setup(apic) < 0)
579			panic("IO APIC setup failure");
580
581	/* install a 'Spurious INTerrupt' vector */
582	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
583	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
584
585	/* install an inter-CPU IPI for TLB invalidation */
586	setidt(XINVLTLB_OFFSET, Xinvltlb,
587	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
588
589#ifdef BETTER_CLOCK
590	/* install an inter-CPU IPI for reading processor state */
591	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
592	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
593#endif
594
595	/* install an inter-CPU IPI for all-CPU rendezvous */
596	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
597	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
598
599	/* install an inter-CPU IPI for forcing an additional software trap */
600	setidt(XCPUAST_OFFSET, Xcpuast,
601	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
602
603	/* install an inter-CPU IPI for interrupt forwarding */
604	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
605	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
606
607	/* install an inter-CPU IPI for CPU stop/restart */
608	setidt(XCPUSTOP_OFFSET, Xcpustop,
609	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
610
611#if defined(TEST_TEST1)
612	/* install a "fake hardware INTerrupt" vector */
613	setidt(XTEST1_OFFSET, Xtest1,
614	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
615#endif  /** TEST_TEST1 */
616
617#endif	/* APIC_IO */
618
619	/* initialize all SMP locks */
620	init_locks();
621
622	/* start each Application Processor */
623	start_all_aps(boot_addr);
624
625	/*
626	 * The init process might be started on a different CPU now,
627	 * and the boot CPU might not call prepare_usermode to get
628	 * cr0 correctly configured. Thus we initialize cr0 here.
629	 */
630	load_cr0(rcr0() | CR0_WP | CR0_AM);
631}
632
633
634/*
635 * look for the MP spec signature
636 */
637
638/* string defined by the Intel MP Spec as identifying the MP table */
639#define MP_SIG		0x5f504d5f	/* _MP_ */
640#define NEXT(X)		((X) += 4)
641static int
642search_for_sig(u_int32_t target, int count)
643{
644	int     x;
645	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
646
647	for (x = 0; x < count; NEXT(x))
648		if (addr[x] == MP_SIG)
649			/* make array index a byte index */
650			return (target + (x * sizeof(u_int32_t)));
651
652	return -1;
653}
654
655
656static basetable_entry basetable_entry_types[] =
657{
658	{0, 20, "Processor"},
659	{1, 8, "Bus"},
660	{2, 8, "I/O APIC"},
661	{3, 8, "I/O INT"},
662	{4, 8, "Local INT"}
663};
664
665typedef struct BUSDATA {
666	u_char  bus_id;
667	enum busTypes bus_type;
668}       bus_datum;
669
670typedef struct INTDATA {
671	u_char  int_type;
672	u_short int_flags;
673	u_char  src_bus_id;
674	u_char  src_bus_irq;
675	u_char  dst_apic_id;
676	u_char  dst_apic_int;
677	u_char	int_vector;
678}       io_int, local_int;
679
680typedef struct BUSTYPENAME {
681	u_char  type;
682	char    name[7];
683}       bus_type_name;
684
685static bus_type_name bus_type_table[] =
686{
687	{CBUS, "CBUS"},
688	{CBUSII, "CBUSII"},
689	{EISA, "EISA"},
690	{UNKNOWN_BUSTYPE, "---"},
691	{UNKNOWN_BUSTYPE, "---"},
692	{ISA, "ISA"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{UNKNOWN_BUSTYPE, "---"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{PCI, "PCI"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{UNKNOWN_BUSTYPE, "---"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{UNKNOWN_BUSTYPE, "---"},
704	{XPRESS, "XPRESS"},
705	{UNKNOWN_BUSTYPE, "---"}
706};
707/* from MP spec v1.4, table 5-1 */
708static int default_data[7][5] =
709{
710/*   nbus, id0, type0, id1, type1 */
711	{1, 0, ISA, 255, 255},
712	{1, 0, EISA, 255, 255},
713	{1, 0, EISA, 255, 255},
714	{0, 255, 255, 255, 255},/* MCA not supported */
715	{2, 0, ISA, 1, PCI},
716	{2, 0, EISA, 1, PCI},
717	{0, 255, 255, 255, 255}	/* MCA not supported */
718};
719
720
721/* the bus data */
722static bus_datum bus_data[NBUS];
723
724/* the IO INT data, one entry per possible APIC INTerrupt */
725static io_int  io_apic_ints[NINTR];
726
727static int nintrs;
728
729static int processor_entry	__P((proc_entry_ptr entry, int cpu));
730static int bus_entry		__P((bus_entry_ptr entry, int bus));
731static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
732static int int_entry		__P((int_entry_ptr entry, int intr));
733static int lookup_bus_type	__P((char *name));
734
735
736/*
737 * 1st pass on motherboard's Intel MP specification table.
738 *
739 * initializes:
740 *	mp_ncpus = 1
741 *
742 * determines:
743 *	cpu_apic_address (common to all CPUs)
744 *	io_apic_address[N]
745 *	mp_naps
746 *	mp_nbusses
747 *	mp_napics
748 *	nintrs
749 */
750static int
751mptable_pass1(void)
752{
753	int	x;
754	mpcth_t	cth;
755	int	totalSize;
756	void*	position;
757	int	count;
758	int	type;
759	int	mustpanic;
760
761	POSTCODE(MPTABLE_PASS1_POST);
762
763	mustpanic = 0;
764
765	/* clear various tables */
766	for (x = 0; x < NAPICID; ++x) {
767		io_apic_address[x] = ~0;	/* IO APIC address table */
768	}
769
770	/* init everything to empty */
771	mp_naps = 0;
772	mp_nbusses = 0;
773	mp_napics = 0;
774	nintrs = 0;
775
776	/* check for use of 'default' configuration */
777	if (MPFPS_MPFB1 != 0) {
778		/* use default addresses */
779		cpu_apic_address = DEFAULT_APIC_BASE;
780		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
781
782		/* fill in with defaults */
783		mp_naps = 2;		/* includes BSP */
784		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
785#if defined(APIC_IO)
786		mp_napics = 1;
787		nintrs = 16;
788#endif	/* APIC_IO */
789	}
790	else {
791		if ((cth = mpfps->pap) == 0)
792			panic("MP Configuration Table Header MISSING!");
793
794		cpu_apic_address = (vm_offset_t) cth->apic_address;
795
796		/* walk the table, recording info of interest */
797		totalSize = cth->base_table_length - sizeof(struct MPCTH);
798		position = (u_char *) cth + sizeof(struct MPCTH);
799		count = cth->entry_count;
800
801		while (count--) {
802			switch (type = *(u_char *) position) {
803			case 0: /* processor_entry */
804				if (((proc_entry_ptr)position)->cpu_flags
805					& PROCENTRY_FLAG_EN)
806					++mp_naps;
807				break;
808			case 1: /* bus_entry */
809				++mp_nbusses;
810				break;
811			case 2: /* io_apic_entry */
812				if (((io_apic_entry_ptr)position)->apic_flags
813					& IOAPICENTRY_FLAG_EN)
814					io_apic_address[mp_napics++] =
815					    (vm_offset_t)((io_apic_entry_ptr)
816						position)->apic_address;
817				break;
818			case 3: /* int_entry */
819				++nintrs;
820				break;
821			case 4:	/* int_entry */
822				break;
823			default:
824				panic("mpfps Base Table HOSED!");
825				/* NOTREACHED */
826			}
827
828			totalSize -= basetable_entry_types[type].length;
829			(u_char*)position += basetable_entry_types[type].length;
830		}
831	}
832
833	/* qualify the numbers */
834	if (mp_naps > NCPU) {
835		printf("Warning: only using %d of %d available CPUs!\n",
836			NCPU, mp_naps);
837		mp_naps = NCPU;
838	}
839	if (mp_nbusses > NBUS) {
840		printf("found %d busses, increase NBUS\n", mp_nbusses);
841		mustpanic = 1;
842	}
843	if (mp_napics > NAPIC) {
844		printf("found %d apics, increase NAPIC\n", mp_napics);
845		mustpanic = 1;
846	}
847	if (nintrs > NINTR) {
848		printf("found %d intrs, increase NINTR\n", nintrs);
849		mustpanic = 1;
850	}
851
852	/*
853	 * Count the BSP.
854	 * This is also used as a counter while starting the APs.
855	 */
856	mp_ncpus = 1;
857
858	--mp_naps;	/* subtract the BSP */
859
860	return mustpanic;
861}
862
863
864/*
865 * 2nd pass on motherboard's Intel MP specification table.
866 *
867 * sets:
868 *	boot_cpu_id
869 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
870 *	CPU_TO_ID(N), logical CPU to APIC ID table
871 *	IO_TO_ID(N), logical IO to APIC ID table
872 *	bus_data[N]
873 *	io_apic_ints[N]
874 */
875static int
876mptable_pass2(void)
877{
878	int     x;
879	mpcth_t cth;
880	int     totalSize;
881	void*   position;
882	int     count;
883	int     type;
884	int     apic, bus, cpu, intr;
885
886	POSTCODE(MPTABLE_PASS2_POST);
887
888	/* clear various tables */
889	for (x = 0; x < NAPICID; ++x) {
890		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
891		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
892		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
893	}
894
895	/* clear bus data table */
896	for (x = 0; x < NBUS; ++x)
897		bus_data[x].bus_id = 0xff;
898
899	/* clear IO APIC INT table */
900	for (x = 0; x < NINTR; ++x) {
901		io_apic_ints[x].int_type = 0xff;
902		io_apic_ints[x].int_vector = 0xff;
903	}
904
905	/* setup the cpu/apic mapping arrays */
906	boot_cpu_id = -1;
907
908	/* record whether PIC or virtual-wire mode */
909	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
910
911	/* check for use of 'default' configuration */
912	if (MPFPS_MPFB1 != 0)
913		return MPFPS_MPFB1;	/* return default configuration type */
914
915	if ((cth = mpfps->pap) == 0)
916		panic("MP Configuration Table Header MISSING!");
917
918	/* walk the table, recording info of interest */
919	totalSize = cth->base_table_length - sizeof(struct MPCTH);
920	position = (u_char *) cth + sizeof(struct MPCTH);
921	count = cth->entry_count;
922	apic = bus = intr = 0;
923	cpu = 1;				/* pre-count the BSP */
924
925	while (count--) {
926		switch (type = *(u_char *) position) {
927		case 0:
928			if (processor_entry(position, cpu))
929				++cpu;
930			break;
931		case 1:
932			if (bus_entry(position, bus))
933				++bus;
934			break;
935		case 2:
936			if (io_apic_entry(position, apic))
937				++apic;
938			break;
939		case 3:
940			if (int_entry(position, intr))
941				++intr;
942			break;
943		case 4:
944			/* int_entry(position); */
945			break;
946		default:
947			panic("mpfps Base Table HOSED!");
948			/* NOTREACHED */
949		}
950
951		totalSize -= basetable_entry_types[type].length;
952		(u_char *) position += basetable_entry_types[type].length;
953	}
954
955	if (boot_cpu_id == -1)
956		panic("NO BSP found!");
957
958	/* report fact that its NOT a default configuration */
959	return 0;
960}
961
962
963static void
964assign_apic_irq(int apic, int intpin, int irq)
965{
966	int x;
967
968	if (int_to_apicintpin[irq].ioapic != -1)
969		panic("assign_apic_irq: inconsistent table");
970
971	int_to_apicintpin[irq].ioapic = apic;
972	int_to_apicintpin[irq].int_pin = intpin;
973	int_to_apicintpin[irq].apic_address = ioapic[apic];
974	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
975
976	for (x = 0; x < nintrs; x++) {
977		if ((io_apic_ints[x].int_type == 0 ||
978		     io_apic_ints[x].int_type == 3) &&
979		    io_apic_ints[x].int_vector == 0xff &&
980		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
981		    io_apic_ints[x].dst_apic_int == intpin)
982			io_apic_ints[x].int_vector = irq;
983	}
984}
985
986/*
987 * parse an Intel MP specification table
988 */
989static void
990fix_mp_table(void)
991{
992	int	x;
993	int	id;
994	int	bus_0 = 0;	/* Stop GCC warning */
995	int	bus_pci = 0;	/* Stop GCC warning */
996	int	num_pci_bus;
997
998	/*
999	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1000	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1001	 * exists the BIOS must begin with bus entries for the PCI bus and use
1002	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1003	 * exists the BIOS can choose to ignore this ordering, and indeed many
1004	 * MP motherboards do ignore it.  This causes a problem when the PCI
1005	 * sub-system makes requests of the MP sub-system based on PCI bus
1006	 * numbers.	So here we look for the situation and renumber the
1007	 * busses and associated INTs in an effort to "make it right".
1008	 */
1009
1010	/* find bus 0, PCI bus, count the number of PCI busses */
1011	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1012		if (bus_data[x].bus_id == 0) {
1013			bus_0 = x;
1014		}
1015		if (bus_data[x].bus_type == PCI) {
1016			++num_pci_bus;
1017			bus_pci = x;
1018		}
1019	}
1020	/*
1021	 * bus_0 == slot of bus with ID of 0
1022	 * bus_pci == slot of last PCI bus encountered
1023	 */
1024
1025	/* check the 1 PCI bus case for sanity */
1026	if (num_pci_bus == 1) {
1027
1028		/* if it is number 0 all is well */
1029		if (bus_data[bus_pci].bus_id == 0)
1030			return;
1031
1032		/* mis-numbered, swap with whichever bus uses slot 0 */
1033
1034		/* swap the bus entry types */
1035		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1036		bus_data[bus_0].bus_type = PCI;
1037
1038		/* swap each relavant INTerrupt entry */
1039		id = bus_data[bus_pci].bus_id;
1040		for (x = 0; x < nintrs; ++x) {
1041			if (io_apic_ints[x].src_bus_id == id) {
1042				io_apic_ints[x].src_bus_id = 0;
1043			}
1044			else if (io_apic_ints[x].src_bus_id == 0) {
1045				io_apic_ints[x].src_bus_id = id;
1046			}
1047		}
1048	}
1049}
1050
1051
1052static void
1053setup_apic_irq_mapping(void)
1054{
1055	int	x;
1056	int	int_vector;
1057
1058	/* Assign low level interrupt handlers */
1059	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1060		int_to_apicintpin[x].ioapic = -1;
1061		int_to_apicintpin[x].int_pin = 0;
1062		int_to_apicintpin[x].apic_address = NULL;
1063		int_to_apicintpin[x].redirindex = 0;
1064	}
1065	for (x = 0; x < nintrs; x++) {
1066		if (io_apic_ints[x].dst_apic_int < APIC_INTMAPSIZE &&
1067		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1068		    io_apic_ints[x].int_vector == 0xff &&
1069		    (io_apic_ints[x].int_type == 0 ||
1070		     io_apic_ints[x].int_type == 3)) {
1071			assign_apic_irq(0,
1072					io_apic_ints[x].dst_apic_int,
1073					io_apic_ints[x].dst_apic_int);
1074		}
1075	}
1076	int_vector = 0;
1077	while (int_vector < APIC_INTMAPSIZE &&
1078	       int_to_apicintpin[int_vector].ioapic != -1)
1079		int_vector++;
1080	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1081		if ((io_apic_ints[x].int_type == 0 ||
1082		     io_apic_ints[x].int_type == 3) &&
1083		    io_apic_ints[x].int_vector == 0xff) {
1084			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1085					io_apic_ints[x].dst_apic_int,
1086					int_vector);
1087			int_vector++;
1088			while (int_vector < APIC_INTMAPSIZE &&
1089			       int_to_apicintpin[int_vector].ioapic != -1)
1090				int_vector++;
1091		}
1092	}
1093}
1094
1095
1096static int
1097processor_entry(proc_entry_ptr entry, int cpu)
1098{
1099	/* check for usability */
1100	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1101		return 0;
1102
1103	/* check for BSP flag */
1104	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1105		boot_cpu_id = entry->apic_id;
1106		CPU_TO_ID(0) = entry->apic_id;
1107		ID_TO_CPU(entry->apic_id) = 0;
1108		return 0;	/* its already been counted */
1109	}
1110
1111	/* add another AP to list, if less than max number of CPUs */
1112	else {
1113		CPU_TO_ID(cpu) = entry->apic_id;
1114		ID_TO_CPU(entry->apic_id) = cpu;
1115		return 1;
1116	}
1117}
1118
1119
1120static int
1121bus_entry(bus_entry_ptr entry, int bus)
1122{
1123	int     x;
1124	char    c, name[8];
1125
1126	/* encode the name into an index */
1127	for (x = 0; x < 6; ++x) {
1128		if ((c = entry->bus_type[x]) == ' ')
1129			break;
1130		name[x] = c;
1131	}
1132	name[x] = '\0';
1133
1134	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1135		panic("unknown bus type: '%s'", name);
1136
1137	bus_data[bus].bus_id = entry->bus_id;
1138	bus_data[bus].bus_type = x;
1139
1140	return 1;
1141}
1142
1143
1144static int
1145io_apic_entry(io_apic_entry_ptr entry, int apic)
1146{
1147	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1148		return 0;
1149
1150	IO_TO_ID(apic) = entry->apic_id;
1151	ID_TO_IO(entry->apic_id) = apic;
1152
1153	return 1;
1154}
1155
1156
1157static int
1158lookup_bus_type(char *name)
1159{
1160	int     x;
1161
1162	for (x = 0; x < MAX_BUSTYPE; ++x)
1163		if (strcmp(bus_type_table[x].name, name) == 0)
1164			return bus_type_table[x].type;
1165
1166	return UNKNOWN_BUSTYPE;
1167}
1168
1169
1170static int
1171int_entry(int_entry_ptr entry, int intr)
1172{
1173	int apic;
1174
1175	io_apic_ints[intr].int_type = entry->int_type;
1176	io_apic_ints[intr].int_flags = entry->int_flags;
1177	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1178	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1179	if (entry->dst_apic_id == 255) {
1180		/* This signal goes to all IO APICS.  Select an IO APIC
1181		   with sufficient number of interrupt pins */
1182		for (apic = 0; apic < mp_napics; apic++)
1183			if (((io_apic_read(apic, IOAPIC_VER) &
1184			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1185			    entry->dst_apic_int)
1186				break;
1187		if (apic < mp_napics)
1188			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1189		else
1190			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1191	} else
1192		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1193	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1194
1195	return 1;
1196}
1197
1198
1199static int
1200apic_int_is_bus_type(int intr, int bus_type)
1201{
1202	int     bus;
1203
1204	for (bus = 0; bus < mp_nbusses; ++bus)
1205		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1206		    && ((int) bus_data[bus].bus_type == bus_type))
1207			return 1;
1208
1209	return 0;
1210}
1211
1212
1213/*
1214 * Given a traditional ISA INT mask, return an APIC mask.
1215 */
1216u_int
1217isa_apic_mask(u_int isa_mask)
1218{
1219	int isa_irq;
1220	int apic_pin;
1221
1222#if defined(SKIP_IRQ15_REDIRECT)
1223	if (isa_mask == (1 << 15)) {
1224		printf("skipping ISA IRQ15 redirect\n");
1225		return isa_mask;
1226	}
1227#endif  /* SKIP_IRQ15_REDIRECT */
1228
1229	isa_irq = ffs(isa_mask);		/* find its bit position */
1230	if (isa_irq == 0)			/* doesn't exist */
1231		return 0;
1232	--isa_irq;				/* make it zero based */
1233
1234	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1235	if (apic_pin == -1)
1236		return 0;
1237
1238	return (1 << apic_pin);			/* convert pin# to a mask */
1239}
1240
1241
1242/*
1243 * Determine which APIC pin an ISA/EISA INT is attached to.
1244 */
1245#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1246#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1247#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1248#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1249
1250#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1251int
1252isa_apic_irq(int isa_irq)
1253{
1254	int     intr;
1255
1256	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1257		if (INTTYPE(intr) == 0) {		/* standard INT */
1258			if (SRCBUSIRQ(intr) == isa_irq) {
1259				if (apic_int_is_bus_type(intr, ISA) ||
1260			            apic_int_is_bus_type(intr, EISA))
1261					return INTIRQ(intr);	/* found */
1262			}
1263		}
1264	}
1265	return -1;					/* NOT found */
1266}
1267
1268
1269/*
1270 * Determine which APIC pin a PCI INT is attached to.
1271 */
1272#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1273#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1274#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1275int
1276pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1277{
1278	int     intr;
1279
1280	--pciInt;					/* zero based */
1281
1282	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1283		if ((INTTYPE(intr) == 0)		/* standard INT */
1284		    && (SRCBUSID(intr) == pciBus)
1285		    && (SRCBUSDEVICE(intr) == pciDevice)
1286		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1287			if (apic_int_is_bus_type(intr, PCI))
1288				return INTIRQ(intr);	/* exact match */
1289
1290	return -1;					/* NOT found */
1291}
1292
1293int
1294next_apic_irq(int irq)
1295{
1296	int intr, ointr;
1297	int bus, bustype;
1298
1299	bus = 0;
1300	bustype = 0;
1301	for (intr = 0; intr < nintrs; intr++) {
1302		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1303			continue;
1304		bus = SRCBUSID(intr);
1305		bustype = apic_bus_type(bus);
1306		if (bustype != ISA &&
1307		    bustype != EISA &&
1308		    bustype != PCI)
1309			continue;
1310		break;
1311	}
1312	if (intr >= nintrs) {
1313		return -1;
1314	}
1315	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1316		if (INTTYPE(ointr) != 0)
1317			continue;
1318		if (bus != SRCBUSID(ointr))
1319			continue;
1320		if (bustype == PCI) {
1321			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1322				continue;
1323			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1324				continue;
1325		}
1326		if (bustype == ISA || bustype == EISA) {
1327			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1328				continue;
1329		}
1330		if (INTPIN(intr) == INTPIN(ointr))
1331			continue;
1332		break;
1333	}
1334	if (ointr >= nintrs) {
1335		return -1;
1336	}
1337	return INTIRQ(ointr);
1338}
1339#undef SRCBUSLINE
1340#undef SRCBUSDEVICE
1341#undef SRCBUSID
1342#undef SRCBUSIRQ
1343
1344#undef INTPIN
1345#undef INTIRQ
1346#undef INTAPIC
1347#undef INTTYPE
1348
1349
1350/*
1351 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1352 *
1353 * XXX FIXME:
1354 *  Exactly what this means is unclear at this point.  It is a solution
1355 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1356 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1357 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1358 *  option.
1359 */
1360int
1361undirect_isa_irq(int rirq)
1362{
1363#if defined(READY)
1364	if (bootverbose)
1365	    printf("Freeing redirected ISA irq %d.\n", rirq);
1366	/** FIXME: tickle the MB redirector chip */
1367	return ???;
1368#else
1369	if (bootverbose)
1370	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1371	return 0;
1372#endif  /* READY */
1373}
1374
1375
1376/*
1377 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1378 */
1379int
1380undirect_pci_irq(int rirq)
1381{
1382#if defined(READY)
1383	if (bootverbose)
1384		printf("Freeing redirected PCI irq %d.\n", rirq);
1385
1386	/** FIXME: tickle the MB redirector chip */
1387	return ???;
1388#else
1389	if (bootverbose)
1390		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1391		       rirq);
1392	return 0;
1393#endif  /* READY */
1394}
1395
1396
1397/*
1398 * given a bus ID, return:
1399 *  the bus type if found
1400 *  -1 if NOT found
1401 */
1402int
1403apic_bus_type(int id)
1404{
1405	int     x;
1406
1407	for (x = 0; x < mp_nbusses; ++x)
1408		if (bus_data[x].bus_id == id)
1409			return bus_data[x].bus_type;
1410
1411	return -1;
1412}
1413
1414
1415/*
1416 * given a LOGICAL APIC# and pin#, return:
1417 *  the associated src bus ID if found
1418 *  -1 if NOT found
1419 */
1420int
1421apic_src_bus_id(int apic, int pin)
1422{
1423	int     x;
1424
1425	/* search each of the possible INTerrupt sources */
1426	for (x = 0; x < nintrs; ++x)
1427		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1428		    (pin == io_apic_ints[x].dst_apic_int))
1429			return (io_apic_ints[x].src_bus_id);
1430
1431	return -1;		/* NOT found */
1432}
1433
1434
1435/*
1436 * given a LOGICAL APIC# and pin#, return:
1437 *  the associated src bus IRQ if found
1438 *  -1 if NOT found
1439 */
1440int
1441apic_src_bus_irq(int apic, int pin)
1442{
1443	int     x;
1444
1445	for (x = 0; x < nintrs; x++)
1446		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1447		    (pin == io_apic_ints[x].dst_apic_int))
1448			return (io_apic_ints[x].src_bus_irq);
1449
1450	return -1;		/* NOT found */
1451}
1452
1453
1454/*
1455 * given a LOGICAL APIC# and pin#, return:
1456 *  the associated INTerrupt type if found
1457 *  -1 if NOT found
1458 */
1459int
1460apic_int_type(int apic, int pin)
1461{
1462	int     x;
1463
1464	/* search each of the possible INTerrupt sources */
1465	for (x = 0; x < nintrs; ++x)
1466		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1467		    (pin == io_apic_ints[x].dst_apic_int))
1468			return (io_apic_ints[x].int_type);
1469
1470	return -1;		/* NOT found */
1471}
1472
1473int
1474apic_irq(int apic, int pin)
1475{
1476	int x;
1477	int res;
1478
1479	for (x = 0; x < nintrs; ++x)
1480		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1481		    (pin == io_apic_ints[x].dst_apic_int)) {
1482			res = io_apic_ints[x].int_vector;
1483			if (res == 0xff)
1484				return -1;
1485			if (apic != int_to_apicintpin[res].ioapic)
1486				panic("apic_irq: inconsistent table");
1487			if (pin != int_to_apicintpin[res].int_pin)
1488				panic("apic_irq inconsistent table (2)");
1489			return res;
1490		}
1491	return -1;
1492}
1493
1494
1495/*
1496 * given a LOGICAL APIC# and pin#, return:
1497 *  the associated trigger mode if found
1498 *  -1 if NOT found
1499 */
1500int
1501apic_trigger(int apic, int pin)
1502{
1503	int     x;
1504
1505	/* search each of the possible INTerrupt sources */
1506	for (x = 0; x < nintrs; ++x)
1507		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1508		    (pin == io_apic_ints[x].dst_apic_int))
1509			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1510
1511	return -1;		/* NOT found */
1512}
1513
1514
1515/*
1516 * given a LOGICAL APIC# and pin#, return:
1517 *  the associated 'active' level if found
1518 *  -1 if NOT found
1519 */
1520int
1521apic_polarity(int apic, int pin)
1522{
1523	int     x;
1524
1525	/* search each of the possible INTerrupt sources */
1526	for (x = 0; x < nintrs; ++x)
1527		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1528		    (pin == io_apic_ints[x].dst_apic_int))
1529			return (io_apic_ints[x].int_flags & 0x03);
1530
1531	return -1;		/* NOT found */
1532}
1533
1534
1535/*
1536 * set data according to MP defaults
1537 * FIXME: probably not complete yet...
1538 */
1539static void
1540default_mp_table(int type)
1541{
1542	int     ap_cpu_id;
1543#if defined(APIC_IO)
1544	u_int32_t ux;
1545	int     io_apic_id;
1546	int     pin;
1547#endif	/* APIC_IO */
1548
1549#if 0
1550	printf("  MP default config type: %d\n", type);
1551	switch (type) {
1552	case 1:
1553		printf("   bus: ISA, APIC: 82489DX\n");
1554		break;
1555	case 2:
1556		printf("   bus: EISA, APIC: 82489DX\n");
1557		break;
1558	case 3:
1559		printf("   bus: EISA, APIC: 82489DX\n");
1560		break;
1561	case 4:
1562		printf("   bus: MCA, APIC: 82489DX\n");
1563		break;
1564	case 5:
1565		printf("   bus: ISA+PCI, APIC: Integrated\n");
1566		break;
1567	case 6:
1568		printf("   bus: EISA+PCI, APIC: Integrated\n");
1569		break;
1570	case 7:
1571		printf("   bus: MCA+PCI, APIC: Integrated\n");
1572		break;
1573	default:
1574		printf("   future type\n");
1575		break;
1576		/* NOTREACHED */
1577	}
1578#endif	/* 0 */
1579
1580	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1581	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1582
1583	/* BSP */
1584	CPU_TO_ID(0) = boot_cpu_id;
1585	ID_TO_CPU(boot_cpu_id) = 0;
1586
1587	/* one and only AP */
1588	CPU_TO_ID(1) = ap_cpu_id;
1589	ID_TO_CPU(ap_cpu_id) = 1;
1590
1591#if defined(APIC_IO)
1592	/* one and only IO APIC */
1593	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1594
1595	/*
1596	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1597	 * necessary as some hardware isn't properly setting up the IO APIC
1598	 */
1599#if defined(REALLY_ANAL_IOAPICID_VALUE)
1600	if (io_apic_id != 2) {
1601#else
1602	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1603#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1604		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1605		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1606		ux |= 0x02000000;	/* set it to '2' */
1607		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1608		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1609		if ((ux & APIC_ID_MASK) != 0x02000000)
1610			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1611		io_apic_id = 2;
1612	}
1613	IO_TO_ID(0) = io_apic_id;
1614	ID_TO_IO(io_apic_id) = 0;
1615#endif	/* APIC_IO */
1616
1617	/* fill out bus entries */
1618	switch (type) {
1619	case 1:
1620	case 2:
1621	case 3:
1622	case 5:
1623	case 6:
1624		bus_data[0].bus_id = default_data[type - 1][1];
1625		bus_data[0].bus_type = default_data[type - 1][2];
1626		bus_data[1].bus_id = default_data[type - 1][3];
1627		bus_data[1].bus_type = default_data[type - 1][4];
1628		break;
1629
1630	/* case 4: case 7:		   MCA NOT supported */
1631	default:		/* illegal/reserved */
1632		panic("BAD default MP config: %d", type);
1633		/* NOTREACHED */
1634	}
1635
1636#if defined(APIC_IO)
1637	/* general cases from MP v1.4, table 5-2 */
1638	for (pin = 0; pin < 16; ++pin) {
1639		io_apic_ints[pin].int_type = 0;
1640		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1641		io_apic_ints[pin].src_bus_id = 0;
1642		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1643		io_apic_ints[pin].dst_apic_id = io_apic_id;
1644		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1645	}
1646
1647	/* special cases from MP v1.4, table 5-2 */
1648	if (type == 2) {
1649		io_apic_ints[2].int_type = 0xff;	/* N/C */
1650		io_apic_ints[13].int_type = 0xff;	/* N/C */
1651#if !defined(APIC_MIXED_MODE)
1652		/** FIXME: ??? */
1653		panic("sorry, can't support type 2 default yet");
1654#endif	/* APIC_MIXED_MODE */
1655	}
1656	else
1657		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1658
1659	if (type == 7)
1660		io_apic_ints[0].int_type = 0xff;	/* N/C */
1661	else
1662		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1663#endif	/* APIC_IO */
1664}
1665
1666
1667/*
1668 * initialize all the SMP locks
1669 */
1670
1671/* critical region around IO APIC, apic_imen */
1672struct simplelock	imen_lock;
1673
1674/* critical region around splxx(), cpl, cml, cil, ipending */
1675struct simplelock	cpl_lock;
1676
1677/* Make FAST_INTR() routines sequential */
1678struct simplelock	fast_intr_lock;
1679
1680/* critical region around INTR() routines */
1681struct simplelock	intr_lock;
1682
1683/* lock regions protected in UP kernel via cli/sti */
1684struct simplelock	mpintr_lock;
1685
1686/* lock region used by kernel profiling */
1687struct simplelock	mcount_lock;
1688
1689#ifdef USE_COMLOCK
1690/* locks com (tty) data/hardware accesses: a FASTINTR() */
1691struct simplelock	com_lock;
1692#endif /* USE_COMLOCK */
1693
1694#ifdef USE_CLOCKLOCK
1695/* lock regions around the clock hardware */
1696struct simplelock	clock_lock;
1697#endif /* USE_CLOCKLOCK */
1698
1699/* lock around the MP rendezvous */
1700static struct simplelock smp_rv_lock;
1701
1702static void
1703init_locks(void)
1704{
1705	/*
1706	 * Get the initial mp_lock with a count of 1 for the BSP.
1707	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1708	 */
1709	mp_lock = 0x00000001;
1710
1711	/* ISR uses its own "giant lock" */
1712	isr_lock = FREE_LOCK;
1713
1714#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1715	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1716#endif
1717
1718	s_lock_init((struct simplelock*)&mpintr_lock);
1719
1720	s_lock_init((struct simplelock*)&mcount_lock);
1721
1722	s_lock_init((struct simplelock*)&fast_intr_lock);
1723	s_lock_init((struct simplelock*)&intr_lock);
1724	s_lock_init((struct simplelock*)&imen_lock);
1725	s_lock_init((struct simplelock*)&cpl_lock);
1726	s_lock_init(&smp_rv_lock);
1727
1728#ifdef USE_COMLOCK
1729	s_lock_init((struct simplelock*)&com_lock);
1730#endif /* USE_COMLOCK */
1731#ifdef USE_CLOCKLOCK
1732	s_lock_init((struct simplelock*)&clock_lock);
1733#endif /* USE_CLOCKLOCK */
1734}
1735
1736
1737/* Wait for all APs to be fully initialized */
1738extern int wait_ap(unsigned int);
1739
1740/*
1741 * start each AP in our list
1742 */
1743static int
1744start_all_aps(u_int boot_addr)
1745{
1746	int     x, i, pg;
1747	u_char  mpbiosreason;
1748	u_long  mpbioswarmvec;
1749	struct globaldata *gd;
1750	char *stack;
1751
1752	POSTCODE(START_ALL_APS_POST);
1753
1754	/* initialize BSP's local APIC */
1755	apic_initialize();
1756	bsp_apic_ready = 1;
1757
1758	/* install the AP 1st level boot code */
1759	install_ap_tramp(boot_addr);
1760
1761
1762	/* save the current value of the warm-start vector */
1763	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1764#ifndef PC98
1765	outb(CMOS_REG, BIOS_RESET);
1766	mpbiosreason = inb(CMOS_DATA);
1767#endif
1768
1769	/* record BSP in CPU map */
1770	all_cpus = 1;
1771
1772	/* set up 0 -> 4MB P==V mapping for AP boot */
1773	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1774	invltlb();
1775
1776	/* start each AP */
1777	for (x = 1; x <= mp_naps; ++x) {
1778
1779		/* This is a bit verbose, it will go away soon.  */
1780
1781		/* first page of AP's private space */
1782		pg = x * i386_btop(sizeof(struct privatespace));
1783
1784		/* allocate a new private data page */
1785		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1786
1787		/* wire it into the private page table page */
1788		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1789
1790		/* allocate and set up an idle stack data page */
1791		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1792		for (i = 0; i < UPAGES; i++)
1793			SMPpt[pg + 5 + i] = (pt_entry_t)
1794			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1795
1796		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
1797		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
1798		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
1799		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
1800
1801		/* prime data page for it to use */
1802		gd->gd_cpuid = x;
1803		gd->gd_cpu_lockid = x << 24;
1804		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
1805		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
1806		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
1807		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
1808		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
1809		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
1810		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
1811		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
1812
1813		/* setup a vector to our boot code */
1814		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1815		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1816#ifndef PC98
1817		outb(CMOS_REG, BIOS_RESET);
1818		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1819#endif
1820
1821		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1822		bootAP = x;
1823
1824		/* attempt to start the Application Processor */
1825		CHECK_INIT(99);	/* setup checkpoints */
1826		if (!start_ap(x, boot_addr)) {
1827			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1828			CHECK_PRINT("trace");	/* show checkpoints */
1829			/* better panic as the AP may be running loose */
1830			printf("panic y/n? [y] ");
1831			if (cngetc() != 'n')
1832				panic("bye-bye");
1833		}
1834		CHECK_PRINT("trace");		/* show checkpoints */
1835
1836		/* record its version info */
1837		cpu_apic_versions[x] = cpu_apic_versions[0];
1838
1839		all_cpus |= (1 << x);		/* record AP in CPU map */
1840	}
1841
1842	/* build our map of 'other' CPUs */
1843	other_cpus = all_cpus & ~(1 << cpuid);
1844
1845	/* fill in our (BSP) APIC version */
1846	cpu_apic_versions[0] = lapic.version;
1847
1848	/* restore the warmstart vector */
1849	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1850#ifndef PC98
1851	outb(CMOS_REG, BIOS_RESET);
1852	outb(CMOS_DATA, mpbiosreason);
1853#endif
1854
1855	/*
1856	 * Set up the idle context for the BSP.  Similar to above except
1857	 * that some was done by locore, some by pmap.c and some is implicit
1858	 * because the BSP is cpu#0 and the page is initially zero, and also
1859	 * because we can refer to variables by name on the BSP..
1860	 */
1861
1862	/* Allocate and setup BSP idle stack */
1863	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1864	for (i = 0; i < UPAGES; i++)
1865		SMPpt[5 + i] = (pt_entry_t)
1866		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1867
1868	*(int *)PTD = 0;
1869	pmap_set_opt();
1870
1871	/* number of APs actually started */
1872	return mp_ncpus - 1;
1873}
1874
1875
1876/*
1877 * load the 1st level AP boot code into base memory.
1878 */
1879
1880/* targets for relocation */
1881extern void bigJump(void);
1882extern void bootCodeSeg(void);
1883extern void bootDataSeg(void);
1884extern void MPentry(void);
1885extern u_int MP_GDT;
1886extern u_int mp_gdtbase;
1887
1888static void
1889install_ap_tramp(u_int boot_addr)
1890{
1891	int     x;
1892	int     size = *(int *) ((u_long) & bootMP_size);
1893	u_char *src = (u_char *) ((u_long) bootMP);
1894	u_char *dst = (u_char *) boot_addr + KERNBASE;
1895	u_int   boot_base = (u_int) bootMP;
1896	u_int8_t *dst8;
1897	u_int16_t *dst16;
1898	u_int32_t *dst32;
1899
1900	POSTCODE(INSTALL_AP_TRAMP_POST);
1901
1902	for (x = 0; x < size; ++x)
1903		*dst++ = *src++;
1904
1905	/*
1906	 * modify addresses in code we just moved to basemem. unfortunately we
1907	 * need fairly detailed info about mpboot.s for this to work.  changes
1908	 * to mpboot.s might require changes here.
1909	 */
1910
1911	/* boot code is located in KERNEL space */
1912	dst = (u_char *) boot_addr + KERNBASE;
1913
1914	/* modify the lgdt arg */
1915	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1916	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1917
1918	/* modify the ljmp target for MPentry() */
1919	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1920	*dst32 = ((u_int) MPentry - KERNBASE);
1921
1922	/* modify the target for boot code segment */
1923	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1924	dst8 = (u_int8_t *) (dst16 + 1);
1925	*dst16 = (u_int) boot_addr & 0xffff;
1926	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1927
1928	/* modify the target for boot data segment */
1929	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1930	dst8 = (u_int8_t *) (dst16 + 1);
1931	*dst16 = (u_int) boot_addr & 0xffff;
1932	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1933}
1934
1935
1936/*
1937 * this function starts the AP (application processor) identified
1938 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1939 * to accomplish this.  This is necessary because of the nuances
1940 * of the different hardware we might encounter.  It ain't pretty,
1941 * but it seems to work.
1942 */
1943static int
1944start_ap(int logical_cpu, u_int boot_addr)
1945{
1946	int     physical_cpu;
1947	int     vector;
1948	int     cpus;
1949	u_long  icr_lo, icr_hi;
1950
1951	POSTCODE(START_AP_POST);
1952
1953	/* get the PHYSICAL APIC ID# */
1954	physical_cpu = CPU_TO_ID(logical_cpu);
1955
1956	/* calculate the vector */
1957	vector = (boot_addr >> 12) & 0xff;
1958
1959	/* used as a watchpoint to signal AP startup */
1960	cpus = mp_ncpus;
1961
1962	/*
1963	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1964	 * and running the target CPU. OR this INIT IPI might be latched (P5
1965	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1966	 * ignored.
1967	 */
1968
1969	/* setup the address for the target AP */
1970	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1971	icr_hi |= (physical_cpu << 24);
1972	lapic.icr_hi = icr_hi;
1973
1974	/* do an INIT IPI: assert RESET */
1975	icr_lo = lapic.icr_lo & 0xfff00000;
1976	lapic.icr_lo = icr_lo | 0x0000c500;
1977
1978	/* wait for pending status end */
1979	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1980		 /* spin */ ;
1981
1982	/* do an INIT IPI: deassert RESET */
1983	lapic.icr_lo = icr_lo | 0x00008500;
1984
1985	/* wait for pending status end */
1986	u_sleep(10000);		/* wait ~10mS */
1987	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1988		 /* spin */ ;
1989
1990	/*
1991	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1992	 * latched, (P5 bug) this 1st STARTUP would then terminate
1993	 * immediately, and the previously started INIT IPI would continue. OR
1994	 * the previous INIT IPI has already run. and this STARTUP IPI will
1995	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1996	 * will run.
1997	 */
1998
1999	/* do a STARTUP IPI */
2000	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2001	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2002		 /* spin */ ;
2003	u_sleep(200);		/* wait ~200uS */
2004
2005	/*
2006	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2007	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2008	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2009	 * recognized after hardware RESET or INIT IPI.
2010	 */
2011
2012	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2013	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2014		 /* spin */ ;
2015	u_sleep(200);		/* wait ~200uS */
2016
2017	/* wait for it to start */
2018	set_apic_timer(5000000);/* == 5 seconds */
2019	while (read_apic_timer())
2020		if (mp_ncpus > cpus)
2021			return 1;	/* return SUCCESS */
2022
2023	return 0;		/* return FAILURE */
2024}
2025
2026
2027/*
2028 * Flush the TLB on all other CPU's
2029 *
2030 * XXX: Needs to handshake and wait for completion before proceding.
2031 */
2032void
2033smp_invltlb(void)
2034{
2035#if defined(APIC_IO)
2036	if (smp_started && invltlb_ok)
2037		all_but_self_ipi(XINVLTLB_OFFSET);
2038#endif  /* APIC_IO */
2039}
2040
2041void
2042invlpg(u_int addr)
2043{
2044	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2045
2046	/* send a message to the other CPUs */
2047	smp_invltlb();
2048}
2049
2050void
2051invltlb(void)
2052{
2053	u_long  temp;
2054
2055	/*
2056	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2057	 * inlined.
2058	 */
2059	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2060
2061	/* send a message to the other CPUs */
2062	smp_invltlb();
2063}
2064
2065
2066/*
2067 * When called the executing CPU will send an IPI to all other CPUs
2068 *  requesting that they halt execution.
2069 *
2070 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2071 *
2072 *  - Signals all CPUs in map to stop.
2073 *  - Waits for each to stop.
2074 *
2075 * Returns:
2076 *  -1: error
2077 *   0: NA
2078 *   1: ok
2079 *
2080 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2081 *            from executing at same time.
2082 */
2083int
2084stop_cpus(u_int map)
2085{
2086	if (!smp_started)
2087		return 0;
2088
2089	/* send the Xcpustop IPI to all CPUs in map */
2090	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2091
2092	while ((stopped_cpus & map) != map)
2093		/* spin */ ;
2094
2095	return 1;
2096}
2097
2098
2099/*
2100 * Called by a CPU to restart stopped CPUs.
2101 *
2102 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2103 *
2104 *  - Signals all CPUs in map to restart.
2105 *  - Waits for each to restart.
2106 *
2107 * Returns:
2108 *  -1: error
2109 *   0: NA
2110 *   1: ok
2111 */
2112int
2113restart_cpus(u_int map)
2114{
2115	if (!smp_started)
2116		return 0;
2117
2118	started_cpus = map;		/* signal other cpus to restart */
2119
2120	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2121		/* spin */ ;
2122
2123	return 1;
2124}
2125
2126int smp_active = 0;	/* are the APs allowed to run? */
2127SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2128
2129/* XXX maybe should be hw.ncpu */
2130static int smp_cpus = 1;	/* how many cpu's running */
2131SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2132
2133int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2134SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2135
2136/* Warning: Do not staticize.  Used from swtch.s */
2137int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2138SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2139	   &do_page_zero_idle, 0, "");
2140
2141/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2142int forward_irq_enabled = 1;
2143SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2144	   &forward_irq_enabled, 0, "");
2145
2146/* Enable forwarding of a signal to a process running on a different CPU */
2147static int forward_signal_enabled = 1;
2148SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2149	   &forward_signal_enabled, 0, "");
2150
2151/* Enable forwarding of roundrobin to all other cpus */
2152static int forward_roundrobin_enabled = 1;
2153SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2154	   &forward_roundrobin_enabled, 0, "");
2155
2156/*
2157 * This is called once the rest of the system is up and running and we're
2158 * ready to let the AP's out of the pen.
2159 */
2160void ap_init(void);
2161
2162void
2163ap_init()
2164{
2165	u_int	apic_id;
2166
2167	/* BSP may have changed PTD while we're waiting for the lock */
2168	cpu_invltlb();
2169
2170	smp_cpus++;
2171
2172#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2173	lidt(&r_idt);
2174#endif
2175
2176	/* Build our map of 'other' CPUs. */
2177	other_cpus = all_cpus & ~(1 << cpuid);
2178
2179	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2180
2181	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2182	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2183
2184	/* set up FPU state on the AP */
2185	npxinit(__INITIAL_NPXCW__);
2186
2187	/* A quick check from sanity claus */
2188	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2189	if (cpuid != apic_id) {
2190		printf("SMP: cpuid = %d\n", cpuid);
2191		printf("SMP: apic_id = %d\n", apic_id);
2192		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2193		panic("cpuid mismatch! boom!!");
2194	}
2195
2196	/* Init local apic for irq's */
2197	apic_initialize();
2198
2199	/* Set memory range attributes for this CPU to match the BSP */
2200	mem_range_AP_init();
2201
2202	/*
2203	 * Activate smp_invltlb, although strictly speaking, this isn't
2204	 * quite correct yet.  We should have a bitfield for cpus willing
2205	 * to accept TLB flush IPI's or something and sync them.
2206	 */
2207	if (smp_cpus == mp_ncpus) {
2208		invltlb_ok = 1;
2209		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2210		smp_active = 1;	 /* historic */
2211	}
2212}
2213
2214#ifdef BETTER_CLOCK
2215
2216#define CHECKSTATE_USER	0
2217#define CHECKSTATE_SYS	1
2218#define CHECKSTATE_INTR	2
2219
2220/* Do not staticize.  Used from apic_vector.s */
2221struct proc*	checkstate_curproc[NCPU];
2222int		checkstate_cpustate[NCPU];
2223u_long		checkstate_pc[NCPU];
2224
2225extern long	cp_time[CPUSTATES];
2226
2227#define PC_TO_INDEX(pc, prof)				\
2228        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2229            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2230
2231static void
2232addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2233{
2234	int i;
2235	struct uprof *prof;
2236	u_long pc;
2237
2238	pc = checkstate_pc[id];
2239	prof = &p->p_stats->p_prof;
2240	if (pc >= prof->pr_off &&
2241	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2242		if ((p->p_flag & P_OWEUPC) == 0) {
2243			prof->pr_addr = pc;
2244			prof->pr_ticks = 1;
2245			p->p_flag |= P_OWEUPC;
2246		}
2247		*astmap |= (1 << id);
2248	}
2249}
2250
2251static void
2252forwarded_statclock(int id, int pscnt, int *astmap)
2253{
2254	struct pstats *pstats;
2255	long rss;
2256	struct rusage *ru;
2257	struct vmspace *vm;
2258	int cpustate;
2259	struct proc *p;
2260#ifdef GPROF
2261	register struct gmonparam *g;
2262	int i;
2263#endif
2264
2265	p = checkstate_curproc[id];
2266	cpustate = checkstate_cpustate[id];
2267
2268	switch (cpustate) {
2269	case CHECKSTATE_USER:
2270		if (p->p_flag & P_PROFIL)
2271			addupc_intr_forwarded(p, id, astmap);
2272		if (pscnt > 1)
2273			return;
2274		p->p_uticks++;
2275		if (p->p_nice > NZERO)
2276			cp_time[CP_NICE]++;
2277		else
2278			cp_time[CP_USER]++;
2279		break;
2280	case CHECKSTATE_SYS:
2281#ifdef GPROF
2282		/*
2283		 * Kernel statistics are just like addupc_intr, only easier.
2284		 */
2285		g = &_gmonparam;
2286		if (g->state == GMON_PROF_ON) {
2287			i = checkstate_pc[id] - g->lowpc;
2288			if (i < g->textsize) {
2289				i /= HISTFRACTION * sizeof(*g->kcount);
2290				g->kcount[i]++;
2291			}
2292		}
2293#endif
2294		if (pscnt > 1)
2295			return;
2296
2297		if (!p)
2298			cp_time[CP_IDLE]++;
2299		else {
2300			p->p_sticks++;
2301			cp_time[CP_SYS]++;
2302		}
2303		break;
2304	case CHECKSTATE_INTR:
2305	default:
2306#ifdef GPROF
2307		/*
2308		 * Kernel statistics are just like addupc_intr, only easier.
2309		 */
2310		g = &_gmonparam;
2311		if (g->state == GMON_PROF_ON) {
2312			i = checkstate_pc[id] - g->lowpc;
2313			if (i < g->textsize) {
2314				i /= HISTFRACTION * sizeof(*g->kcount);
2315				g->kcount[i]++;
2316			}
2317		}
2318#endif
2319		if (pscnt > 1)
2320			return;
2321		if (p)
2322			p->p_iticks++;
2323		cp_time[CP_INTR]++;
2324	}
2325	if (p != NULL) {
2326		schedclock(p);
2327
2328		/* Update resource usage integrals and maximums. */
2329		if ((pstats = p->p_stats) != NULL &&
2330		    (ru = &pstats->p_ru) != NULL &&
2331		    (vm = p->p_vmspace) != NULL) {
2332			ru->ru_ixrss += pgtok(vm->vm_tsize);
2333			ru->ru_idrss += pgtok(vm->vm_dsize);
2334			ru->ru_isrss += pgtok(vm->vm_ssize);
2335			rss = pgtok(vmspace_resident_count(vm));
2336			if (ru->ru_maxrss < rss)
2337				ru->ru_maxrss = rss;
2338        	}
2339	}
2340}
2341
2342void
2343forward_statclock(int pscnt)
2344{
2345	int map;
2346	int id;
2347	int i;
2348
2349	/* Kludge. We don't yet have separate locks for the interrupts
2350	 * and the kernel. This means that we cannot let the other processors
2351	 * handle complex interrupts while inhibiting them from entering
2352	 * the kernel in a non-interrupt context.
2353	 *
2354	 * What we can do, without changing the locking mechanisms yet,
2355	 * is letting the other processors handle a very simple interrupt
2356	 * (wich determines the processor states), and do the main
2357	 * work ourself.
2358	 */
2359
2360	if (!smp_started || !invltlb_ok || cold || panicstr)
2361		return;
2362
2363	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2364
2365	map = other_cpus & ~stopped_cpus ;
2366	checkstate_probed_cpus = 0;
2367	if (map != 0)
2368		selected_apic_ipi(map,
2369				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2370
2371	i = 0;
2372	while (checkstate_probed_cpus != map) {
2373		/* spin */
2374		i++;
2375		if (i == 100000) {
2376#ifdef BETTER_CLOCK_DIAGNOSTIC
2377			printf("forward_statclock: checkstate %x\n",
2378			       checkstate_probed_cpus);
2379#endif
2380			break;
2381		}
2382	}
2383
2384	/*
2385	 * Step 2: walk through other processors processes, update ticks and
2386	 * profiling info.
2387	 */
2388
2389	map = 0;
2390	for (id = 0; id < mp_ncpus; id++) {
2391		if (id == cpuid)
2392			continue;
2393		if (((1 << id) & checkstate_probed_cpus) == 0)
2394			continue;
2395		forwarded_statclock(id, pscnt, &map);
2396	}
2397	if (map != 0) {
2398		checkstate_need_ast |= map;
2399		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2400		i = 0;
2401		while ((checkstate_need_ast & map) != 0) {
2402			/* spin */
2403			i++;
2404			if (i > 100000) {
2405#ifdef BETTER_CLOCK_DIAGNOSTIC
2406				printf("forward_statclock: dropped ast 0x%x\n",
2407				       checkstate_need_ast & map);
2408#endif
2409				break;
2410			}
2411		}
2412	}
2413}
2414
2415void
2416forward_hardclock(int pscnt)
2417{
2418	int map;
2419	int id;
2420	struct proc *p;
2421	struct pstats *pstats;
2422	int i;
2423
2424	/* Kludge. We don't yet have separate locks for the interrupts
2425	 * and the kernel. This means that we cannot let the other processors
2426	 * handle complex interrupts while inhibiting them from entering
2427	 * the kernel in a non-interrupt context.
2428	 *
2429	 * What we can do, without changing the locking mechanisms yet,
2430	 * is letting the other processors handle a very simple interrupt
2431	 * (wich determines the processor states), and do the main
2432	 * work ourself.
2433	 */
2434
2435	if (!smp_started || !invltlb_ok || cold || panicstr)
2436		return;
2437
2438	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2439
2440	map = other_cpus & ~stopped_cpus ;
2441	checkstate_probed_cpus = 0;
2442	if (map != 0)
2443		selected_apic_ipi(map,
2444				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2445
2446	i = 0;
2447	while (checkstate_probed_cpus != map) {
2448		/* spin */
2449		i++;
2450		if (i == 100000) {
2451#ifdef BETTER_CLOCK_DIAGNOSTIC
2452			printf("forward_hardclock: checkstate %x\n",
2453			       checkstate_probed_cpus);
2454#endif
2455			break;
2456		}
2457	}
2458
2459	/*
2460	 * Step 2: walk through other processors processes, update virtual
2461	 * timer and profiling timer. If stathz == 0, also update ticks and
2462	 * profiling info.
2463	 */
2464
2465	map = 0;
2466	for (id = 0; id < mp_ncpus; id++) {
2467		if (id == cpuid)
2468			continue;
2469		if (((1 << id) & checkstate_probed_cpus) == 0)
2470			continue;
2471		p = checkstate_curproc[id];
2472		if (p) {
2473			pstats = p->p_stats;
2474			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2475			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2476			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2477				psignal(p, SIGVTALRM);
2478				map |= (1 << id);
2479			}
2480			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2481			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2482				psignal(p, SIGPROF);
2483				map |= (1 << id);
2484			}
2485		}
2486		if (stathz == 0) {
2487			forwarded_statclock( id, pscnt, &map);
2488		}
2489	}
2490	if (map != 0) {
2491		checkstate_need_ast |= map;
2492		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2493		i = 0;
2494		while ((checkstate_need_ast & map) != 0) {
2495			/* spin */
2496			i++;
2497			if (i > 100000) {
2498#ifdef BETTER_CLOCK_DIAGNOSTIC
2499				printf("forward_hardclock: dropped ast 0x%x\n",
2500				       checkstate_need_ast & map);
2501#endif
2502				break;
2503			}
2504		}
2505	}
2506}
2507
2508#endif /* BETTER_CLOCK */
2509
2510void
2511forward_signal(struct proc *p)
2512{
2513	int map;
2514	int id;
2515	int i;
2516
2517	/* Kludge. We don't yet have separate locks for the interrupts
2518	 * and the kernel. This means that we cannot let the other processors
2519	 * handle complex interrupts while inhibiting them from entering
2520	 * the kernel in a non-interrupt context.
2521	 *
2522	 * What we can do, without changing the locking mechanisms yet,
2523	 * is letting the other processors handle a very simple interrupt
2524	 * (wich determines the processor states), and do the main
2525	 * work ourself.
2526	 */
2527
2528	if (!smp_started || !invltlb_ok || cold || panicstr)
2529		return;
2530	if (!forward_signal_enabled)
2531		return;
2532	while (1) {
2533		if (p->p_stat != SRUN)
2534			return;
2535		id = p->p_oncpu;
2536		if (id == 0xff)
2537			return;
2538		map = (1<<id);
2539		checkstate_need_ast |= map;
2540		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2541		i = 0;
2542		while ((checkstate_need_ast & map) != 0) {
2543			/* spin */
2544			i++;
2545			if (i > 100000) {
2546#if 0
2547				printf("forward_signal: dropped ast 0x%x\n",
2548				       checkstate_need_ast & map);
2549#endif
2550				break;
2551			}
2552		}
2553		if (id == p->p_oncpu)
2554			return;
2555	}
2556}
2557
2558void
2559forward_roundrobin(void)
2560{
2561	u_int map;
2562	int i;
2563
2564	if (!smp_started || !invltlb_ok || cold || panicstr)
2565		return;
2566	if (!forward_roundrobin_enabled)
2567		return;
2568	resched_cpus |= other_cpus;
2569	map = other_cpus & ~stopped_cpus ;
2570#if 1
2571	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2572#else
2573	(void) all_but_self_ipi(XCPUAST_OFFSET);
2574#endif
2575	i = 0;
2576	while ((checkstate_need_ast & map) != 0) {
2577		/* spin */
2578		i++;
2579		if (i > 100000) {
2580#if 0
2581			printf("forward_roundrobin: dropped ast 0x%x\n",
2582			       checkstate_need_ast & map);
2583#endif
2584			break;
2585		}
2586	}
2587}
2588
2589
2590#ifdef APIC_INTR_REORDER
2591/*
2592 *	Maintain mapping from softintr vector to isr bit in local apic.
2593 */
2594void
2595set_lapic_isrloc(int intr, int vector)
2596{
2597	if (intr < 0 || intr > 32)
2598		panic("set_apic_isrloc: bad intr argument: %d",intr);
2599	if (vector < ICU_OFFSET || vector > 255)
2600		panic("set_apic_isrloc: bad vector argument: %d",vector);
2601	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2602	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2603}
2604#endif
2605
2606/*
2607 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2608 * (if specified), rendezvous, execute the action function (if specified),
2609 * rendezvous again, execute the teardown function (if specified), and then
2610 * resume.
2611 *
2612 * Note that the supplied external functions _must_ be reentrant and aware
2613 * that they are running in parallel and in an unknown lock context.
2614 */
2615static void (*smp_rv_setup_func)(void *arg);
2616static void (*smp_rv_action_func)(void *arg);
2617static void (*smp_rv_teardown_func)(void *arg);
2618static void *smp_rv_func_arg;
2619static volatile int smp_rv_waiters[2];
2620
2621void
2622smp_rendezvous_action(void)
2623{
2624	/* setup function */
2625	if (smp_rv_setup_func != NULL)
2626		smp_rv_setup_func(smp_rv_func_arg);
2627	/* spin on entry rendezvous */
2628	atomic_add_int(&smp_rv_waiters[0], 1);
2629	while (smp_rv_waiters[0] < mp_ncpus)
2630		;
2631	/* action function */
2632	if (smp_rv_action_func != NULL)
2633		smp_rv_action_func(smp_rv_func_arg);
2634	/* spin on exit rendezvous */
2635	atomic_add_int(&smp_rv_waiters[1], 1);
2636	while (smp_rv_waiters[1] < mp_ncpus)
2637		;
2638	/* teardown function */
2639	if (smp_rv_teardown_func != NULL)
2640		smp_rv_teardown_func(smp_rv_func_arg);
2641}
2642
2643void
2644smp_rendezvous(void (* setup_func)(void *),
2645	       void (* action_func)(void *),
2646	       void (* teardown_func)(void *),
2647	       void *arg)
2648{
2649	u_int	efl;
2650
2651	/* obtain rendezvous lock */
2652	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2653
2654	/* set static function pointers */
2655	smp_rv_setup_func = setup_func;
2656	smp_rv_action_func = action_func;
2657	smp_rv_teardown_func = teardown_func;
2658	smp_rv_func_arg = arg;
2659	smp_rv_waiters[0] = 0;
2660	smp_rv_waiters[1] = 0;
2661
2662	/* disable interrupts on this CPU, save interrupt status */
2663	efl = read_eflags();
2664	write_eflags(efl & ~PSL_I);
2665
2666	/* signal other processors, which will enter the IPI with interrupts off */
2667	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2668
2669	/* call executor function */
2670	smp_rendezvous_action();
2671
2672	/* restore interrupt flag */
2673	write_eflags(efl);
2674
2675	/* release lock */
2676	s_unlock(&smp_rv_lock);
2677}
2678