mp_machdep.c revision 255217
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/amd64/amd64/mp_machdep.c 255217 2013-09-04 23:31:29Z kib $");
29
30#include "opt_cpu.h"
31#include "opt_ddb.h"
32#include "opt_kstack_pages.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/cpuset.h>
40#ifdef GPROF
41#include <sys/gmon.h>
42#endif
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/memrange.h>
48#include <sys/mutex.h>
49#include <sys/pcpu.h>
50#include <sys/proc.h>
51#include <sys/sched.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/pmap.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_extern.h>
60
61#include <x86/apicreg.h>
62#include <machine/clock.h>
63#include <machine/cputypes.h>
64#include <machine/cpufunc.h>
65#include <x86/mca.h>
66#include <machine/md_var.h>
67#include <machine/pcb.h>
68#include <machine/psl.h>
69#include <machine/smp.h>
70#include <machine/specialreg.h>
71#include <machine/tss.h>
72
73#ifdef XENHVM
74#include <xen/hvm.h>
75#endif
76
77#define WARMBOOT_TARGET		0
78#define WARMBOOT_OFF		(KERNBASE + 0x0467)
79#define WARMBOOT_SEG		(KERNBASE + 0x0469)
80
81#define CMOS_REG		(0x70)
82#define CMOS_DATA		(0x71)
83#define BIOS_RESET		(0x0f)
84#define BIOS_WARM		(0x0a)
85
86/* lock region used by kernel profiling */
87int	mcount_lock;
88
89int	mp_naps;		/* # of Applications processors */
90int	boot_cpu_id = -1;	/* designated BSP */
91
92extern  struct pcpu __pcpu[];
93
94/* AP uses this during bootstrap.  Do not staticize.  */
95char *bootSTK;
96static int bootAP;
97
98/* Free these after use */
99void *bootstacks[MAXCPU];
100
101/* Temporary variables for init_secondary()  */
102char *doublefault_stack;
103char *nmi_stack;
104void *dpcpu;
105
106struct pcb stoppcbs[MAXCPU];
107struct pcb **susppcbs;
108
109/* Variables needed for SMP tlb shootdown. */
110vm_offset_t smp_tlb_addr2;
111struct invpcid_descr smp_tlb_invpcid;
112volatile int smp_tlb_wait;
113uint64_t pcid_cr3;
114pmap_t smp_tlb_pmap;
115
116#ifdef COUNT_IPIS
117/* Interrupt counts. */
118static u_long *ipi_preempt_counts[MAXCPU];
119static u_long *ipi_ast_counts[MAXCPU];
120u_long *ipi_invltlb_counts[MAXCPU];
121u_long *ipi_invlrng_counts[MAXCPU];
122u_long *ipi_invlpg_counts[MAXCPU];
123u_long *ipi_invlcache_counts[MAXCPU];
124u_long *ipi_rendezvous_counts[MAXCPU];
125static u_long *ipi_hardclock_counts[MAXCPU];
126#endif
127
128extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
129
130extern int pmap_pcid_enabled;
131
132/*
133 * Local data and functions.
134 */
135
136static volatile cpuset_t ipi_nmi_pending;
137
138/* used to hold the AP's until we are ready to release them */
139static struct mtx ap_boot_mtx;
140
141/* Set to 1 once we're ready to let the APs out of the pen. */
142static volatile int aps_ready = 0;
143
144/*
145 * Store data from cpu_add() until later in the boot when we actually setup
146 * the APs.
147 */
148struct cpu_info {
149	int	cpu_present:1;
150	int	cpu_bsp:1;
151	int	cpu_disabled:1;
152	int	cpu_hyperthread:1;
153} static cpu_info[MAX_APIC_ID + 1];
154int cpu_apic_ids[MAXCPU];
155int apic_cpuids[MAX_APIC_ID + 1];
156
157/* Holds pending bitmap based IPIs per CPU */
158static volatile u_int cpu_ipi_pending[MAXCPU];
159
160static u_int boot_address;
161static int cpu_logical;			/* logical cpus per core */
162static int cpu_cores;			/* cores per package */
163
164static void	assign_cpu_ids(void);
165static void	set_interrupt_apic_ids(void);
166static int	start_all_aps(void);
167static int	start_ap(int apic_id);
168static void	release_aps(void *dummy);
169
170static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
171static int	hyperthreading_allowed = 1;
172static u_int	bootMP_size;
173
174static void
175mem_range_AP_init(void)
176{
177	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
178		mem_range_softc.mr_op->initAP(&mem_range_softc);
179}
180
181static void
182topo_probe_amd(void)
183{
184	int core_id_bits;
185	int id;
186
187	/* AMD processors do not support HTT. */
188	cpu_logical = 1;
189
190	if ((amd_feature2 & AMDID2_CMP) == 0) {
191		cpu_cores = 1;
192		return;
193	}
194
195	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
196	    AMDID_COREID_SIZE_SHIFT;
197	if (core_id_bits == 0) {
198		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
199		return;
200	}
201
202	/* Fam 10h and newer should get here. */
203	for (id = 0; id <= MAX_APIC_ID; id++) {
204		/* Check logical CPU availability. */
205		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
206			continue;
207		/* Check if logical CPU has the same package ID. */
208		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
209			continue;
210		cpu_cores++;
211	}
212}
213
214/*
215 * Round up to the next power of two, if necessary, and then
216 * take log2.
217 * Returns -1 if argument is zero.
218 */
219static __inline int
220mask_width(u_int x)
221{
222
223	return (fls(x << (1 - powerof2(x))) - 1);
224}
225
226static void
227topo_probe_0x4(void)
228{
229	u_int p[4];
230	int pkg_id_bits;
231	int core_id_bits;
232	int max_cores;
233	int max_logical;
234	int id;
235
236	/* Both zero and one here mean one logical processor per package. */
237	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
238	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
239	if (max_logical <= 1)
240		return;
241
242	/*
243	 * Because of uniformity assumption we examine only
244	 * those logical processors that belong to the same
245	 * package as BSP.  Further, we count number of
246	 * logical processors that belong to the same core
247	 * as BSP thus deducing number of threads per core.
248	 */
249	if (cpu_high >= 0x4) {
250		cpuid_count(0x04, 0, p);
251		max_cores = ((p[0] >> 26) & 0x3f) + 1;
252	} else
253		max_cores = 1;
254	core_id_bits = mask_width(max_logical/max_cores);
255	if (core_id_bits < 0)
256		return;
257	pkg_id_bits = core_id_bits + mask_width(max_cores);
258
259	for (id = 0; id <= MAX_APIC_ID; id++) {
260		/* Check logical CPU availability. */
261		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
262			continue;
263		/* Check if logical CPU has the same package ID. */
264		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
265			continue;
266		cpu_cores++;
267		/* Check if logical CPU has the same package and core IDs. */
268		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
269			cpu_logical++;
270	}
271
272	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
273	    ("topo_probe_0x4 couldn't find BSP"));
274
275	cpu_cores /= cpu_logical;
276	hyperthreading_cpus = cpu_logical;
277}
278
279static void
280topo_probe_0xb(void)
281{
282	u_int p[4];
283	int bits;
284	int cnt;
285	int i;
286	int logical;
287	int type;
288	int x;
289
290	/* We only support three levels for now. */
291	for (i = 0; i < 3; i++) {
292		cpuid_count(0x0b, i, p);
293
294		/* Fall back if CPU leaf 11 doesn't really exist. */
295		if (i == 0 && p[1] == 0) {
296			topo_probe_0x4();
297			return;
298		}
299
300		bits = p[0] & 0x1f;
301		logical = p[1] &= 0xffff;
302		type = (p[2] >> 8) & 0xff;
303		if (type == 0 || logical == 0)
304			break;
305		/*
306		 * Because of uniformity assumption we examine only
307		 * those logical processors that belong to the same
308		 * package as BSP.
309		 */
310		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
311			if (!cpu_info[x].cpu_present ||
312			    cpu_info[x].cpu_disabled)
313				continue;
314			if (x >> bits == boot_cpu_id >> bits)
315				cnt++;
316		}
317		if (type == CPUID_TYPE_SMT)
318			cpu_logical = cnt;
319		else if (type == CPUID_TYPE_CORE)
320			cpu_cores = cnt;
321	}
322	if (cpu_logical == 0)
323		cpu_logical = 1;
324	cpu_cores /= cpu_logical;
325}
326
327/*
328 * Both topology discovery code and code that consumes topology
329 * information assume top-down uniformity of the topology.
330 * That is, all physical packages must be identical and each
331 * core in a package must have the same number of threads.
332 * Topology information is queried only on BSP, on which this
333 * code runs and for which it can query CPUID information.
334 * Then topology is extrapolated on all packages using the
335 * uniformity assumption.
336 */
337static void
338topo_probe(void)
339{
340	static int cpu_topo_probed = 0;
341
342	if (cpu_topo_probed)
343		return;
344
345	CPU_ZERO(&logical_cpus_mask);
346	if (mp_ncpus <= 1)
347		cpu_cores = cpu_logical = 1;
348	else if (cpu_vendor_id == CPU_VENDOR_AMD)
349		topo_probe_amd();
350	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
351		/*
352		 * See Intel(R) 64 Architecture Processor
353		 * Topology Enumeration article for details.
354		 *
355		 * Note that 0x1 <= cpu_high < 4 case should be
356		 * compatible with topo_probe_0x4() logic when
357		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
358		 * or it should trigger the fallback otherwise.
359		 */
360		if (cpu_high >= 0xb)
361			topo_probe_0xb();
362		else if (cpu_high >= 0x1)
363			topo_probe_0x4();
364	}
365
366	/*
367	 * Fallback: assume each logical CPU is in separate
368	 * physical package.  That is, no multi-core, no SMT.
369	 */
370	if (cpu_cores == 0 || cpu_logical == 0)
371		cpu_cores = cpu_logical = 1;
372	cpu_topo_probed = 1;
373}
374
375struct cpu_group *
376cpu_topo(void)
377{
378	int cg_flags;
379
380	/*
381	 * Determine whether any threading flags are
382	 * necessry.
383	 */
384	topo_probe();
385	if (cpu_logical > 1 && hyperthreading_cpus)
386		cg_flags = CG_FLAG_HTT;
387	else if (cpu_logical > 1)
388		cg_flags = CG_FLAG_SMT;
389	else
390		cg_flags = 0;
391	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
392		printf("WARNING: Non-uniform processors.\n");
393		printf("WARNING: Using suboptimal topology.\n");
394		return (smp_topo_none());
395	}
396	/*
397	 * No multi-core or hyper-threaded.
398	 */
399	if (cpu_logical * cpu_cores == 1)
400		return (smp_topo_none());
401	/*
402	 * Only HTT no multi-core.
403	 */
404	if (cpu_logical > 1 && cpu_cores == 1)
405		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
406	/*
407	 * Only multi-core no HTT.
408	 */
409	if (cpu_cores > 1 && cpu_logical == 1)
410		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
411	/*
412	 * Both HTT and multi-core.
413	 */
414	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
415	    CG_SHARE_L1, cpu_logical, cg_flags));
416}
417
418/*
419 * Calculate usable address in base memory for AP trampoline code.
420 */
421u_int
422mp_bootaddress(u_int basemem)
423{
424
425	bootMP_size = mptramp_end - mptramp_start;
426	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
427	if (((basemem * 1024) - boot_address) < bootMP_size)
428		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
429	/* 3 levels of page table pages */
430	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
431
432	return mptramp_pagetables;
433}
434
435void
436cpu_add(u_int apic_id, char boot_cpu)
437{
438
439	if (apic_id > MAX_APIC_ID) {
440		panic("SMP: APIC ID %d too high", apic_id);
441		return;
442	}
443	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
444	    apic_id));
445	cpu_info[apic_id].cpu_present = 1;
446	if (boot_cpu) {
447		KASSERT(boot_cpu_id == -1,
448		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
449		    boot_cpu_id));
450		boot_cpu_id = apic_id;
451		cpu_info[apic_id].cpu_bsp = 1;
452	}
453	if (mp_ncpus < MAXCPU) {
454		mp_ncpus++;
455		mp_maxid = mp_ncpus - 1;
456	}
457	if (bootverbose)
458		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
459		    "AP");
460}
461
462void
463cpu_mp_setmaxid(void)
464{
465
466	/*
467	 * mp_maxid should be already set by calls to cpu_add().
468	 * Just sanity check its value here.
469	 */
470	if (mp_ncpus == 0)
471		KASSERT(mp_maxid == 0,
472		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
473	else if (mp_ncpus == 1)
474		mp_maxid = 0;
475	else
476		KASSERT(mp_maxid >= mp_ncpus - 1,
477		    ("%s: counters out of sync: max %d, count %d", __func__,
478			mp_maxid, mp_ncpus));
479}
480
481int
482cpu_mp_probe(void)
483{
484
485	/*
486	 * Always record BSP in CPU map so that the mbuf init code works
487	 * correctly.
488	 */
489	CPU_SETOF(0, &all_cpus);
490	if (mp_ncpus == 0) {
491		/*
492		 * No CPUs were found, so this must be a UP system.  Setup
493		 * the variables to represent a system with a single CPU
494		 * with an id of 0.
495		 */
496		mp_ncpus = 1;
497		return (0);
498	}
499
500	/* At least one CPU was found. */
501	if (mp_ncpus == 1) {
502		/*
503		 * One CPU was found, so this must be a UP system with
504		 * an I/O APIC.
505		 */
506		mp_maxid = 0;
507		return (0);
508	}
509
510	/* At least two CPUs were found. */
511	return (1);
512}
513
514/*
515 * Initialize the IPI handlers and start up the AP's.
516 */
517void
518cpu_mp_start(void)
519{
520	int i;
521
522	/* Initialize the logical ID to APIC ID table. */
523	for (i = 0; i < MAXCPU; i++) {
524		cpu_apic_ids[i] = -1;
525		cpu_ipi_pending[i] = 0;
526	}
527
528	/* Install an inter-CPU IPI for TLB invalidation */
529	if (pmap_pcid_enabled) {
530		setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
531		    SEL_KPL, 0);
532		setidt(IPI_INVLPG, IDTVEC(invlpg_pcid), SDT_SYSIGT,
533		    SEL_KPL, 0);
534	} else {
535		setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
536		setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
537	}
538	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
539
540	/* Install an inter-CPU IPI for cache invalidation. */
541	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
542
543	/* Install an inter-CPU IPI for all-CPU rendezvous */
544	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
545
546	/* Install generic inter-CPU IPI handler */
547	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
548	       SDT_SYSIGT, SEL_KPL, 0);
549
550	/* Install an inter-CPU IPI for CPU stop/restart */
551	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
552
553	/* Install an inter-CPU IPI for CPU suspend/resume */
554	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
555
556	/* Set boot_cpu_id if needed. */
557	if (boot_cpu_id == -1) {
558		boot_cpu_id = PCPU_GET(apic_id);
559		cpu_info[boot_cpu_id].cpu_bsp = 1;
560	} else
561		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
562		    ("BSP's APIC ID doesn't match boot_cpu_id"));
563
564	/* Probe logical/physical core configuration. */
565	topo_probe();
566
567	assign_cpu_ids();
568
569	/* Start each Application Processor */
570	start_all_aps();
571
572	set_interrupt_apic_ids();
573}
574
575
576/*
577 * Print various information about the SMP system hardware and setup.
578 */
579void
580cpu_mp_announce(void)
581{
582	const char *hyperthread;
583	int i;
584
585	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
586	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
587	if (hyperthreading_cpus > 1)
588	    printf(" x %d HTT threads", cpu_logical);
589	else if (cpu_logical > 1)
590	    printf(" x %d SMT threads", cpu_logical);
591	printf("\n");
592
593	/* List active CPUs first. */
594	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
595	for (i = 1; i < mp_ncpus; i++) {
596		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
597			hyperthread = "/HT";
598		else
599			hyperthread = "";
600		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
601		    cpu_apic_ids[i]);
602	}
603
604	/* List disabled CPUs last. */
605	for (i = 0; i <= MAX_APIC_ID; i++) {
606		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
607			continue;
608		if (cpu_info[i].cpu_hyperthread)
609			hyperthread = "/HT";
610		else
611			hyperthread = "";
612		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
613		    i);
614	}
615}
616
617/*
618 * AP CPU's call this to initialize themselves.
619 */
620void
621init_secondary(void)
622{
623	struct pcpu *pc;
624	struct nmi_pcpu *np;
625	u_int64_t msr, cr0;
626	u_int cpuid;
627	int cpu, gsel_tss, x;
628	struct region_descriptor ap_gdt;
629
630	/* Set by the startup code for us to use */
631	cpu = bootAP;
632
633	/* Init tss */
634	common_tss[cpu] = common_tss[0];
635	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
636	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
637	    IOPAGES * PAGE_SIZE;
638	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
639
640	/* The NMI stack runs on IST2. */
641	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
642	common_tss[cpu].tss_ist2 = (long) np;
643
644	/* Prepare private GDT */
645	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
646	for (x = 0; x < NGDT; x++) {
647		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
648		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
649			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
650	}
651	ssdtosyssd(&gdt_segs[GPROC0_SEL],
652	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
653	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
654	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
655	lgdt(&ap_gdt);			/* does magic intra-segment return */
656
657	/* Get per-cpu data */
658	pc = &__pcpu[cpu];
659
660	/* prime data page for it to use */
661	pcpu_init(pc, cpu, sizeof(struct pcpu));
662	dpcpu_init(dpcpu, cpu);
663	pc->pc_apic_id = cpu_apic_ids[cpu];
664	pc->pc_prvspace = pc;
665	pc->pc_curthread = 0;
666	pc->pc_tssp = &common_tss[cpu];
667	pc->pc_commontssp = &common_tss[cpu];
668	pc->pc_rsp0 = 0;
669	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
670	    GPROC0_SEL];
671	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
672	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
673	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
674	    GUSERLDT_SEL];
675
676	/* Save the per-cpu pointer for use by the NMI handler. */
677	np->np_pcpu = (register_t) pc;
678
679	wrmsr(MSR_FSBASE, 0);		/* User value */
680	wrmsr(MSR_GSBASE, (u_int64_t)pc);
681	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
682
683	lidt(&r_idt);
684
685	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
686	ltr(gsel_tss);
687
688	/*
689	 * Set to a known state:
690	 * Set by mpboot.s: CR0_PG, CR0_PE
691	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
692	 */
693	cr0 = rcr0();
694	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
695	load_cr0(cr0);
696
697	/* Set up the fast syscall stuff */
698	msr = rdmsr(MSR_EFER) | EFER_SCE;
699	wrmsr(MSR_EFER, msr);
700	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
701	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
702	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
703	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
704	wrmsr(MSR_STAR, msr);
705	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
706
707	/* Disable local APIC just to be sure. */
708	lapic_disable();
709
710	/* signal our startup to the BSP. */
711	mp_naps++;
712
713	/* Spin until the BSP releases the AP's. */
714	while (!aps_ready)
715		ia32_pause();
716
717	/* Initialize the PAT MSR. */
718	pmap_init_pat();
719
720	/* set up CPU registers and state */
721	cpu_setregs();
722
723	/* set up SSE/NX registers */
724	initializecpu();
725
726	/* set up FPU state on the AP */
727	fpuinit();
728
729#ifdef XENHVM
730	/* register vcpu_info area */
731	xen_hvm_init_cpu();
732#endif
733
734	/* A quick check from sanity claus */
735	cpuid = PCPU_GET(cpuid);
736	if (PCPU_GET(apic_id) != lapic_id()) {
737		printf("SMP: cpuid = %d\n", cpuid);
738		printf("SMP: actual apic_id = %d\n", lapic_id());
739		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
740		panic("cpuid mismatch! boom!!");
741	}
742
743	/* Initialize curthread. */
744	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
745	PCPU_SET(curthread, PCPU_GET(idlethread));
746
747	mca_init();
748
749	mtx_lock_spin(&ap_boot_mtx);
750
751	/* Init local apic for irq's */
752	lapic_setup(1);
753
754	/* Set memory range attributes for this CPU to match the BSP */
755	mem_range_AP_init();
756
757	smp_cpus++;
758
759	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
760	printf("SMP: AP CPU #%d Launched!\n", cpuid);
761
762	/* Determine if we are a logical CPU. */
763	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
764	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
765		CPU_SET(cpuid, &logical_cpus_mask);
766
767	if (bootverbose)
768		lapic_dump("AP");
769
770	if (smp_cpus == mp_ncpus) {
771		/* enable IPI's, tlb shootdown, freezes etc */
772		atomic_store_rel_int(&smp_started, 1);
773		smp_active = 1;	 /* historic */
774	}
775
776	/*
777	 * Enable global pages TLB extension
778	 * This also implicitly flushes the TLB
779	 */
780
781	load_cr4(rcr4() | CR4_PGE);
782	if (pmap_pcid_enabled)
783		load_cr4(rcr4() | CR4_PCIDE);
784	load_ds(_udatasel);
785	load_es(_udatasel);
786	load_fs(_ufssel);
787	mtx_unlock_spin(&ap_boot_mtx);
788
789	/* Wait until all the AP's are up. */
790	while (smp_started == 0)
791		ia32_pause();
792
793	/* Start per-CPU event timers. */
794	cpu_initclocks_ap();
795
796	sched_throw(NULL);
797
798	panic("scheduler returned us to %s", __func__);
799	/* NOTREACHED */
800}
801
802/*******************************************************************
803 * local functions and data
804 */
805
806/*
807 * We tell the I/O APIC code about all the CPUs we want to receive
808 * interrupts.  If we don't want certain CPUs to receive IRQs we
809 * can simply not tell the I/O APIC code about them in this function.
810 * We also do not tell it about the BSP since it tells itself about
811 * the BSP internally to work with UP kernels and on UP machines.
812 */
813static void
814set_interrupt_apic_ids(void)
815{
816	u_int i, apic_id;
817
818	for (i = 0; i < MAXCPU; i++) {
819		apic_id = cpu_apic_ids[i];
820		if (apic_id == -1)
821			continue;
822		if (cpu_info[apic_id].cpu_bsp)
823			continue;
824		if (cpu_info[apic_id].cpu_disabled)
825			continue;
826
827		/* Don't let hyperthreads service interrupts. */
828		if (hyperthreading_cpus > 1 &&
829		    apic_id % hyperthreading_cpus != 0)
830			continue;
831
832		intr_add_cpu(i);
833	}
834}
835
836/*
837 * Assign logical CPU IDs to local APICs.
838 */
839static void
840assign_cpu_ids(void)
841{
842	u_int i;
843
844	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
845	    &hyperthreading_allowed);
846
847	/* Check for explicitly disabled CPUs. */
848	for (i = 0; i <= MAX_APIC_ID; i++) {
849		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
850			continue;
851
852		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
853			cpu_info[i].cpu_hyperthread = 1;
854
855			/*
856			 * Don't use HT CPU if it has been disabled by a
857			 * tunable.
858			 */
859			if (hyperthreading_allowed == 0) {
860				cpu_info[i].cpu_disabled = 1;
861				continue;
862			}
863		}
864
865		/* Don't use this CPU if it has been disabled by a tunable. */
866		if (resource_disabled("lapic", i)) {
867			cpu_info[i].cpu_disabled = 1;
868			continue;
869		}
870	}
871
872	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
873		hyperthreading_cpus = 0;
874		cpu_logical = 1;
875	}
876
877	/*
878	 * Assign CPU IDs to local APIC IDs and disable any CPUs
879	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
880	 *
881	 * To minimize confusion for userland, we attempt to number
882	 * CPUs such that all threads and cores in a package are
883	 * grouped together.  For now we assume that the BSP is always
884	 * the first thread in a package and just start adding APs
885	 * starting with the BSP's APIC ID.
886	 */
887	mp_ncpus = 1;
888	cpu_apic_ids[0] = boot_cpu_id;
889	apic_cpuids[boot_cpu_id] = 0;
890	for (i = boot_cpu_id + 1; i != boot_cpu_id;
891	     i == MAX_APIC_ID ? i = 0 : i++) {
892		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
893		    cpu_info[i].cpu_disabled)
894			continue;
895
896		if (mp_ncpus < MAXCPU) {
897			cpu_apic_ids[mp_ncpus] = i;
898			apic_cpuids[i] = mp_ncpus;
899			mp_ncpus++;
900		} else
901			cpu_info[i].cpu_disabled = 1;
902	}
903	KASSERT(mp_maxid >= mp_ncpus - 1,
904	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
905	    mp_ncpus));
906}
907
908/*
909 * start each AP in our list
910 */
911static int
912start_all_aps(void)
913{
914	vm_offset_t va = boot_address + KERNBASE;
915	u_int64_t *pt4, *pt3, *pt2;
916	u_int32_t mpbioswarmvec;
917	int apic_id, cpu, i;
918	u_char mpbiosreason;
919
920	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
921
922	/* install the AP 1st level boot code */
923	pmap_kenter(va, boot_address);
924	pmap_invalidate_page(kernel_pmap, va);
925	bcopy(mptramp_start, (void *)va, bootMP_size);
926
927	/* Locate the page tables, they'll be below the trampoline */
928	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
929	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
930	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
931
932	/* Create the initial 1GB replicated page tables */
933	for (i = 0; i < 512; i++) {
934		/* Each slot of the level 4 pages points to the same level 3 page */
935		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
936		pt4[i] |= PG_V | PG_RW | PG_U;
937
938		/* Each slot of the level 3 pages points to the same level 2 page */
939		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
940		pt3[i] |= PG_V | PG_RW | PG_U;
941
942		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
943		pt2[i] = i * (2 * 1024 * 1024);
944		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
945	}
946
947	/* save the current value of the warm-start vector */
948	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
949	outb(CMOS_REG, BIOS_RESET);
950	mpbiosreason = inb(CMOS_DATA);
951
952	/* setup a vector to our boot code */
953	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
954	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
955	outb(CMOS_REG, BIOS_RESET);
956	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
957
958	/* start each AP */
959	for (cpu = 1; cpu < mp_ncpus; cpu++) {
960		apic_id = cpu_apic_ids[cpu];
961
962		/* allocate and set up an idle stack data page */
963		bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
964		    KSTACK_PAGES * PAGE_SIZE, M_WAITOK | M_ZERO);
965		doublefault_stack = (char *)kmem_malloc(kernel_arena,
966		    PAGE_SIZE, M_WAITOK | M_ZERO);
967		nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
968		    M_WAITOK | M_ZERO);
969		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
970		    M_WAITOK | M_ZERO);
971
972		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
973		bootAP = cpu;
974
975		/* attempt to start the Application Processor */
976		if (!start_ap(apic_id)) {
977			/* restore the warmstart vector */
978			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
979			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
980		}
981
982		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
983	}
984
985	/* restore the warmstart vector */
986	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
987
988	outb(CMOS_REG, BIOS_RESET);
989	outb(CMOS_DATA, mpbiosreason);
990
991	/* number of APs actually started */
992	return mp_naps;
993}
994
995
996/*
997 * This function starts the AP (application processor) identified
998 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
999 * to accomplish this.  This is necessary because of the nuances
1000 * of the different hardware we might encounter.  It isn't pretty,
1001 * but it seems to work.
1002 */
1003static int
1004start_ap(int apic_id)
1005{
1006	int vector, ms;
1007	int cpus;
1008
1009	/* calculate the vector */
1010	vector = (boot_address >> 12) & 0xff;
1011
1012	/* used as a watchpoint to signal AP startup */
1013	cpus = mp_naps;
1014
1015	ipi_startup(apic_id, vector);
1016
1017	/* Wait up to 5 seconds for it to start. */
1018	for (ms = 0; ms < 5000; ms++) {
1019		if (mp_naps > cpus)
1020			return 1;	/* return SUCCESS */
1021		DELAY(1000);
1022	}
1023	return 0;		/* return FAILURE */
1024}
1025
1026#ifdef COUNT_XINVLTLB_HITS
1027u_int xhits_gbl[MAXCPU];
1028u_int xhits_pg[MAXCPU];
1029u_int xhits_rng[MAXCPU];
1030static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1031SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1032    sizeof(xhits_gbl), "IU", "");
1033SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1034    sizeof(xhits_pg), "IU", "");
1035SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1036    sizeof(xhits_rng), "IU", "");
1037
1038u_int ipi_global;
1039u_int ipi_page;
1040u_int ipi_range;
1041u_int ipi_range_size;
1042SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1043SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1044SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1045SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1046    &ipi_range_size, 0, "");
1047
1048u_int ipi_masked_global;
1049u_int ipi_masked_page;
1050u_int ipi_masked_range;
1051u_int ipi_masked_range_size;
1052SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1053    &ipi_masked_global, 0, "");
1054SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1055    &ipi_masked_page, 0, "");
1056SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1057    &ipi_masked_range, 0, "");
1058SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1059    &ipi_masked_range_size, 0, "");
1060#endif /* COUNT_XINVLTLB_HITS */
1061
1062/*
1063 * Init and startup IPI.
1064 */
1065void
1066ipi_startup(int apic_id, int vector)
1067{
1068
1069	/*
1070	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1071	 * and running the target CPU. OR this INIT IPI might be latched (P5
1072	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1073	 * ignored.
1074	 */
1075	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1076	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1077	lapic_ipi_wait(-1);
1078	DELAY(10000);		/* wait ~10mS */
1079
1080	/*
1081	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1082	 * latched, (P5 bug) this 1st STARTUP would then terminate
1083	 * immediately, and the previously started INIT IPI would continue. OR
1084	 * the previous INIT IPI has already run. and this STARTUP IPI will
1085	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1086	 * will run.
1087	 */
1088	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1089	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1090	    vector, apic_id);
1091	lapic_ipi_wait(-1);
1092	DELAY(200);		/* wait ~200uS */
1093
1094	/*
1095	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1096	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1097	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1098	 * recognized after hardware RESET or INIT IPI.
1099	 */
1100	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1101	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1102	    vector, apic_id);
1103	lapic_ipi_wait(-1);
1104	DELAY(200);		/* wait ~200uS */
1105}
1106
1107/*
1108 * Send an IPI to specified CPU handling the bitmap logic.
1109 */
1110static void
1111ipi_send_cpu(int cpu, u_int ipi)
1112{
1113	u_int bitmap, old_pending, new_pending;
1114
1115	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1116
1117	if (IPI_IS_BITMAPED(ipi)) {
1118		bitmap = 1 << ipi;
1119		ipi = IPI_BITMAP_VECTOR;
1120		do {
1121			old_pending = cpu_ipi_pending[cpu];
1122			new_pending = old_pending | bitmap;
1123		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1124		    old_pending, new_pending));
1125		if (old_pending)
1126			return;
1127	}
1128	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1129}
1130
1131/*
1132 * Flush the TLB on all other CPU's
1133 */
1134static void
1135smp_tlb_shootdown(u_int vector, pmap_t pmap, vm_offset_t addr1,
1136    vm_offset_t addr2)
1137{
1138	u_int ncpu;
1139
1140	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1141	if (ncpu < 1)
1142		return;		/* no other cpus */
1143	if (!(read_rflags() & PSL_I))
1144		panic("%s: interrupts disabled", __func__);
1145	mtx_lock_spin(&smp_ipi_mtx);
1146	smp_tlb_invpcid.addr = addr1;
1147	if (pmap == NULL) {
1148		smp_tlb_invpcid.pcid = 0;
1149	} else {
1150		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1151		pcid_cr3 = pmap->pm_cr3;
1152	}
1153	smp_tlb_addr2 = addr2;
1154	smp_tlb_pmap = pmap;
1155	atomic_store_rel_int(&smp_tlb_wait, 0);
1156	ipi_all_but_self(vector);
1157	while (smp_tlb_wait < ncpu)
1158		ia32_pause();
1159	mtx_unlock_spin(&smp_ipi_mtx);
1160}
1161
1162static void
1163smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
1164    vm_offset_t addr1, vm_offset_t addr2)
1165{
1166	int cpu, ncpu, othercpus;
1167
1168	othercpus = mp_ncpus - 1;
1169	if (CPU_ISFULLSET(&mask)) {
1170		if (othercpus < 1)
1171			return;
1172	} else {
1173		CPU_CLR(PCPU_GET(cpuid), &mask);
1174		if (CPU_EMPTY(&mask))
1175			return;
1176	}
1177	if (!(read_rflags() & PSL_I))
1178		panic("%s: interrupts disabled", __func__);
1179	mtx_lock_spin(&smp_ipi_mtx);
1180	smp_tlb_invpcid.addr = addr1;
1181	if (pmap == NULL) {
1182		smp_tlb_invpcid.pcid = 0;
1183	} else {
1184		smp_tlb_invpcid.pcid = pmap->pm_pcid;
1185		pcid_cr3 = pmap->pm_cr3;
1186	}
1187	smp_tlb_addr2 = addr2;
1188	smp_tlb_pmap = pmap;
1189	atomic_store_rel_int(&smp_tlb_wait, 0);
1190	if (CPU_ISFULLSET(&mask)) {
1191		ncpu = othercpus;
1192		ipi_all_but_self(vector);
1193	} else {
1194		ncpu = 0;
1195		while ((cpu = CPU_FFS(&mask)) != 0) {
1196			cpu--;
1197			CPU_CLR(cpu, &mask);
1198			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1199			    cpu, vector);
1200			ipi_send_cpu(cpu, vector);
1201			ncpu++;
1202		}
1203	}
1204	while (smp_tlb_wait < ncpu)
1205		ia32_pause();
1206	mtx_unlock_spin(&smp_ipi_mtx);
1207}
1208
1209void
1210smp_cache_flush(void)
1211{
1212
1213	if (smp_started)
1214		smp_tlb_shootdown(IPI_INVLCACHE, NULL, 0, 0);
1215}
1216
1217void
1218smp_invltlb(pmap_t pmap)
1219{
1220
1221	if (smp_started) {
1222		smp_tlb_shootdown(IPI_INVLTLB, pmap, 0, 0);
1223#ifdef COUNT_XINVLTLB_HITS
1224		ipi_global++;
1225#endif
1226	}
1227}
1228
1229void
1230smp_invlpg(pmap_t pmap, vm_offset_t addr)
1231{
1232
1233	if (smp_started) {
1234		smp_tlb_shootdown(IPI_INVLPG, pmap, addr, 0);
1235#ifdef COUNT_XINVLTLB_HITS
1236		ipi_page++;
1237#endif
1238	}
1239}
1240
1241void
1242smp_invlpg_range(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2)
1243{
1244
1245	if (smp_started) {
1246		smp_tlb_shootdown(IPI_INVLRNG, pmap, addr1, addr2);
1247#ifdef COUNT_XINVLTLB_HITS
1248		ipi_range++;
1249		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1250#endif
1251	}
1252}
1253
1254void
1255smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
1256{
1257
1258	if (smp_started) {
1259		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, NULL, 0, 0);
1260#ifdef COUNT_XINVLTLB_HITS
1261		ipi_masked_global++;
1262#endif
1263	}
1264}
1265
1266void
1267smp_masked_invlpg(cpuset_t mask, pmap_t pmap, vm_offset_t addr)
1268{
1269
1270	if (smp_started) {
1271		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0);
1272#ifdef COUNT_XINVLTLB_HITS
1273		ipi_masked_page++;
1274#endif
1275	}
1276}
1277
1278void
1279smp_masked_invlpg_range(cpuset_t mask, pmap_t pmap, vm_offset_t addr1,
1280    vm_offset_t addr2)
1281{
1282
1283	if (smp_started) {
1284		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1,
1285		    addr2);
1286#ifdef COUNT_XINVLTLB_HITS
1287		ipi_masked_range++;
1288		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1289#endif
1290	}
1291}
1292
1293void
1294ipi_bitmap_handler(struct trapframe frame)
1295{
1296	struct trapframe *oldframe;
1297	struct thread *td;
1298	int cpu = PCPU_GET(cpuid);
1299	u_int ipi_bitmap;
1300
1301	critical_enter();
1302	td = curthread;
1303	td->td_intr_nesting_level++;
1304	oldframe = td->td_intr_frame;
1305	td->td_intr_frame = &frame;
1306	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1307	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1308#ifdef COUNT_IPIS
1309		(*ipi_preempt_counts[cpu])++;
1310#endif
1311		sched_preempt(td);
1312	}
1313	if (ipi_bitmap & (1 << IPI_AST)) {
1314#ifdef COUNT_IPIS
1315		(*ipi_ast_counts[cpu])++;
1316#endif
1317		/* Nothing to do for AST */
1318	}
1319	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1320#ifdef COUNT_IPIS
1321		(*ipi_hardclock_counts[cpu])++;
1322#endif
1323		hardclockintr();
1324	}
1325	td->td_intr_frame = oldframe;
1326	td->td_intr_nesting_level--;
1327	critical_exit();
1328}
1329
1330/*
1331 * send an IPI to a set of cpus.
1332 */
1333void
1334ipi_selected(cpuset_t cpus, u_int ipi)
1335{
1336	int cpu;
1337
1338	/*
1339	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1340	 * of help in order to understand what is the source.
1341	 * Set the mask of receiving CPUs for this purpose.
1342	 */
1343	if (ipi == IPI_STOP_HARD)
1344		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1345
1346	while ((cpu = CPU_FFS(&cpus)) != 0) {
1347		cpu--;
1348		CPU_CLR(cpu, &cpus);
1349		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1350		ipi_send_cpu(cpu, ipi);
1351	}
1352}
1353
1354/*
1355 * send an IPI to a specific CPU.
1356 */
1357void
1358ipi_cpu(int cpu, u_int ipi)
1359{
1360
1361	/*
1362	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1363	 * of help in order to understand what is the source.
1364	 * Set the mask of receiving CPUs for this purpose.
1365	 */
1366	if (ipi == IPI_STOP_HARD)
1367		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1368
1369	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1370	ipi_send_cpu(cpu, ipi);
1371}
1372
1373/*
1374 * send an IPI to all CPUs EXCEPT myself
1375 */
1376void
1377ipi_all_but_self(u_int ipi)
1378{
1379	cpuset_t other_cpus;
1380
1381	other_cpus = all_cpus;
1382	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1383
1384	if (IPI_IS_BITMAPED(ipi)) {
1385		ipi_selected(other_cpus, ipi);
1386		return;
1387	}
1388
1389	/*
1390	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1391	 * of help in order to understand what is the source.
1392	 * Set the mask of receiving CPUs for this purpose.
1393	 */
1394	if (ipi == IPI_STOP_HARD)
1395		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1396
1397	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1398	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1399}
1400
1401int
1402ipi_nmi_handler()
1403{
1404	u_int cpuid;
1405
1406	/*
1407	 * As long as there is not a simple way to know about a NMI's
1408	 * source, if the bitmask for the current CPU is present in
1409	 * the global pending bitword an IPI_STOP_HARD has been issued
1410	 * and should be handled.
1411	 */
1412	cpuid = PCPU_GET(cpuid);
1413	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1414		return (1);
1415
1416	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1417	cpustop_handler();
1418	return (0);
1419}
1420
1421/*
1422 * Handle an IPI_STOP by saving our current context and spinning until we
1423 * are resumed.
1424 */
1425void
1426cpustop_handler(void)
1427{
1428	u_int cpu;
1429
1430	cpu = PCPU_GET(cpuid);
1431
1432	savectx(&stoppcbs[cpu]);
1433
1434	/* Indicate that we are stopped */
1435	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1436
1437	/* Wait for restart */
1438	while (!CPU_ISSET(cpu, &started_cpus))
1439	    ia32_pause();
1440
1441	CPU_CLR_ATOMIC(cpu, &started_cpus);
1442	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1443
1444#ifdef DDB
1445	amd64_db_resume_dbreg();
1446#endif
1447
1448	if (cpu == 0 && cpustop_restartfunc != NULL) {
1449		cpustop_restartfunc();
1450		cpustop_restartfunc = NULL;
1451	}
1452}
1453
1454/*
1455 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1456 * are resumed.
1457 */
1458void
1459cpususpend_handler(void)
1460{
1461	u_int cpu;
1462
1463	cpu = PCPU_GET(cpuid);
1464
1465	if (savectx(susppcbs[cpu])) {
1466		ctx_fpusave(susppcbs[cpu]->pcb_fpususpend);
1467		wbinvd();
1468		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1469	} else {
1470		pmap_init_pat();
1471		initializecpu();
1472		PCPU_SET(switchtime, 0);
1473		PCPU_SET(switchticks, ticks);
1474
1475		/* Indicate that we are resumed */
1476		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1477	}
1478
1479	/* Wait for resume */
1480	while (!CPU_ISSET(cpu, &started_cpus))
1481		ia32_pause();
1482
1483	/* Resume MCA and local APIC */
1484	mca_resume();
1485	lapic_setup(0);
1486
1487	CPU_CLR_ATOMIC(cpu, &started_cpus);
1488}
1489
1490/*
1491 * This is called once the rest of the system is up and running and we're
1492 * ready to let the AP's out of the pen.
1493 */
1494static void
1495release_aps(void *dummy __unused)
1496{
1497
1498	if (mp_ncpus == 1)
1499		return;
1500	atomic_store_rel_int(&aps_ready, 1);
1501	while (smp_started == 0)
1502		ia32_pause();
1503}
1504SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1505
1506#ifdef COUNT_IPIS
1507/*
1508 * Setup interrupt counters for IPI handlers.
1509 */
1510static void
1511mp_ipi_intrcnt(void *dummy)
1512{
1513	char buf[64];
1514	int i;
1515
1516	CPU_FOREACH(i) {
1517		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1518		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1519		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1520		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1521		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1522		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1523		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1524		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1525		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1526		intrcnt_add(buf, &ipi_preempt_counts[i]);
1527		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1528		intrcnt_add(buf, &ipi_ast_counts[i]);
1529		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1530		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1531		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1532		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1533	}
1534}
1535SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1536#endif
1537
1538