mp_machdep.c revision 255726
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 255726 2013-09-20 05:06:03Z gibbs $");
29
30#include "opt_cpu.h"
31#include "opt_ddb.h"
32#include "opt_kstack_pages.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/cpuset.h>
40#ifdef GPROF
41#include <sys/gmon.h>
42#endif
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/memrange.h>
48#include <sys/mutex.h>
49#include <sys/pcpu.h>
50#include <sys/proc.h>
51#include <sys/sched.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/pmap.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_extern.h>
60
61#include <x86/apicreg.h>
62#include <machine/clock.h>
63#include <machine/cputypes.h>
64#include <machine/cpufunc.h>
65#include <x86/mca.h>
66#include <machine/md_var.h>
67#include <machine/pcb.h>
68#include <machine/psl.h>
69#include <machine/smp.h>
70#include <machine/specialreg.h>
71#include <machine/tss.h>
72#include <machine/cpu.h>
73
74#ifdef XENHVM
75#include <xen/hvm.h>
76#endif
77
78#define WARMBOOT_TARGET		0
79#define WARMBOOT_OFF		(KERNBASE + 0x0467)
80#define WARMBOOT_SEG		(KERNBASE + 0x0469)
81
82#define CMOS_REG		(0x70)
83#define CMOS_DATA		(0x71)
84#define BIOS_RESET		(0x0f)
85#define BIOS_WARM		(0x0a)
86
87/* lock region used by kernel profiling */
88int	mcount_lock;
89
90int	mp_naps;		/* # of Applications processors */
91int	boot_cpu_id = -1;	/* designated BSP */
92
93extern  struct pcpu __pcpu[];
94
95/* AP uses this during bootstrap.  Do not staticize.  */
96char *bootSTK;
97static int bootAP;
98
99/* Free these after use */
100void *bootstacks[MAXCPU];
101
102/* Temporary variables for init_secondary()  */
103char *doublefault_stack;
104char *nmi_stack;
105void *dpcpu;
106
107struct pcb stoppcbs[MAXCPU];
108struct pcb **susppcbs;
109
110/* Variables needed for SMP tlb shootdown. */
111vm_offset_t smp_tlb_addr2;
112struct invpcid_descr smp_tlb_invpcid;
113volatile int smp_tlb_wait;
114uint64_t pcid_cr3;
115pmap_t smp_tlb_pmap;
116
117#ifdef COUNT_IPIS
118/* Interrupt counts. */
119static u_long *ipi_preempt_counts[MAXCPU];
120static u_long *ipi_ast_counts[MAXCPU];
121u_long *ipi_invltlb_counts[MAXCPU];
122u_long *ipi_invlrng_counts[MAXCPU];
123u_long *ipi_invlpg_counts[MAXCPU];
124u_long *ipi_invlcache_counts[MAXCPU];
125u_long *ipi_rendezvous_counts[MAXCPU];
126static u_long *ipi_hardclock_counts[MAXCPU];
127#endif
128
129/* Default cpu_ops implementation. */
130struct cpu_ops cpu_ops = {
131	.ipi_vectored = lapic_ipi_vectored
132};
133
134extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
135
136extern int pmap_pcid_enabled;
137
138/*
139 * Local data and functions.
140 */
141
142static volatile cpuset_t ipi_nmi_pending;
143
144/* used to hold the AP's until we are ready to release them */
145static struct mtx ap_boot_mtx;
146
147/* Set to 1 once we're ready to let the APs out of the pen. */
148static volatile int aps_ready = 0;
149
150/*
151 * Store data from cpu_add() until later in the boot when we actually setup
152 * the APs.
153 */
154struct cpu_info {
155	int	cpu_present:1;
156	int	cpu_bsp:1;
157	int	cpu_disabled:1;
158	int	cpu_hyperthread:1;
159} static cpu_info[MAX_APIC_ID + 1];
160int cpu_apic_ids[MAXCPU];
161int apic_cpuids[MAX_APIC_ID + 1];
162
163/* Holds pending bitmap based IPIs per CPU */
164static volatile u_int cpu_ipi_pending[MAXCPU];
165
166static u_int boot_address;
167static int cpu_logical;			/* logical cpus per core */
168static int cpu_cores;			/* cores per package */
169
170static void	assign_cpu_ids(void);
171static void	set_interrupt_apic_ids(void);
172static int	start_all_aps(void);
173static int	start_ap(int apic_id);
174static void	release_aps(void *dummy);
175
176static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
177static int	hyperthreading_allowed = 1;
178static u_int	bootMP_size;
179
180static void
181mem_range_AP_init(void)
182{
183	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
184		mem_range_softc.mr_op->initAP(&mem_range_softc);
185}
186
187static void
188topo_probe_amd(void)
189{
190	int core_id_bits;
191	int id;
192
193	/* AMD processors do not support HTT. */
194	cpu_logical = 1;
195
196	if ((amd_feature2 & AMDID2_CMP) == 0) {
197		cpu_cores = 1;
198		return;
199	}
200
201	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
202	    AMDID_COREID_SIZE_SHIFT;
203	if (core_id_bits == 0) {
204		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
205		return;
206	}
207
208	/* Fam 10h and newer should get here. */
209	for (id = 0; id <= MAX_APIC_ID; id++) {
210		/* Check logical CPU availability. */
211		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
212			continue;
213		/* Check if logical CPU has the same package ID. */
214		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
215			continue;
216		cpu_cores++;
217	}
218}
219
220/*
221 * Round up to the next power of two, if necessary, and then
222 * take log2.
223 * Returns -1 if argument is zero.
224 */
225static __inline int
226mask_width(u_int x)
227{
228
229	return (fls(x << (1 - powerof2(x))) - 1);
230}
231
232static void
233topo_probe_0x4(void)
234{
235	u_int p[4];
236	int pkg_id_bits;
237	int core_id_bits;
238	int max_cores;
239	int max_logical;
240	int id;
241
242	/* Both zero and one here mean one logical processor per package. */
243	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
244	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
245	if (max_logical <= 1)
246		return;
247
248	/*
249	 * Because of uniformity assumption we examine only
250	 * those logical processors that belong to the same
251	 * package as BSP.  Further, we count number of
252	 * logical processors that belong to the same core
253	 * as BSP thus deducing number of threads per core.
254	 */
255	if (cpu_high >= 0x4) {
256		cpuid_count(0x04, 0, p);
257		max_cores = ((p[0] >> 26) & 0x3f) + 1;
258	} else
259		max_cores = 1;
260	core_id_bits = mask_width(max_logical/max_cores);
261	if (core_id_bits < 0)
262		return;
263	pkg_id_bits = core_id_bits + mask_width(max_cores);
264
265	for (id = 0; id <= MAX_APIC_ID; id++) {
266		/* Check logical CPU availability. */
267		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
268			continue;
269		/* Check if logical CPU has the same package ID. */
270		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
271			continue;
272		cpu_cores++;
273		/* Check if logical CPU has the same package and core IDs. */
274		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
275			cpu_logical++;
276	}
277
278	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
279	    ("topo_probe_0x4 couldn't find BSP"));
280
281	cpu_cores /= cpu_logical;
282	hyperthreading_cpus = cpu_logical;
283}
284
285static void
286topo_probe_0xb(void)
287{
288	u_int p[4];
289	int bits;
290	int cnt;
291	int i;
292	int logical;
293	int type;
294	int x;
295
296	/* We only support three levels for now. */
297	for (i = 0; i < 3; i++) {
298		cpuid_count(0x0b, i, p);
299
300		/* Fall back if CPU leaf 11 doesn't really exist. */
301		if (i == 0 && p[1] == 0) {
302			topo_probe_0x4();
303			return;
304		}
305
306		bits = p[0] & 0x1f;
307		logical = p[1] &= 0xffff;
308		type = (p[2] >> 8) & 0xff;
309		if (type == 0 || logical == 0)
310			break;
311		/*
312		 * Because of uniformity assumption we examine only
313		 * those logical processors that belong to the same
314		 * package as BSP.
315		 */
316		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
317			if (!cpu_info[x].cpu_present ||
318			    cpu_info[x].cpu_disabled)
319				continue;
320			if (x >> bits == boot_cpu_id >> bits)
321				cnt++;
322		}
323		if (type == CPUID_TYPE_SMT)
324			cpu_logical = cnt;
325		else if (type == CPUID_TYPE_CORE)
326			cpu_cores = cnt;
327	}
328	if (cpu_logical == 0)
329		cpu_logical = 1;
330	cpu_cores /= cpu_logical;
331}
332
333/*
334 * Both topology discovery code and code that consumes topology
335 * information assume top-down uniformity of the topology.
336 * That is, all physical packages must be identical and each
337 * core in a package must have the same number of threads.
338 * Topology information is queried only on BSP, on which this
339 * code runs and for which it can query CPUID information.
340 * Then topology is extrapolated on all packages using the
341 * uniformity assumption.
342 */
343static void
344topo_probe(void)
345{
346	static int cpu_topo_probed = 0;
347
348	if (cpu_topo_probed)
349		return;
350
351	CPU_ZERO(&logical_cpus_mask);
352	if (mp_ncpus <= 1)
353		cpu_cores = cpu_logical = 1;
354	else if (cpu_vendor_id == CPU_VENDOR_AMD)
355		topo_probe_amd();
356	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
357		/*
358		 * See Intel(R) 64 Architecture Processor
359		 * Topology Enumeration article for details.
360		 *
361		 * Note that 0x1 <= cpu_high < 4 case should be
362		 * compatible with topo_probe_0x4() logic when
363		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
364		 * or it should trigger the fallback otherwise.
365		 */
366		if (cpu_high >= 0xb)
367			topo_probe_0xb();
368		else if (cpu_high >= 0x1)
369			topo_probe_0x4();
370	}
371
372	/*
373	 * Fallback: assume each logical CPU is in separate
374	 * physical package.  That is, no multi-core, no SMT.
375	 */
376	if (cpu_cores == 0 || cpu_logical == 0)
377		cpu_cores = cpu_logical = 1;
378	cpu_topo_probed = 1;
379}
380
381struct cpu_group *
382cpu_topo(void)
383{
384	int cg_flags;
385
386	/*
387	 * Determine whether any threading flags are
388	 * necessry.
389	 */
390	topo_probe();
391	if (cpu_logical > 1 && hyperthreading_cpus)
392		cg_flags = CG_FLAG_HTT;
393	else if (cpu_logical > 1)
394		cg_flags = CG_FLAG_SMT;
395	else
396		cg_flags = 0;
397	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
398		printf("WARNING: Non-uniform processors.\n");
399		printf("WARNING: Using suboptimal topology.\n");
400		return (smp_topo_none());
401	}
402	/*
403	 * No multi-core or hyper-threaded.
404	 */
405	if (cpu_logical * cpu_cores == 1)
406		return (smp_topo_none());
407	/*
408	 * Only HTT no multi-core.
409	 */
410	if (cpu_logical > 1 && cpu_cores == 1)
411		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
412	/*
413	 * Only multi-core no HTT.
414	 */
415	if (cpu_cores > 1 && cpu_logical == 1)
416		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
417	/*
418	 * Both HTT and multi-core.
419	 */
420	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
421	    CG_SHARE_L1, cpu_logical, cg_flags));
422}
423
424/*
425 * Calculate usable address in base memory for AP trampoline code.
426 */
427u_int
428mp_bootaddress(u_int basemem)
429{
430
431	bootMP_size = mptramp_end - mptramp_start;
432	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
433	if (((basemem * 1024) - boot_address) < bootMP_size)
434		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
435	/* 3 levels of page table pages */
436	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
437
438	return mptramp_pagetables;
439}
440
441void
442cpu_add(u_int apic_id, char boot_cpu)
443{
444
445	if (apic_id > MAX_APIC_ID) {
446		panic("SMP: APIC ID %d too high", apic_id);
447		return;
448	}
449	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
450	    apic_id));
451	cpu_info[apic_id].cpu_present = 1;
452	if (boot_cpu) {
453		KASSERT(boot_cpu_id == -1,
454		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
455		    boot_cpu_id));
456		boot_cpu_id = apic_id;
457		cpu_info[apic_id].cpu_bsp = 1;
458	}
459	if (mp_ncpus < MAXCPU) {
460		mp_ncpus++;
461		mp_maxid = mp_ncpus - 1;
462	}
463	if (bootverbose)
464		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
465		    "AP");
466}
467
468void
469cpu_mp_setmaxid(void)
470{
471
472	/*
473	 * mp_maxid should be already set by calls to cpu_add().
474	 * Just sanity check its value here.
475	 */
476	if (mp_ncpus == 0)
477		KASSERT(mp_maxid == 0,
478		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
479	else if (mp_ncpus == 1)
480		mp_maxid = 0;
481	else
482		KASSERT(mp_maxid >= mp_ncpus - 1,
483		    ("%s: counters out of sync: max %d, count %d", __func__,
484			mp_maxid, mp_ncpus));
485}
486
487int
488cpu_mp_probe(void)
489{
490
491	/*
492	 * Always record BSP in CPU map so that the mbuf init code works
493	 * correctly.
494	 */
495	CPU_SETOF(0, &all_cpus);
496	if (mp_ncpus == 0) {
497		/*
498		 * No CPUs were found, so this must be a UP system.  Setup
499		 * the variables to represent a system with a single CPU
500		 * with an id of 0.
501		 */
502		mp_ncpus = 1;
503		return (0);
504	}
505
506	/* At least one CPU was found. */
507	if (mp_ncpus == 1) {
508		/*
509		 * One CPU was found, so this must be a UP system with
510		 * an I/O APIC.
511		 */
512		mp_maxid = 0;
513		return (0);
514	}
515
516	/* At least two CPUs were found. */
517	return (1);
518}
519
520/*
521 * Initialize the IPI handlers and start up the AP's.
522 */
523void
524cpu_mp_start(void)
525{
526	int i;
527
528	/* Initialize the logical ID to APIC ID table. */
529	for (i = 0; i < MAXCPU; i++) {
530		cpu_apic_ids[i] = -1;
531		cpu_ipi_pending[i] = 0;
532	}
533
534	/* Install an inter-CPU IPI for TLB invalidation */
535	if (pmap_pcid_enabled) {
536		setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
537		    SEL_KPL, 0);
538		setidt(IPI_INVLPG, IDTVEC(invlpg_pcid), SDT_SYSIGT,
539		    SEL_KPL, 0);
540	} else {
541		setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
542		setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
543	}
544	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
545
546	/* Install an inter-CPU IPI for cache invalidation. */
547	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
548
549	/* Install an inter-CPU IPI for all-CPU rendezvous */
550	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
551
552	/* Install generic inter-CPU IPI handler */
553	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
554	       SDT_SYSIGT, SEL_KPL, 0);
555
556	/* Install an inter-CPU IPI for CPU stop/restart */
557	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
558
559	/* Install an inter-CPU IPI for CPU suspend/resume */
560	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
561
562	/* Set boot_cpu_id if needed. */
563	if (boot_cpu_id == -1) {
564		boot_cpu_id = PCPU_GET(apic_id);
565		cpu_info[boot_cpu_id].cpu_bsp = 1;
566	} else
567		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
568		    ("BSP's APIC ID doesn't match boot_cpu_id"));
569
570	/* Probe logical/physical core configuration. */
571	topo_probe();
572
573	assign_cpu_ids();
574
575	/* Start each Application Processor */
576	start_all_aps();
577
578	set_interrupt_apic_ids();
579}
580
581
582/*
583 * Print various information about the SMP system hardware and setup.
584 */
585void
586cpu_mp_announce(void)
587{
588	const char *hyperthread;
589	int i;
590
591	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
592	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
593	if (hyperthreading_cpus > 1)
594	    printf(" x %d HTT threads", cpu_logical);
595	else if (cpu_logical > 1)
596	    printf(" x %d SMT threads", cpu_logical);
597	printf("\n");
598
599	/* List active CPUs first. */
600	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
601	for (i = 1; i < mp_ncpus; i++) {
602		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
603			hyperthread = "/HT";
604		else
605			hyperthread = "";
606		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
607		    cpu_apic_ids[i]);
608	}
609
610	/* List disabled CPUs last. */
611	for (i = 0; i <= MAX_APIC_ID; i++) {
612		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
613			continue;
614		if (cpu_info[i].cpu_hyperthread)
615			hyperthread = "/HT";
616		else
617			hyperthread = "";
618		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
619		    i);
620	}
621}
622
623/*
624 * AP CPU's call this to initialize themselves.
625 */
626void
627init_secondary(void)
628{
629	struct pcpu *pc;
630	struct nmi_pcpu *np;
631	u_int64_t msr, cr0;
632	u_int cpuid;
633	int cpu, gsel_tss, x;
634	struct region_descriptor ap_gdt;
635
636	/* Set by the startup code for us to use */
637	cpu = bootAP;
638
639	/* Init tss */
640	common_tss[cpu] = common_tss[0];
641	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
642	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
643	    IOPAGES * PAGE_SIZE;
644	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
645
646	/* The NMI stack runs on IST2. */
647	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
648	common_tss[cpu].tss_ist2 = (long) np;
649
650	/* Prepare private GDT */
651	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
652	for (x = 0; x < NGDT; x++) {
653		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
654		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
655			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
656	}
657	ssdtosyssd(&gdt_segs[GPROC0_SEL],
658	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
659	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
660	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
661	lgdt(&ap_gdt);			/* does magic intra-segment return */
662
663	/* Get per-cpu data */
664	pc = &__pcpu[cpu];
665
666	/* prime data page for it to use */
667	pcpu_init(pc, cpu, sizeof(struct pcpu));
668	dpcpu_init(dpcpu, cpu);
669	pc->pc_apic_id = cpu_apic_ids[cpu];
670	pc->pc_prvspace = pc;
671	pc->pc_curthread = 0;
672	pc->pc_tssp = &common_tss[cpu];
673	pc->pc_commontssp = &common_tss[cpu];
674	pc->pc_rsp0 = 0;
675	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
676	    GPROC0_SEL];
677	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
678	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
679	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
680	    GUSERLDT_SEL];
681
682	/* Save the per-cpu pointer for use by the NMI handler. */
683	np->np_pcpu = (register_t) pc;
684
685	wrmsr(MSR_FSBASE, 0);		/* User value */
686	wrmsr(MSR_GSBASE, (u_int64_t)pc);
687	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
688
689	lidt(&r_idt);
690
691	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
692	ltr(gsel_tss);
693
694	/*
695	 * Set to a known state:
696	 * Set by mpboot.s: CR0_PG, CR0_PE
697	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
698	 */
699	cr0 = rcr0();
700	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
701	load_cr0(cr0);
702
703	/* Set up the fast syscall stuff */
704	msr = rdmsr(MSR_EFER) | EFER_SCE;
705	wrmsr(MSR_EFER, msr);
706	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
707	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
708	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
709	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
710	wrmsr(MSR_STAR, msr);
711	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
712
713	/* Disable local APIC just to be sure. */
714	lapic_disable();
715
716	/* signal our startup to the BSP. */
717	mp_naps++;
718
719	/* Spin until the BSP releases the AP's. */
720	while (!aps_ready)
721		ia32_pause();
722
723	/* Initialize the PAT MSR. */
724	pmap_init_pat();
725
726	/* set up CPU registers and state */
727	cpu_setregs();
728
729	/* set up SSE/NX registers */
730	initializecpu();
731
732	/* set up FPU state on the AP */
733	fpuinit();
734
735#ifdef XENHVM
736	/* register vcpu_info area */
737	xen_hvm_init_cpu();
738#endif
739
740	/* A quick check from sanity claus */
741	cpuid = PCPU_GET(cpuid);
742	if (PCPU_GET(apic_id) != lapic_id()) {
743		printf("SMP: cpuid = %d\n", cpuid);
744		printf("SMP: actual apic_id = %d\n", lapic_id());
745		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
746		panic("cpuid mismatch! boom!!");
747	}
748
749	/* Initialize curthread. */
750	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
751	PCPU_SET(curthread, PCPU_GET(idlethread));
752
753	mca_init();
754
755	mtx_lock_spin(&ap_boot_mtx);
756
757	/* Init local apic for irq's */
758	lapic_setup(1);
759
760	/* Set memory range attributes for this CPU to match the BSP */
761	mem_range_AP_init();
762
763	smp_cpus++;
764
765	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
766	printf("SMP: AP CPU #%d Launched!\n", cpuid);
767
768	/* Determine if we are a logical CPU. */
769	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
770	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
771		CPU_SET(cpuid, &logical_cpus_mask);
772
773	if (bootverbose)
774		lapic_dump("AP");
775
776	if (smp_cpus == mp_ncpus) {
777		/* enable IPI's, tlb shootdown, freezes etc */
778		atomic_store_rel_int(&smp_started, 1);
779		smp_active = 1;	 /* historic */
780	}
781
782	/*
783	 * Enable global pages TLB extension
784	 * This also implicitly flushes the TLB
785	 */
786
787	load_cr4(rcr4() | CR4_PGE);
788	if (pmap_pcid_enabled)
789		load_cr4(rcr4() | CR4_PCIDE);
790	load_ds(_udatasel);
791	load_es(_udatasel);
792	load_fs(_ufssel);
793	mtx_unlock_spin(&ap_boot_mtx);
794
795	/* Wait until all the AP's are up. */
796	while (smp_started == 0)
797		ia32_pause();
798
799	/* Start per-CPU event timers. */
800	cpu_initclocks_ap();
801
802	sched_throw(NULL);
803
804	panic("scheduler returned us to %s", __func__);
805	/* NOTREACHED */
806}
807
808/*******************************************************************
809 * local functions and data
810 */
811
812/*
813 * We tell the I/O APIC code about all the CPUs we want to receive
814 * interrupts.  If we don't want certain CPUs to receive IRQs we
815 * can simply not tell the I/O APIC code about them in this function.
816 * We also do not tell it about the BSP since it tells itself about
817 * the BSP internally to work with UP kernels and on UP machines.
818 */
819static void
820set_interrupt_apic_ids(void)
821{
822	u_int i, apic_id;
823
824	for (i = 0; i < MAXCPU; i++) {
825		apic_id = cpu_apic_ids[i];
826		if (apic_id == -1)
827			continue;
828		if (cpu_info[apic_id].cpu_bsp)
829			continue;
830		if (cpu_info[apic_id].cpu_disabled)
831			continue;
832
833		/* Don't let hyperthreads service interrupts. */
834		if (hyperthreading_cpus > 1 &&
835		    apic_id % hyperthreading_cpus != 0)
836			continue;
837
838		intr_add_cpu(i);
839	}
840}
841
842/*
843 * Assign logical CPU IDs to local APICs.
844 */
845static void
846assign_cpu_ids(void)
847{
848	u_int i;
849
850	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
851	    &hyperthreading_allowed);
852
853	/* Check for explicitly disabled CPUs. */
854	for (i = 0; i <= MAX_APIC_ID; i++) {
855		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
856			continue;
857
858		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
859			cpu_info[i].cpu_hyperthread = 1;
860
861			/*
862			 * Don't use HT CPU if it has been disabled by a
863			 * tunable.
864			 */
865			if (hyperthreading_allowed == 0) {
866				cpu_info[i].cpu_disabled = 1;
867				continue;
868			}
869		}
870
871		/* Don't use this CPU if it has been disabled by a tunable. */
872		if (resource_disabled("lapic", i)) {
873			cpu_info[i].cpu_disabled = 1;
874			continue;
875		}
876	}
877
878	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
879		hyperthreading_cpus = 0;
880		cpu_logical = 1;
881	}
882
883	/*
884	 * Assign CPU IDs to local APIC IDs and disable any CPUs
885	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
886	 *
887	 * To minimize confusion for userland, we attempt to number
888	 * CPUs such that all threads and cores in a package are
889	 * grouped together.  For now we assume that the BSP is always
890	 * the first thread in a package and just start adding APs
891	 * starting with the BSP's APIC ID.
892	 */
893	mp_ncpus = 1;
894	cpu_apic_ids[0] = boot_cpu_id;
895	apic_cpuids[boot_cpu_id] = 0;
896	for (i = boot_cpu_id + 1; i != boot_cpu_id;
897	     i == MAX_APIC_ID ? i = 0 : i++) {
898		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
899		    cpu_info[i].cpu_disabled)
900			continue;
901
902		if (mp_ncpus < MAXCPU) {
903			cpu_apic_ids[mp_ncpus] = i;
904			apic_cpuids[i] = mp_ncpus;
905			mp_ncpus++;
906		} else
907			cpu_info[i].cpu_disabled = 1;
908	}
909	KASSERT(mp_maxid >= mp_ncpus - 1,
910	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
911	    mp_ncpus));
912}
913
914/*
915 * start each AP in our list
916 */
917static int
918start_all_aps(void)
919{
920	vm_offset_t va = boot_address + KERNBASE;
921	u_int64_t *pt4, *pt3, *pt2;
922	u_int32_t mpbioswarmvec;
923	int apic_id, cpu, i;
924	u_char mpbiosreason;
925
926	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
927
928	/* install the AP 1st level boot code */
929	pmap_kenter(va, boot_address);
930	pmap_invalidate_page(kernel_pmap, va);
931	bcopy(mptramp_start, (void *)va, bootMP_size);
932
933	/* Locate the page tables, they'll be below the trampoline */
934	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
935	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
936	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
937
938	/* Create the initial 1GB replicated page tables */
939	for (i = 0; i < 512; i++) {
940		/* Each slot of the level 4 pages points to the same level 3 page */
941		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
942		pt4[i] |= PG_V | PG_RW | PG_U;
943
944		/* Each slot of the level 3 pages points to the same level 2 page */
945		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
946		pt3[i] |= PG_V | PG_RW | PG_U;
947
948		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
949		pt2[i] = i * (2 * 1024 * 1024);
950		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
951	}
952
953	/* save the current value of the warm-start vector */
954	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
955	outb(CMOS_REG, BIOS_RESET);
956	mpbiosreason = inb(CMOS_DATA);
957
958	/* setup a vector to our boot code */
959	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
960	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
961	outb(CMOS_REG, BIOS_RESET);
962	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
963
964	/* start each AP */
965	for (cpu = 1; cpu < mp_ncpus; cpu++) {
966		apic_id = cpu_apic_ids[cpu];
967
968		/* allocate and set up an idle stack data page */
969		bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
970		    KSTACK_PAGES * PAGE_SIZE, M_WAITOK | M_ZERO);
971		doublefault_stack = (char *)kmem_malloc(kernel_arena,
972		    PAGE_SIZE, M_WAITOK | M_ZERO);
973		nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
974		    M_WAITOK | M_ZERO);
975		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
976		    M_WAITOK | M_ZERO);
977
978		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
979		bootAP = cpu;
980
981		/* attempt to start the Application Processor */
982		if (!start_ap(apic_id)) {
983			/* restore the warmstart vector */
984			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
985			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
986		}
987
988		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
989	}
990
991	/* restore the warmstart vector */
992	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
993
994	outb(CMOS_REG, BIOS_RESET);
995	outb(CMOS_DATA, mpbiosreason);
996
997	/* number of APs actually started */
998	return mp_naps;
999}
1000
1001
1002/*
1003 * This function starts the AP (application processor) identified
1004 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1005 * to accomplish this.  This is necessary because of the nuances
1006 * of the different hardware we might encounter.  It isn't pretty,
1007 * but it seems to work.
1008 */
1009static int
1010start_ap(int apic_id)
1011{
1012	int vector, ms;
1013	int cpus;
1014
1015	/* calculate the vector */
1016	vector = (boot_address >> 12) & 0xff;
1017
1018	/* used as a watchpoint to signal AP startup */
1019	cpus = mp_naps;
1020
1021	ipi_startup(apic_id, vector);
1022
1023	/* Wait up to 5 seconds for it to start. */
1024	for (ms = 0; ms < 5000; ms++) {
1025		if (mp_naps > cpus)
1026			return 1;	/* return SUCCESS */
1027		DELAY(1000);
1028	}
1029	return 0;		/* return FAILURE */
1030}
1031
1032#ifdef COUNT_XINVLTLB_HITS
1033u_int xhits_gbl[MAXCPU];
1034u_int xhits_pg[MAXCPU];
1035u_int xhits_rng[MAXCPU];
1036static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1037SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1038    sizeof(xhits_gbl), "IU", "");
1039SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1040    sizeof(xhits_pg), "IU", "");
1041SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1042    sizeof(xhits_rng), "IU", "");
1043
1044u_int ipi_global;
1045u_int ipi_page;
1046u_int ipi_range;
1047u_int ipi_range_size;
1048SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1049SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1050SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1051SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1052    &ipi_range_size, 0, "");
1053
1054u_int ipi_masked_global;
1055u_int ipi_masked_page;
1056u_int ipi_masked_range;
1057u_int ipi_masked_range_size;
1058SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1059    &ipi_masked_global, 0, "");
1060SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1061    &ipi_masked_page, 0, "");
1062SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1063    &ipi_masked_range, 0, "");
1064SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1065    &ipi_masked_range_size, 0, "");
1066#endif /* COUNT_XINVLTLB_HITS */
1067
1068/*
1069 * Init and startup IPI.
1070 */
1071void
1072ipi_startup(int apic_id, int vector)
1073{
1074
1075	/*
1076	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1077	 * and running the target CPU. OR this INIT IPI might be latched (P5
1078	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1079	 * ignored.
1080	 */
1081	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1082	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1083	lapic_ipi_wait(-1);
1084	DELAY(10000);		/* wait ~10mS */
1085
1086	/*
1087	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1088	 * latched, (P5 bug) this 1st STARTUP would then terminate
1089	 * immediately, and the previously started INIT IPI would continue. OR
1090	 * the previous INIT IPI has already run. and this STARTUP IPI will
1091	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1092	 * will run.
1093	 */
1094	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1095	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1096	    vector, apic_id);
1097	lapic_ipi_wait(-1);
1098	DELAY(200);		/* wait ~200uS */
1099
1100	/*
1101	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1102	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1103	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1104	 * recognized after hardware RESET or INIT IPI.
1105	 */
1106	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1107	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1108	    vector, apic_id);
1109	lapic_ipi_wait(-1);
1110	DELAY(200);		/* wait ~200uS */
1111}
1112
1113/*
1114 * Send an IPI to specified CPU handling the bitmap logic.
1115 */
1116static void
1117ipi_send_cpu(int cpu, u_int ipi)
1118{
1119	u_int bitmap, old_pending, new_pending;
1120
1121	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1122
1123	if (IPI_IS_BITMAPED(ipi)) {
1124		bitmap = 1 << ipi;
1125		ipi = IPI_BITMAP_VECTOR;
1126		do {
1127			old_pending = cpu_ipi_pending[cpu];
1128			new_pending = old_pending | bitmap;
1129		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1130		    old_pending, new_pending));
1131		if (old_pending)
1132			return;
1133	}
1134	cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
1135}
1136
1137/*
1138 * Flush the TLB on all other CPU's
1139 */
1140static void
1141smp_tlb_shootdown(u_int vector, pmap_t pmap, vm_offset_t addr1,
1142    vm_offset_t addr2)
1143{
1144	u_int ncpu;
1145
1146	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1147	if (ncpu < 1)
1148		return;		/* no other cpus */
1149	if (!(read_rflags() & PSL_I))
1150		panic("%s: interrupts disabled", __func__);
1151	mtx_lock_spin(&smp_ipi_mtx);
1152	smp_tlb_invpcid.addr = addr1;
1153	if (pmap == NULL) {
1154		smp_tlb_invpcid.pcid = 0;
1155	} else {
1156		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1157		pcid_cr3 = pmap->pm_cr3;
1158	}
1159	smp_tlb_addr2 = addr2;
1160	smp_tlb_pmap = pmap;
1161	atomic_store_rel_int(&smp_tlb_wait, 0);
1162	ipi_all_but_self(vector);
1163	while (smp_tlb_wait < ncpu)
1164		ia32_pause();
1165	mtx_unlock_spin(&smp_ipi_mtx);
1166}
1167
1168static void
1169smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
1170    vm_offset_t addr1, vm_offset_t addr2)
1171{
1172	int cpu, ncpu, othercpus;
1173
1174	othercpus = mp_ncpus - 1;
1175	if (CPU_ISFULLSET(&mask)) {
1176		if (othercpus < 1)
1177			return;
1178	} else {
1179		CPU_CLR(PCPU_GET(cpuid), &mask);
1180		if (CPU_EMPTY(&mask))
1181			return;
1182	}
1183	if (!(read_rflags() & PSL_I))
1184		panic("%s: interrupts disabled", __func__);
1185	mtx_lock_spin(&smp_ipi_mtx);
1186	smp_tlb_invpcid.addr = addr1;
1187	if (pmap == NULL) {
1188		smp_tlb_invpcid.pcid = 0;
1189	} else {
1190		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1191		pcid_cr3 = pmap->pm_cr3;
1192	}
1193	smp_tlb_addr2 = addr2;
1194	smp_tlb_pmap = pmap;
1195	atomic_store_rel_int(&smp_tlb_wait, 0);
1196	if (CPU_ISFULLSET(&mask)) {
1197		ncpu = othercpus;
1198		ipi_all_but_self(vector);
1199	} else {
1200		ncpu = 0;
1201		while ((cpu = CPU_FFS(&mask)) != 0) {
1202			cpu--;
1203			CPU_CLR(cpu, &mask);
1204			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1205			    cpu, vector);
1206			ipi_send_cpu(cpu, vector);
1207			ncpu++;
1208		}
1209	}
1210	while (smp_tlb_wait < ncpu)
1211		ia32_pause();
1212	mtx_unlock_spin(&smp_ipi_mtx);
1213}
1214
1215void
1216smp_cache_flush(void)
1217{
1218
1219	if (smp_started)
1220		smp_tlb_shootdown(IPI_INVLCACHE, NULL, 0, 0);
1221}
1222
1223void
1224smp_invltlb(pmap_t pmap)
1225{
1226
1227	if (smp_started) {
1228		smp_tlb_shootdown(IPI_INVLTLB, pmap, 0, 0);
1229#ifdef COUNT_XINVLTLB_HITS
1230		ipi_global++;
1231#endif
1232	}
1233}
1234
1235void
1236smp_invlpg(pmap_t pmap, vm_offset_t addr)
1237{
1238
1239	if (smp_started) {
1240		smp_tlb_shootdown(IPI_INVLPG, pmap, addr, 0);
1241#ifdef COUNT_XINVLTLB_HITS
1242		ipi_page++;
1243#endif
1244	}
1245}
1246
1247void
1248smp_invlpg_range(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2)
1249{
1250
1251	if (smp_started) {
1252		smp_tlb_shootdown(IPI_INVLRNG, pmap, addr1, addr2);
1253#ifdef COUNT_XINVLTLB_HITS
1254		ipi_range++;
1255		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1256#endif
1257	}
1258}
1259
1260void
1261smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
1262{
1263
1264	if (smp_started) {
1265		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, NULL, 0, 0);
1266#ifdef COUNT_XINVLTLB_HITS
1267		ipi_masked_global++;
1268#endif
1269	}
1270}
1271
1272void
1273smp_masked_invlpg(cpuset_t mask, pmap_t pmap, vm_offset_t addr)
1274{
1275
1276	if (smp_started) {
1277		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0);
1278#ifdef COUNT_XINVLTLB_HITS
1279		ipi_masked_page++;
1280#endif
1281	}
1282}
1283
1284void
1285smp_masked_invlpg_range(cpuset_t mask, pmap_t pmap, vm_offset_t addr1,
1286    vm_offset_t addr2)
1287{
1288
1289	if (smp_started) {
1290		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1,
1291		    addr2);
1292#ifdef COUNT_XINVLTLB_HITS
1293		ipi_masked_range++;
1294		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1295#endif
1296	}
1297}
1298
1299void
1300ipi_bitmap_handler(struct trapframe frame)
1301{
1302	struct trapframe *oldframe;
1303	struct thread *td;
1304	int cpu = PCPU_GET(cpuid);
1305	u_int ipi_bitmap;
1306
1307	critical_enter();
1308	td = curthread;
1309	td->td_intr_nesting_level++;
1310	oldframe = td->td_intr_frame;
1311	td->td_intr_frame = &frame;
1312	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1313	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1314#ifdef COUNT_IPIS
1315		(*ipi_preempt_counts[cpu])++;
1316#endif
1317		sched_preempt(td);
1318	}
1319	if (ipi_bitmap & (1 << IPI_AST)) {
1320#ifdef COUNT_IPIS
1321		(*ipi_ast_counts[cpu])++;
1322#endif
1323		/* Nothing to do for AST */
1324	}
1325	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1326#ifdef COUNT_IPIS
1327		(*ipi_hardclock_counts[cpu])++;
1328#endif
1329		hardclockintr();
1330	}
1331	td->td_intr_frame = oldframe;
1332	td->td_intr_nesting_level--;
1333	critical_exit();
1334}
1335
1336/*
1337 * send an IPI to a set of cpus.
1338 */
1339void
1340ipi_selected(cpuset_t cpus, u_int ipi)
1341{
1342	int cpu;
1343
1344	/*
1345	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1346	 * of help in order to understand what is the source.
1347	 * Set the mask of receiving CPUs for this purpose.
1348	 */
1349	if (ipi == IPI_STOP_HARD)
1350		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1351
1352	while ((cpu = CPU_FFS(&cpus)) != 0) {
1353		cpu--;
1354		CPU_CLR(cpu, &cpus);
1355		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1356		ipi_send_cpu(cpu, ipi);
1357	}
1358}
1359
1360/*
1361 * send an IPI to a specific CPU.
1362 */
1363void
1364ipi_cpu(int cpu, u_int ipi)
1365{
1366
1367	/*
1368	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1369	 * of help in order to understand what is the source.
1370	 * Set the mask of receiving CPUs for this purpose.
1371	 */
1372	if (ipi == IPI_STOP_HARD)
1373		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1374
1375	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1376	ipi_send_cpu(cpu, ipi);
1377}
1378
1379/*
1380 * send an IPI to all CPUs EXCEPT myself
1381 */
1382void
1383ipi_all_but_self(u_int ipi)
1384{
1385	cpuset_t other_cpus;
1386
1387	other_cpus = all_cpus;
1388	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1389
1390	if (IPI_IS_BITMAPED(ipi)) {
1391		ipi_selected(other_cpus, ipi);
1392		return;
1393	}
1394
1395	/*
1396	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1397	 * of help in order to understand what is the source.
1398	 * Set the mask of receiving CPUs for this purpose.
1399	 */
1400	if (ipi == IPI_STOP_HARD)
1401		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1402
1403	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1404	cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1405}
1406
1407int
1408ipi_nmi_handler()
1409{
1410	u_int cpuid;
1411
1412	/*
1413	 * As long as there is not a simple way to know about a NMI's
1414	 * source, if the bitmask for the current CPU is present in
1415	 * the global pending bitword an IPI_STOP_HARD has been issued
1416	 * and should be handled.
1417	 */
1418	cpuid = PCPU_GET(cpuid);
1419	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1420		return (1);
1421
1422	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1423	cpustop_handler();
1424	return (0);
1425}
1426
1427/*
1428 * Handle an IPI_STOP by saving our current context and spinning until we
1429 * are resumed.
1430 */
1431void
1432cpustop_handler(void)
1433{
1434	u_int cpu;
1435
1436	cpu = PCPU_GET(cpuid);
1437
1438	savectx(&stoppcbs[cpu]);
1439
1440	/* Indicate that we are stopped */
1441	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1442
1443	/* Wait for restart */
1444	while (!CPU_ISSET(cpu, &started_cpus))
1445	    ia32_pause();
1446
1447	CPU_CLR_ATOMIC(cpu, &started_cpus);
1448	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1449
1450#ifdef DDB
1451	amd64_db_resume_dbreg();
1452#endif
1453
1454	if (cpu == 0 && cpustop_restartfunc != NULL) {
1455		cpustop_restartfunc();
1456		cpustop_restartfunc = NULL;
1457	}
1458}
1459
1460/*
1461 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1462 * are resumed.
1463 */
1464void
1465cpususpend_handler(void)
1466{
1467	u_int cpu;
1468
1469	cpu = PCPU_GET(cpuid);
1470
1471#ifdef XENHVM
1472	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1473#endif
1474
1475	if (savectx(susppcbs[cpu])) {
1476		ctx_fpusave(susppcbs[cpu]->pcb_fpususpend);
1477		wbinvd();
1478		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1479	} else {
1480		pmap_init_pat();
1481		initializecpu();
1482		PCPU_SET(switchtime, 0);
1483		PCPU_SET(switchticks, ticks);
1484
1485		/* Indicate that we are resumed */
1486		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1487	}
1488
1489	/* Wait for resume */
1490	while (!CPU_ISSET(cpu, &started_cpus))
1491		ia32_pause();
1492
1493#ifdef XENHVM
1494	/*
1495	 * Reset pending bitmap IPIs, because Xen doesn't preserve pending
1496	 * event channels on migration.
1497	 */
1498	cpu_ipi_pending[cpu] = 0;
1499	/* register vcpu_info area */
1500	xen_hvm_init_cpu();
1501#endif
1502
1503	/* Resume MCA and local APIC */
1504	mca_resume();
1505	lapic_setup(0);
1506
1507	CPU_CLR_ATOMIC(cpu, &started_cpus);
1508	/* Indicate that we are resumed */
1509	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1510}
1511
1512/*
1513 * This is called once the rest of the system is up and running and we're
1514 * ready to let the AP's out of the pen.
1515 */
1516static void
1517release_aps(void *dummy __unused)
1518{
1519
1520	if (mp_ncpus == 1)
1521		return;
1522	atomic_store_rel_int(&aps_ready, 1);
1523	while (smp_started == 0)
1524		ia32_pause();
1525}
1526SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1527
1528#ifdef COUNT_IPIS
1529/*
1530 * Setup interrupt counters for IPI handlers.
1531 */
1532static void
1533mp_ipi_intrcnt(void *dummy)
1534{
1535	char buf[64];
1536	int i;
1537
1538	CPU_FOREACH(i) {
1539		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1540		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1541		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1542		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1543		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1544		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1545		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1546		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1547		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1548		intrcnt_add(buf, &ipi_preempt_counts[i]);
1549		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1550		intrcnt_add(buf, &ipi_ast_counts[i]);
1551		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1552		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1553		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1554		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1555	}
1556}
1557SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1558#endif
1559
1560